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Abstract

Among teleost fishes, Asian swamp eel (Monopterus albus Zuiew, 1793) possesses the lowest chromosome
number, 2n = 24. To characterize the chromosome constitution and investigate the genome organiza-
tion of repetitive sequences in M. albus, karyotyping and chromosome mapping were performed with
the 18S — 28S rRNA gene, telomeric repeats, microsatellite repeat motifs, and Rex retroelements. The
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18S —28S rRNA genes were observed to the pericentromeric region of chromosome 4 at the same position
with large propidium iodide and C-positive bands, suggesting that the molecular structure of the peri-
centromeric regions of chromosome 4 has evolved in a concerted manner with amplification of the 18S
— 28S rRNA genes. (TTAGGG)n sequences were found at the telomeric ends of all chromosomes. Eight
of 19 microsatellite repeat motifs were dispersedly mapped on different chromosomes suggesting the inde-
pendent amplification of microsatellite repeat motifs in M. albus. Monopterus albus Rex1 (MALRex1) was
observed at interstitial sites of all chromosomes and in the pericentromeric regions of most chromosomes
whereas MALRex3 was scattered and localized to all chromosomes and MALRex6 to several chromosomes.
‘This suggests that these retroelements were independently amplified or lost in M. albus. Among MALRexs
(MALRex1, MALRex3, and MALRexG), MALRex6 showed higher interspecific sequence divergences from
other teleost species in comparison. This suggests that the divergence of Rex6 sequences of M. albus might
have occurred a relatively long time ago.
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Introduction

Teleost fishes possess high morphological and physiological variation with nearly 30,000
extant species (Nelson 2016). The Asian swamp eel (Monopterus albus Zuiew, 1793) is
a commercially important, air-breathing fish (Synbranchidae, Synbranchiformes) which
is a protogynous hermaphrodite native in freshwaters of East and Southeast Asia and
invasive elsewhere in the world including North America (Liem 1963, Chan etal. 1972,
Cheng et al. 2003). The diploid chromosome number of M. albus is 24, comprising 12
pairs of acrocentric chromosomes (Yu et al. 1989, Ji et al. 2003). This is considered to
be the lowest chromosome number known in teleosts (genome sizes 0.6-0.8 pg), while
common chromosome numbers of teleosts are 2n = 4050 and genome sizes around
0.8-2 pg (Zhou et al. 2002). The Asian swamp eel is, therefore, a good model to investi-
gate genome evolution and the developmental process in teleosts.

Synbranchids are freshwater eel-like fishes which include four genera (Macrotrema
Cantor, 1849, Monopterus Lacépede, 1800, Ophisternon McClelland, 1844, and Syn-
branchus Bloch, 1795) and Monoprerus is phylogenetically located at the basal po-
sition except for the Macrotrema (Perdices et al. 2005, Betancur et al. 2013). This
phylogenetic relationship suggests that the Asian swamp eel might retain the ancestral
karyotype of Synbranchidae. When compared to other synbranchids, it has a unique
karyotype with very few chromosomes. For example, the diploid chromosome num-
bers of Monopterus cuchia Hamilton, 1822, a closely related species, is 42 and those of
Synbranchus and Ophisternon species are 42 and 46, respectively (Rishi and Haobam
1984, Foresti et al. 1992, Nirchio et al. 2011, Carvalho et al. 2012, Utsunomia et al.
2014). An investigation of M. albus chromosome constitution to compare it with other
synbranchid fishes could shed light evolutionary scenarios of chromosomal rearrange-
ments and genome organization within Synbranchidae.
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Vertebrate genomes are commonly characterized by a large copy number of re-
petitive sequences, belonging to two main classes: the site-specific type (such as sat-
ellite. DNA, microsatellite repeats, ribosomal RNA genes and telomeric sequences),
and the interspersed type (transposable elements, TEs) (Jelinek and Schmid 1982).
Although most repetitive DNAs do not code for proteins, repetitive sequences can
also play important role in the function, dynamics, and evolution of genomes (Csink
and Henikoff 1998, Henikoff et al. 2001). Microsatellites, which are tandem repeats
of small stretches of DNA motifs, are widespread in the genomes. Amplification of
microsatellite repeat motifs has often been observed on sex chromosomes (Ciofhi et
al. 2011, Matsubara et al. 2015) or several autosomes (Schneider et al. 2015) of ver-
tebrates. Microsatellite repeat motifs have been widely used as cytogenetic markers for
chromosome identification, particularly for map-poor species (Srikulnath 2010). TEs
are also thought to play an important role in genome evolution (Kidwell and Lisch
2000) acting as a substrate for homologous recombination resulting in chromosomal
rearrangements. Additionally, TEs can be transmitted by both vertical and horizon-
tal transfers being present in genomes of phylogenetically distant species (Tang et al.
2015). Retrotransposons (retroelements) are a class of TEs which have RNA as an
intermediate, and the Rex retroelements (Rex1, Rex3, and Rex6) were active during tel-
eost evolution (Volff et al. 1999, 2000, 2001). These retroelements are widely used as
markers for molecular evolution and physical mapping, which allow to understand the
role of repetitive elements in genome organization and evolution of teleosts (Ferreira
etal. 2011, Schneider et al. 2013).

