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Abstract
Plantago lagopus is a diploid (2n = 2x =12) weed belonging to family Plantaginaceae. We reported a novel 
B chromosome in this species composed of 5S and 45S ribosomal DNA and other repetitive elements. 
In the present work, presence of B chromosome(s) was confirmed through FISH on root tip and pollen 
mother cells. Several experiments were done to determine the transmission of B chromosome through 
male and female sex tracks. Progenies derived from the reciprocal crosses between plants with (1B) and 
without (0B) B chromosomes were studied. The frequency of B chromosome bearing plants was signifi-
cantly higher than expected, in the progeny of 1B female × 0B male. Thus, the B chromosome seems to 
have preferential transmission through the female sex track, which may be due to meiotic drive. One of 
the most intriguing aspects of the present study was the recovery of plants having more chromosomes than 
the standard complement of 12 chromosomes. Such plants were isolated from the progenies of B chromo-
some carrying plants. The origin of these plants can be explained on the basis of a two step process; for-
mation of unreduced gametes in 1B plants and fusion of unreduced gametes with the normal gametes or 
other unreduced gametes. Several molecular techniques were used which unequivocally confirmed similar 
genetic constitution of 1B (parent) and plants with higher number of chromosomes.
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Introduction

B chromosomes are dispensable genetic elements that do not recombine with the chro-
mosomes of the standard complement (A chromosomes). Generally, Bs differ morpho-
logically from A chromosomes. B chromosomes have been observed to be heterochro-
matic in nature, composed mainly of repetitive or genetically inert DNA (Jones et al. 
2008b, Kumke et al. 2016). In some cases heterochromatin content of B chromosomes 
has been reported to be similar to that of A chromosomes (Jones and Houben 2003). 
B chromosomes contain no genes with major function necessary for the growth and 
development of the plant. However, Carchilan et al. (2009) isolated 16 putative B 
chromosome-associated transcripts in rye by cDNA-AFLP, which constitute 0.7% of 
the total transcripts, thereby suggesting presence of some important genes on B chro-
mosome. The mode of inheritance of B chromosomes is non-Mendelian, irregular 
and they follow their own evolutionary pathway. Bs persist in the populations which 
is exemplified by their widespread occurrence in plants; angiosperms, gymnosperms, 
some ferns, bryophytes and fungi besides, animals, including mammals (Jones and 
Rees 1982).

B chromosomes have generally been considered as nuclear parasites since their 
mode of inheritance is autonomous and drive ensures their survival in the population. 
Drive is the property that qualifies the B chromosomes as selfish elements. The various 
mechanisms of drive (reviewed by Chiavarino et al. 1998) include: i) the suppression of 
meiotic loss especially when only one B chromosome is present, ii) non- disjunction at 
the second pollen mitosis, and iii) higher competitive ability of B chromosome carrying 
pollen grain. The drive can occur at any stage of life cycle and has accordingly been clas-
sified as pre-meiotic, meiotic and post-meiotic (Camacho et al. 2000). In pre-meiotic 
drive, B chromosomes increase in number in the germline cells and when the latter 
enter meiosis to form gametes, the mean number of B chromosomes increases. This 
type of pre-meiotic accumulation has been observed in Locusta migratoria Linnaeus, 
1758 (Viseras et al. 1990) and Crepis capillaris (Linnaeus) Wallr., 1840 (Parker et al. 
1989, 1990). Meiotic drive depends on the functional symmetry of meiotic products. 
There are reports on existence of meiotic drive in some grasshopper species (Camacho 
2005). Post-meiotic drive occurs immediately after meiosis during the development of 
the male and female gametophyte (Jones 1991). The molecular mechanisms involved in 
drive were not known for long, but recently Banaei-Moghaddam et al. (2012) showed 
meiotic drive to be due to non-disjunction of chromatids of B chromosome.

The B chromosomes show unstable meiotic behaviour, but have preferential seg-
regation to the nuclei, which form gametes (Jones and Houben 2003). Also in rye, 
non-disjunction of Bs and unequal spindle formation at first pollen mitosis are re-
sponsible for the accumulation and transmission of B chromosomes at a higher rate 
to the next generation (Banaei-Moghaddam et al. 2012). Many B chromosomes have 
transmission rates clearly higher than 50%, which leads to their accumulation in the 
subsequent generations (Jones et al. 2008b). Accumulation of B chromosomes has 
been reported through female sex track in several plants and animals (Hewitt 1973). 
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In some cases the B chromosomes accumulate during male meiosis (Nur 1962), while 
in few organisms accumulation is through both the sexes.

