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Abstract
We studied the karyotype and chromosomal distribution of 18S rDNA clustered in nucleolar organizer 
regions (NORs) in Nysius graminicola (Kolenati, 1845), belonging to the subfamily Orsillinae (Lygaeidae). 
It is shown that this species has a karyotype with 2n = 22(18+mm+XY), previously known in only one of 24 
studied species of the genus Nysius Dallas, 1852, characterized by a similar karyotype, 2n = 14(12+mm+XY). 
In N. graminicola, 18S loci are located on sex chromosomes, which is a previously unknown trait for this 
genus. Our results in a compilation with previous data revealed dynamic evolution of rDNA distribution 
in Nysius. It is concluded that molecular chromosomal markers detected by FISH contribute to a better 
understanding of the structure and evolution of the taxonomically complex genus Nysius.
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Introduction

Nysius Dallas, 1852 is one of the most common and widely distributed genera within 
the family Lygaeidae (Heteroptera, Pentatomomorpha). Species of the genus are seed-
predators; most species live in ruderal habitats and are often extremely abundant and 
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sometimes becoming agricultural pests (Ge and Li 2019). The genus currently includes 
more than 100 described species and subspecies, with many more species remain-
ing unrecognized (Ashlock 1967; Schaefer and Panizzi 2000; Péricart 2001; Nakatani 
2015; Dellapé and Henry 2023). Nysius is a taxonomically complex group, and its 
members are known as “difficult to identify” because of the striking similarity of mor-
phological features (Nakatani 2015). Obviously, some new methods and approaches 
are needed to solve the problem of distinguishing between closely related Nysius spe-
cies. It has been shown that DNA sequencing of a standard gene region or ‘‘DNA 
barcoding’’ might speed a solution (Matsuura et al. 2012; Nakatani 2015).

Quite a few species of Nysius have been studied cytogenetically. Data on the number 
of chromosomes, the mechanism of sex chromosomes and, in some cases, the peculiari-
ties of meiosis are currently available for 24 species, i.e. about 25% of all known species of 
this genus (reviewed by Ueshima and Ashlock 1980; see also Golub et al. 2023). Routine 
cytogenetics of Nysius appears to be highly conserved: all species have 2n = 14(12+XY), 
with the only exception being N. tennellus Barber, 1947, which has 2n = 22(20+XY). 
Each species has a pair of very small, so-called m-chromosomes (microchromosomes).

Consistent advances in chromosomal analysis increased dramatically in recent dec-
ades, becoming more refined and accurate through molecular cytogenetics using fluo-
rescence in situ hybridization (FISH) allowing physical location of DNA sequences in 
chromosomes. The chromosomes of true bugs are holokinetic (Ueshima 1979), that is, 
they lack centromeres; therefore, the search for chromosomal markers is of great im-
portance for the comparative analysis of their karyotypes. rRNA genes are among the 
better-known multigene families in true bugs (Panzera et al. 2021; Kuznetsova et al. 
2021). The first recent application of FISH to map rRNA genes on the chromosomes 
of two Nysius species with modal karyotypes of 2n = 14(12+XY), N. cymoides (Spinola, 
1837) and N. helveticus (Herrich-Schäffer, 1850), showed that they both have rDNA 
sites on the largest pair of autosomes (Golub et al. 2023).

The present study is focused on karyotype description of N. graminicola (Kolenati, 
1845) based on classical cytogenetics, including Ag-NOR staining, and FISH map-
ping of the 18S rDNA probe, which, we believe, opens up new perspectives for under-
standing the evolution of karyotypes in the genus Nysius.

Material and methods

Five males of Nysius graminicola were collected on August 15, 2023, 20 km NE of 
Voronezh (Russia) in a flood meadow on cereals. Males were freshly fixed in a mix-
ture of alcohol and acetic acid (3:1) and stored in a refrigerator at 4 degrees until 
examination. Several slides were prepared from the testes of each male. Standard karyo-
types were studied after staining by the Schiff–Giemsa method (Grozeva and Nokkala 
1996). Nucleolus organizer regions (NORs) were localized by Ag-staining according 
to Howell and Black (1980) with minor modifications as described in Karagyan et al. 
(2020). To study the chromosomal distribution of major rDNA, FISH with an 18S 
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rDNA probe of the firebug Pyrrhocoris apterus (Linneus, 1758) was performed accord-
ing to the protocol described by Grozeva et al. (2015). The entire procedure (labeling, 
hybridizing, and detecting) is described in Golub et al. (2019) and Gokhman and 
Kuznetsova (2022). All preparations were photographed under oil-immersion (X100 
objective) using a Leica DM 6000 B microscope, Leica DFC 345 FX camera, and 
Leica Application Suite 3.7 software with Image Overlay module (Leica Microsystems, 
Wetzlar, Germany). Filter sets A and L5 (Leica Microsystems) were used. The speci-
mens from which chromosome preparations were made and the preparations them-
selves are stored at the Zoological Institute RAS (St. Petersburg, Russia).