In this study, karyotyping was performed with conventional Giemsa staining, 4',
6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) fluorescent stain-
ing, C-banding, and fluorescence iz situ hybridization (FISH) with four repetitive
elements; namely, the 18S - 28S ribosomal RNA genes, telomeric (TTAGGG)n se-
quences, Rex retroelements and 19 microsatellite repeat motifs. Partial DNA fragments
of Rex retroelements (RexI, Rex3, and Rex6) were molecularly characterized and the
evolutionary processes responsible for these retroelements in teleost genomes were dis-
cussed, together with the organization of synbranchid genomes.

Materials and methods

Specimens and chromosome preparation

Ten specimens of the Asian swamp eel were purchased from an animal pet shop in
Bangkok, Thailand. Animal care and all experimental procedures were approved by
the Animal Experiment Committee, Kasetsart University, Thailand (approval no.
ACKUO00958), and conducted according to the Regulations on Animal Experiments
at Kasetsart University, Thailand. Mitotic chromosomes were obtained from gill and
kidney cells using the air drying method. Briefly, after intraperitoneal injection of
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0.01% colchicine (Sigma, St. Louis, Missouri, USA) in the proportion of 0.7 ml per
100 g of fish weight for 2 h, fishes were anesthetized in ice-cold water, and the ante-
rior portion of the gill and kidney were removed and used for mitotic chromosome
preparation. After hypotonic treatment of gill and kidney in 0.075 M KCl for 50 min
at room temperature, the organs were minced and placed in the first fixative solution
(3:1 methanol/acetic acid) for 5 min and in the second fixative solution (2:1 methanol/
acetic acid) for 5 min on ice. The cells were collected by filtration using gauze, and then
fixed with 3:1 methanol/acetic acid. The cells in suspension were dropped onto clean
glass slides and air-dried. The slides were kept at -80°C until use. For karyotyping with
conventional Giemsa staining, the chromosome slides were stained with 4% Giemsa
solution (pH 7.2) for 10 min.

C-banding

To examine the chromosomal distribution of constitutive heterochromatin, C-banding
was performed using the standard barium hydroxide/saline/ Giemsa method (Sumner
1972) with slight modification as follows: chromosome slides were treated with 0.2 N
HCI at room temperature for 60 min and then with 5% Ba(OH), at 50°C for 15 s,
followed by 2x SSC at 65°C for 60 min.

Polymerase chain reaction (PCR) amplification and molecular cloning

Genomic DNA was extracted from liver and muscle tissue following the standard
salting-out protocol as described previously (Supikamolseni et al. 2015), and used as
templates for polymerase chain reaction (PCR). Partial DNA fragments of the 18S -
28S rRNA genes, and Rex retroelements (Rex!, Rex3, and Rex6) were amplified using
following PCR primers (see Suppl. material 1). PCR amplification was performed
using 20 pl of 1x ExTaq buffer containing 1.5 mM MgClZ, 0.2 mM dNTPs, 5.0 uM
the primers, and 0.25 U of TaKaRa Ex Taq (TaKaRa Bio, Otsu, Japan), and 25 ng of
genomic DNA. PCR conditions were as follows: an initial denaturation at 94°C for 3
min, followed by 35 cycles of 94°C for 30's, 53-59°C for 30 s, and 72°C for 45 s, and a
final extension at 72°C for 10 min. The PCR products were cloned using the pTG19-T
vector (Vivantis Technologies Sdn Bhd, Selangor Darul Ehsan, Malaysia), and nucleo-
tide sequences of the DNA fragments were determined using DNA sequencing service
(First BASE Laboratories Sdn Bhd, Seri Kembangan, Selangor, Malaysia). Nucleotide
sequences of three to five DNA clones, and their consensus sequences were searched
for homologies with annotated sequences in the National Center for Biotechnology
Information (NCBI) database to identify the amplified DNA fragments, using the
BLASTx and BLASTn programs (http://blast.ncbi.nlm.nih.gov/Blast.cgi). They were
then deposited in the DNA Data Bank of Japan (DDB]J; http://www.ddbj.nig.ac.jp/
index-e.html) (Suppl. material 2).
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Sequence analysis

Multiple sequence alignments of the three data sets (Rex!, Rex3, and Rex6) were per-
formed with those of other teleosts taken from the NCBI database (Suppl. material 2),
using the default parameters of Molecular Evolutionary Genetics Analysis 6 (MEGAG)
software (Center for Evolutionary Functional Genomics, The Biodesign Institute, Tem-
pe, AZ, USA) (Tamura et al. 2013). Numbers of indels (insertions and deletions) for
each data set of Rex retroelements were calculated using the multiallelic mode of DNAsp
5.0 (Librado and Rozas 2009). All unalignable and gap-containing sites were carefully
removed from the data sets. Interspecific sequence divergence was estimated using un-
corrected pairwise distances (p-distances), and for the Rex reverse transcriptase region,
synonymous (K ) and nonsynonymous (K ) substitution rates (+standard error) were cal-
culated using the Nei-Gojobori method (Nei and Gojobori 1986) with Jukes-Cantor
correction (Jukes and Cantor 1969). Phylogenetic analyses were then performed using
Bayesian Inference (BI) using MrBayes v3.0b4 (Huelsenbeck and Ronquist 2001) and
the optimal model of DNA substitution was determined for each data set using Kaku-
san4 (Tanabe 2011). The Markov Chain Monte Carlo (MCMC) process was set to run
four chains simultaneously for one million generations. After the log-likelihood value
plateaued, a sampling procedure was performed every 100 generations to obtain 10,000
trees, and subsequently to provide a majority-rule consensus tree with average branch
lengths. All sample points were discarded as burn-in prior to reaching convergence, and
the Bayesian posterior probability in the sampled tree population was obtained in per-
centage terms. All phylogenetic trees were midpoint-rooted due to the absence of suitable
outgroup in Rex3 data set. However, additional phylogenetic tree based on Rex/ and
Rex6 sequences were constructed with using outgroup method from other Rex sequences.

FISH mapping

Chromosomal locations of the 185 — 28S rRNA genes, Rex retroclements (RexI,
Rex3, and Rex6), telomeric (TTAGGG)n sequences, and 19 microsatellite repeat mo-
tifs: (CA) ,, (GO),,, (GA),,, (AT),,, (CAA),, (CAG),,, (CAT),, (CGG),;, (GAG),,
(AAT),,, (AAGG),, (AATC),, (AGAT),, (ACGC),, (AAAT),, (AAAC),, (AATG),,
(AAATC),, and (AAAAT), were determined using FISH, as described previously (Mat-
suda and Chapman 1995, Srikulnath et al. 2009). We used a 1,366-bp genomic DNA
fragment of M. albus 18S — 28S rRNA genes (LC151290), a 533-bp genomic DNA
fragment of M. albus Rex1 (LC110446), a 415-bp genomic DNA fragment of M. albus
Rex3 (LC110447), a 471-bp genomic DNA fragment of M. albus Rex6 (LC110448),
biotin-labeled 42-bp TTAGGG repeat, and 19 biotin-labeled oligonucleotide micros-
atellite repeat probes, respectively. We labeled 250 ng of DNA fragments with biotin-
16-dUTP (Roche Diagnostics, Mannheim, Germany) by nick translation, according
to the manufacturer’s protocol and ethanol-precipitated with salmon sperm DNA and
Escherichia coli tRNA. After hybridization of biotin-labeled probes to M. albus chro-
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mosomes, the probes were stained with avidin labeled with fluorescein isothiocyanate
(avidin-FITC; Invitrogen, CA, USA). Slides were subsequently stained with 0.75 pg/
ml PI or 1 pg/ml DAPI. Fluorescence hybridization signals were captured using a
cooled CCD camera mounted on a ZEISS Axioplan2 microscope and processed using
MetaSystems ISIS v.5.2.8 software (MetaSystems, Alltlussheim, Germany).