Results

Nysius graminicola (Kolenati, 1845) n = 11 (9AA+mm+XY), 2n = 22, XY

The karyotype of N. graminicola has been studied for the first time. We analyzed the 
stages of male meiosis from prophase and metaphase I (MI) to metaphase II (MII) 
after the classic routine staining (Fig. 1a–d), after FISH with an 18S rDNA probe 
(Fig. 1e, f ), and after Ag-staining (Fig. 1g). At the early prophase stages (Fig. 1a, e, g), 
there are two heteropycnotic bodies corresponding to the X-chromosome (presum-
ably larger) and Y- chromosome (smaller); both lie on the periphery of the nucleus, 
sometimes far apart (Fig. 1e, g), but sometimes quite close to one another (Fig. 1a). 
At MI (Fig. 1b, c) and diakinesis/MI transition (Fig. 1f ), there are 10 bivalents of 
autosomes, including a small pair of m-chromosomes, and sex chromosomes X and 
Y placed separately from each other. Eleven elements, including ten autosomes split 
into chromatids and a pseudobivalent XY, were found in each of the sister MII nuclei 
(Fig. 1d). It is obvious that sex chromosomes, unlike autosomes and m-chromosomes, 
segregate equationally in the first round of meiosis and divide reductionally in the sec-
ond round of meiosis (inverted or post-reductional meiosis), which is characteristic of 
all Pentatomomorpha and most Heteroptera in general (Ueshima 1979). The meiofor-
mula of the karyotype of N. graminicola can thus be denoted as n = 9AA+mm+X+Y 
(2n = 22, XY). The autosomes form a decreasing size series; sex chromosomes, as noted 
above, are a different size and behave like univalents, each splitting into chromatids. 
M-chromosomes exhibit negative heteropycnosis during meiotic divisions; they may 
be located separately or form a pseudobivalent at prophase (not shown) and at MI 
(Fig. 1b, c), a phenomenon known as “touch-and-go” pairing studied in depth by 
Nokkala (1986) on the example of Coreus marginatus (Linnaeus, 1758) (Coreidae). 
Both MI and MII plates are radial, with sex chromosomes and m- chromosomes lying 
in the center of a ring formed by bivalents (Fig. 1b, c, d). rDNA signals are visible on 
both sex chromosomes at all stages of meiosis, with larger and brighter signals on the 
Y-chromosome (Fig. 1e, f ). Ag-staining revealed remnants of the nucleoli associated 
with both sex chromosomes in interphase/prophase cells, confirming the presence of 
rRNA genes in these chromosomes (Fig. 1g).
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Discussion

Nysius graminicola is the second species in the genus Nysius to have 2n = 22(20+XY). 
This karyotype was previously known only in N. tennellus, and its origin was attributed 
to autosome fragmentations in the karyotype with 2n = 14(12+XY), representing a 
plesiomorphic state common to vast majority of Nysius species (Ueshima and Ashlock 
1980). It should be noted that this karyotype is one of two (second 2n = 16, XY) 
modal karyotypes in the family Lygaeidae including the subfamily Orsillinae (Ueshima 
and Ashlock 1980; Papeschi and Bressa 2006). The above hypothesis is confirmed by 
the fact that in the karyotype with 2n = 14 there is a pair of very large chromosomes 

Figure 1. a–g Male meiotic karyotype of N. graminicola after standard staining (a–d), FISH with 18S 
rDNA probe (e, f), and Ag-staining (g) a, e, g interphase/prophase nuclei b, c metaphase I f diakinesis/
MI transition d metaphases II, daughter cells. N – nucleolus. Scale bar: 10 µm.
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(although for many species no karyotype illustration is given in the original publica-
tions), whereas in the karyotype with 2n = 22 (in both N. graminicola and N. tennellus) 
there is no such pair, and the chromosomes form a decreasing size series. The detection 
of a ribosomal cluster in autosomes in N. cymoides and N. helveticus sharing a modal 
karyotype (Golub et al. 2023) suggests an autosomal rDNA pattern to be the ancestral 
state for Nysius. Because the 18S ribosomal genes in these species are located on the 
largest pair of autosomes, we hypothesized that they would be found in one of the au-
tosome pairs in N. graminicola with a derived karyotype. However, this hypothesis was 
not confirmed in our results, since the hybridization marks of the 18S rDNA probe 
were detected in the sex chromosomes of this species. Such a relocation of ribosomal 
sites from autosomes to the sex chromosomes is unlikely to be the result of chromo-
somal rearrangements alone. It is conceivable that transposable elements (also called 
“jumping genes” or mobile genetic elements) capable capturing entire genes and mov-
ing them from one genomic locus to another (Fambrini et al. 2020), could be involved 
in the dispersal of rRNA genes in the genus Nysius, as suggested for some other true 
bugs and some other insects (see examples and references in Panzera et al. 2021). The 
movement of rDNA clusters from autosomes to sex chromosomes is thought to be of 
evolutionary significance, causing genetic differentiation between divergent lineages 
and speciation events (see Pita et al. 2016; Panzera et al. 2021). We hypothesize that 
studies of other Nysius species will reveal a greater diversity of rDNA cluster distribu-
tion patterns, contributing to a better understanding of the structure and evolution of 
this taxonomically complex genus.

Conclusion

Our results show that the genus Nysius is characterized by a much more pronounced 
karyotype diversity than previously thought.
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