For dual-color FISH, two probes differentially labeled with either biotin-16-dUTP
or digoxigenin-11-dUTP (Roche Diagnostics) were mixed in hybridization buffer and
co-hybridized to one slide. After hybridization, digoxigenin- and biotin-labeled probes
were stained with anti-digoxigenin-rhodamine Fab fragments (Roche Diagnostics) and
avidin labeled with fluorescein isothiocyanate (avidin-FITC; Invitrogen), respectively.

Results

Karyotype of Monopterus albus

Over 10 Giemsa-stained metaphase spreads were examined for each M. albus individual.
Diploid chromosome number is 24 (FN = 24) comprising twelve pairs of acrocentric
chromosomes (Fig. 1a). The size difference of chromosome pairs was sequential, but most
pairs were identified by size and banding pattern with DAPI and PI fluorescent staining.
Large DAPI-positive bands were observed at the pericentromeric region of chromosome
9 (Fig. 1b), and large PI-positive bands were found at the pericentromeric region of chro-
mosome 4 (Fig. 1¢) coincident with a large C-positive heterochromatin bands (Fig. 1d).

Chromosomal location of the 18S — 28S rRNA genes and (TTAGGG), sequences

Fluorescence hybridization signals for the 18S — 28S rRNA genes were also detected at
the pericentromeric region of chromosome 4 co-localizing with both PI-positive bands
and large C-positive heterochromatin blocks (Fig. 2a, ¢, d, e). Hybridization signals of
TTAGGG repeats were observed at telomeric ends of all chromosomes, but no inter-
stitial signal was found (Fig. 2b, ¢).

Chromosomal localization of microsatellite repeat motifs

Eight of the 19 microsatellite repeat motifs were dispersedly mapped onto most chro-
mosomes (Fig. 3). Notably, strong hybridization signals of trinucleotide (CGG),, were
localized to chromosomes 2, 4, and 6, tetranucleotide (AAAT)8 to chromosomes 3 and
5, (AGAT), to chromosomes 5 and 9, (ACGC), to chromosomes 1, 2, 4,7, 8 and 9, and
pentanucleotide (AAATC), to chromosomes 1 and 8. No signal was observed from the
other 11 microsatellite repeat motifs ((CA) ., (GC) ., (GA) ,, (AT) ., (CAA),, (CAG),,,
(CAT),,, (GAG),,, (AAT),,, (AAGG),, (AATC),, (AAAC),, (AATG),, and (AAAAT) ).

10’ 10° 10°
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Figure |. Giemsa-stained (@), DAPI-stained (b), Pl-stained karyotype (c), and C-banded metaphase
spread (d) of Monopterus albus. Arrowheads indicate the large DAPI-stained and large PI-stained regions.
Arrows indicate C-positive heterochromatin blocks. Scale = 10 um.
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Figure 2. Chromosomal locations of the 18S — 28S rRNA genes and (TTAGGG)n sequences in Monap-
terus albus. Hybridization pattern of FITC-labeled 18S — 28S rRNA genes (green) (a) and rhodamine-la-
beled TTAGGG repeats (red) (b) on DAPI-stained chromosomes, and their co-hybridization pattern (c).
Hybridization pattern of FITC-labeled 18S — 28S rRNA genes (green) (d) on Pl-stained chromosomes.
PI-stained patterns of the same metaphase spreads of (d) is shown in (e). Arrowheads indicate FISH sig-

nals of the 18S — 28S rRNA genes. Arrows indicate the large Pl-stained region. Scale =10 pm.

Chromosomal distribution of Rex retroelements (Rex1, Rex3, and Rex6)

M. albus Rex1 (MALRexI) obtained from a single M. albus individual was localized to
the pericentromeric region and interstitial sites of all chromosomes, except for chromo-
somes 4 and 9 where MALRexI was found only at interstitial sites (Fig. 4a). MALRex3
was located scattered in all chromosomes with strong hybridization signals observed
on chromosomes 1-4 and 8 and weak signals on chromosomes 5-7 and 9-12 (Figs 4b,
5b, d). FISH signals of MALRex6 were found on chromosomes 1, 2, 5, 6, 8, and 10 as
dispersion along the chromosomes (Figs 4c, 5¢, d).

Molecular evolutionary dynamics of Rex retroelements

The nucleotide sequence of a 533 bp-fragment of MALRexI was used in multiple
sequence alignment with 28 other teleosts, evidencing 32 indel sites. Sequence
divergence among species varied from 0 to 50.13% with an average of 29.56+1.13%
(Suppl. material 3). MALRex1 sequences in M. albus showed the minimum interspecific
sequence divergence of 1.88% from nototheniids Dissostichus mawsoni Norman, 1937
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Figure 3. Chromosomal locations of microsatellite repeat motifs in Monopterus albus. Hybridization pat-
tern of FITC-labeled (CAA) (@), (CAG),, (b), (CGG),, (c), (GAG),, (d), (AGAT), (e), (ACGC), (),
(AAAT), (g), and (AAATC), (h) on Pl-stained chromosomes.

and Notothenia coriiceps Richardson, 1844 (Perciformes) and the maximum divergence
of 41.95% to Poeciliopsis gracilis Heckel, 1848 (Cyprinodontiformes); the average is
24.5148.14%. The phylogenetic placement of RexI sequences showed that most species
were grouped in their respective orders (Fig. 6, Suppl. material 6). The average K/K
value of Rex1 sequences was 2.19+0.08 (Table 1). The nucleotide sequence of a 415 bp-
fragment of MALRex3 was used in multiple sequence alignment with 24 other teleosts,
showing 23 indels. The average sequence divergence among species was 33.94+17.24%,
ranging from 2.65% to 69.54% (Suppl. material 4). MALRex3 sequences showed the
minimum interspecific sequence divergence of M. albus, 18.54%, from Esox lucius
Linnaeus, 1758 (Esociformes) and the maximum divergence, 66.65%, from Astyanax
fasciatus Cuvier, 1819 (Characiformes); average 31.84+12.74%. The phylogenetic
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Figure 4. Chromosomal locations of Rexl, Rex3, and Rex6 in Monopterus albus. Hybridization pattern
of FITC-labeled Rex! (green) (a) on Pl-stained chromosomes, and rhodamine-labeled Rex3 (red) (b) and
Rex6 (red) (c) on DAPI-stained chromosomes. Scale =10 pum.

placement of Rex3 sequences showed a clade for each order except for Perciformes
fishes (Fig. 7). The average K /K value of Rex3 sequences was 1.05+0.05 (Table 2). The
nucleotide sequences of a 471 bp fragment of MALRex6 was used in multiple sequence
alignment with 17 other teleosts showing 15 indels. The sequence divergences among
species varied from 3.13 to 65.546% (average 27.94+19.53%). MALRex6 sequences
showed the minimum interspecific sequence divergence of M. albus, 60.31%, from
Geophagus proximus Castelnau, 1855 (Perciformes) and the maximum divergence,
65.54%, from Oreochromis niloticus Cuvier, 1832 (Perciformes,); average 62.60+1.14%
(Suppl. material 5). The phylogenetic placement of Rex6 sequences showed a clade for
each order (Fig. 8, Suppl. material 7). The average K/K value of Rex6 sequences was
0.85+0.04 (Table 3).
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Figure 5. Chromosomal locations of Rex3 and Rex6 in Monopterus albus. Hybridization pattern of FITC-
labeled Rex3 (green) (b) and rhodamine-labeled Rex6 (red) (c) on DAPI-stained chromosomes, and their
co-hybridization pattern (d). DAPI-stained patterns of the same metaphase spreads of (b, ¢, and d) is

shown in (@). Scale =10 pum.

Discussion

Karyotype and chromosomal localization of rRNA gene clusters, telomeric se-
quences, and microsatellite repeat motifs in Monopterus albus

The karyotype of M. albus (2n = 24, FN = 24) composed of 12 acrocentric chromo-
some pairs was found to be similar to that reported by Yu et al. (1989) and Ji et al.
(2003). The chromosome number of M. albus is the lowest among synbranchids, e.g.,
M. cuchia (2n = 42, FN = 46) (Rishi and Haobam 1984), Synbranchus marmoratus
Bloch, 1795 (2n = 42—46, FN = 46-54) (Carvalho et al. 2012; Utsunomia et al. 2014),
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Figure 6. Phylogenetic placements of partial nucleotide sequences of Rex! from 28 teleosts. Support

values at each node are Bayesian posterior probability.
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Figure 7. Phylogenetic placements of partial nucleotide sequences of Rex3 from 24 teleosts. Support

values at each node are Bayesian posterior probability.

Ophisternon aenigmaticum Rosen & Greenwood, 1976 (2n = 46, FN = 52) (Nirchio
etal. 2011), and O. bengalense McClelland, 1844 (2n = 46, FN = 52) (Carvalho et al.
2012), as well as the species of family Mastacembelidae of the same order (2n = 48,
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Figure 8. Phylogenetic placements of partial nucleotide sequences of Rex6 from 17 teleosts. Support
values at each node are Bayesian posterior probability.

FN = 58-88) (Khuda-Bukhsh and Barat 1987). The fundamental numbers of M. al-
bus is reduced to 50% of norm in synbranchid fishes and teleosts, which suggests that
the acrocentric chromosomes of M. albus may have been formed by repeated tandem
fusion of the ancestral acrocentric chromosomes contained in the ancestral karyotype
of Synbranchidae. However, the hybridization signal of (TTAGGG)n at interstitial
telomeric sites (ITSs) that appears to be remnants of fusion or inversion (Srikulnath
etal. 2009, 2011, 2015) was not found in any chromosomes of M. albus in this study
(Fig. 2). Comparative chromosome mapping of Asian swamp eel with zebrafish (Danio
rerio Hamilton, 1822) using human bacterial artificial chromosome (BAC) probes re-
vealed the Asian swamp eel retains a number of gene copies found in tetrapods, while
other teleosts underwent the third genome duplication (GD), leading to multiple cop-
ies of the genes (Yi et al. 2001, Zhou et al. 2002). This suggests that Asian swamp
eel retained the genome composition before the event of the third GD that occurred
in teleosts (Zhou et al. 2002). Molecular structure of the pericentromeric regions of
chromosome 4 which were high GC-rich have evolved in a concerted manner with
amplification of the 18S — 28S rRNA genes. However, the chromosomal locations of
the 18S — 28S rRNA genes varied in M. albus individuals (Fig. 2d, e), a phenomanon
also observed in Chinese population on pair of chromosome 3 and/or chromosome
7 (Ji et al. 2003). In other synbranchid fishes, the 18S — 28S rRNA genes are gener-
ally located on a pair of chromosome 1 and on a pair of medium-sized acrocentric
chromosomes in O. aenigmaticum (Nirchio et al. 2011), as well as on several other
chromosome pairs in various pattern of S. marmoratus (Utsunomia et al. 2014). These
results suggest that chromosomal locations of the 18S — 28S rRNA genes considerably
differ in Synbranchidae.
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In this study, eight microsatellite repeat motifs [(CAG), , (CAA),, (CGG),,
(GAG),,, (AGAT),, (ACGC),, (AAAT),, and (AAATC) ] were dispersedly mapped on
different chromosomes (Fig. 3). This suggests that the amplification of several micros-
atellite repeat motifs has occurred independently in the genome of M. albus. Interest-
ingly, the dispersion of the microsatellite repeat motifs signals was co-localized to M.
albus chromosomes with Rex retroelements. A similar case was found in cichlid species
Cichla monoculus Agassiz, 1831, Pterophyllum scalare Schultze, 1823, and Symphysodon
discus Heckel, 1840 (Schneider et al. 2015). This suggests that both Rex retroelements
and microsatellite repeat motifs have co-amplified in the evolutionary process of the
genome of M. albus.

Organization of Rex retroelements (MALRex1, MALRex3, and MALRex6) on

Monopterus albus chromosomes

The diversity of chromosomal distribution for Rex retroelements (RexI, Rex3, and
Rex6) was found in teleosts (Table 4). Two major distinctive patterns were observed:
(1) compartmentalization as found in pericentromeric, centromeric, or telomeric re-
gions, and (2) uniform dispersion throughout the genome or along the chromosomes
(Ozouf-Costaz et al. 2004). Chromosomal distribution of RexI, Rex3, and Rex6 were
generally located in the specific region together as compartmentalization within each
family/order (Table 4). In this study, although MALRex1 was dispersed throughout
the genome, this element was predominantly localized to pericentromeric regions of
all chromosomes except for chromosomes 4 and 9. By contrast, strong hybridization
signals of MALRex3 were dispersed on five chromosome pairs, with weak signals on
seven chromosome pairs, which implies that MALRex3 were specifically amplified in
chromosomal regions of M. albus.

The differences in the copy number and chromosomal distribution of MALRex1,
MALRex3, and MALRex6 suggest that these retroelements were independently am-
plified or lost in the lineage of M. albus, where MALRex3 is prone to retain a copy
number higher than MALRex1 and MALRex6. A similar case of copy number variation
in Rex retroelements was also found in several Antarctic nototheniid species (Ozouf-
Costaz et al. 2004).

Molecular diversity of Rex retroelements (Rex1, Rex3, and RexG)

Three Rex retroelements were identified in the genome of M. albus, and the degree of
sequence divergence for the three retroelements was high (14-67%) from other spe-
cies in comparison. MALRex] and MALRex3 showed high interspecific sequence diver-
gences from Cyprinodontiformes and Characiformes, respectively, but low interspecific
sequence divergences from Perciformes fishes for Rex] and Escociformes for Rex3 (Suppl.
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materials 3 and 4). This suggests that M. albus and Perciformes or Escociformes shared
relatively recent activity of RexI or Rex3, respectively. The average K /K value of Rex/
was higher than 1 between all compared species and between M. albus and other spe-
cies (Table 1). These results suggest that Rex! evolved under purifying selection and that
retrotranspositions occurred during the evolution of teleosts. By contrast, the average K /
K value of Rex3 was closer to 1, which suggests that after retrotransposition, Rex3 was
influenced by pseudogene-like evolution (Table 2) (McAllister et al. 1997).

Only few data of Rex6 sequences were available because specific PCR primers were
not feasibly effective to detect this element in the genome of teleosts (Volff et al. 2001,
Ozouf-Costaz et al. 2004, Schneider et al. 2013). The absence of Rex6 was observed in
several Antarctic nototheniid species, but Rex6 exists in some other species of the same
order Perciformes (Volff et al. 2001, Ozouf-Costaz et al. 2004, Schneider et al. 2013).
This suggests that Rex6 might have rapidly diverged in teleosts. MALRex6 showed high
interspecific sequence divergences (approximately 60%) of M. albus from other teleosts
(Suppl. material 5). This may indicate that the divergence of Rex6 sequences of M.
albus (or Synbranchidae in general) and other teleosts was rather ancestral. The average
K /K value of Rex6 was less than 1 (Table 3). This suggests that Rex6 has a more diverse
function in teleosts.

The present results of chromosomal distribution and molecular diversity of four
repetitive element groups (the 18S — 28S rRNA gene, telomeric sequences, microsatel-
lite repeat motifs, and Rex retroelements) revealed the chromosome constitution and
genome organization of Asian swamp eels. This enabled us to learn more about the
chromosome constitution in synbranchid fishes and teleosts as a whole. Further work
is required to investigate and compare synbranchid fishes, including M. cuchia, to bet-
ter understand the process of karyotype and genome evolution in this lineage.
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