Variation in transmission rate of B chromosomes is a common feature since these 
tend to be lost in some progenies while they increase in number in others. The genetic 
control of the transmission rate of B chromosomes has been demonstrated in some plant 
species (Bougourd and Plowman 1996, Puertas et al. 2000). It was suggested that in maize 
a single major gene located on A chromosome controls B chromosome transmission by 
acting in the haploid egg cell at the time of fertilization (Chiavarino et al. 2001). In rye, 
non-disjunction of Bs and unequal spindle formation at first pollen mitosis are responsible 
for the accumulation and transmission of B chromosomes at a higher rate to the next ge-
neration (Banaei-Moghaddam et al. 2012).

Plantago Linnaeus, 1753 is a large genus, of annual/perennial herbs and sub-shrubs, 
with a worldwide distribution. It is the only genus within the family Plantaginaceae and 
is based on about 200 species (Rahn 1996). Plantago lagopus is a small (about 30 cm 
tall), annual herb. It grows as a weed in the Mediterranean region. The diploid chromo-
some number of the species is 2n = 2x = 12. P. lagopus is genetically unstable which is 
reflected in the presence of aneuploidy (Dhar and Koul 1995). Dhar et al. (2002) re-
ported a novel B chromosome in Plantago lagopus, whose main body is composed of 5S 
rDNA and has few 45S rDNA sequences at the ends. The authors presented the experi-
mental evidence of de novo origin of novel B chromosome in P. lagopus through specific 
DNA sequence amplification. Using molecular cytogenetic techniques like FISH and 
Fiber-FISH, Kour et al. (2014) further characterized this chromosome and reported it 
to be a mixture of rDNA sequences and transposable elements.

In order to explore the mechanism of accumulation of B chromosome in Plantago 
lagopus, extensive crossing experiments were conducted. Based on the data so obtained, 
transmission of B chromosome through male and female sex tracks was calculated. 
These studies are expected to throw light on the existence of drive in B chromosome of 
P. lagopus besides, understanding the mechanism of perpetuation in the populations.

Materials and methods

The data on male and female transmission of B chromosome was collected over a pe-
riod of 5 years (2005–2010). Seeds of Plantago lagopus were sown in earthen pots dur-
ing October, every year. Generally, the seeds germinated within 4-5 days. After about 
2 months, the seedlings were transplanted to the experimental beds in the Jammu 
University Botanic Garden.

Before transferring to the soil, young seedlings were uprooted from the pots and 
root tips excised. The root tips were used for cytological studies to determine the pres-
ence of B chromosome(s). The root tips were stained with Feulgen stain and squashed 
in 1% acetocarmine. For meiotic studies, young floral buds were used for cytology. 
Slides were prepared using anthers from freshly fixed buds squashed in 1% acetocar-
mine. Three cytotypes were used for the present investigation; plants with standard 
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complement of 12 chromosomes (0B), plants with one B chromosome in addition 
to the standard complement (1B) and plants with two B chromosomes in addition 
to the standard complement (2B). For Fluorescence in situ hybridization (FISH) the 
protocol of Dhar et al. (2002) was followed. Probes for 45S (pTa71) (Gerlach and 
Bedbrook 1979) and 5S ribosomal DNA (pPov1) (Dhar et al. 2002) were used for 
FISH. The signals were visualized using a Zeiss Axioskop microscope equipped with 
phase contrast and epifluorescence.

Transmission

The progenies raised after selfing and crossing were analyzed to determine the mode of 
transmission of B chromosomes. To work out the transmission of B chromosomes through 
male and female sex tracks, crosses were attempted between the 0B, 1B and 2B plants. The 
seeds obtained from different crosses were sown in the pots during October every year. 
The chromosome number of progeny plants was determined from the seedlings.

Single stranded DNA conformation polymorphism (SSCP) analysis

For SSCP analysis, PCR was performed using the 5S rDNA specific primers. PCR 
product (5µl) was denatured by adding the loading dye consisting of 95% formamide, 
10% glycerol, 0.25% bromophenol blue, 0.25% xylene cyanol) followed by its im-
mediate quenching on ice. The samples were electrophoresed on 6% polyacrylamide 
gel in 0.5X TBE. For staining polyacrylamide gels, silver staining protocol of Bassam 
et al. (1991) was followed.

Sequence specific amplified polymorphism (SSAP) analysis

SSAP analysis was performed as per the protocol of Pearce et al. (1999). The primers 
selected for the analysis were MKD-4, MKD-5, MKD-9, MDK-11, ASW-8, ASW-9 
and ASW-10 (Kour et al. 2009). A total of twelve different combinations were made 
using these primers (Suppl. material 1: Table 1). The PCR amplified fragments were 
electrophoresed on 6% polyacrylamide denaturing gel in 0.5X TBE followed by silver 
staining. Only reproducible bands were considered for scoring.

Simple Sequence Repeat (SSR) analysis

For SSR amplification four primer pairs were used as given by Squirrell and Wolff 
(2001) for Plantago major, and ten other primers were tried (Suppl. material 1: Table 2). 
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PCR amplification of SSR loci was performed in 20µl reaction mixture containing 20ng 
DNA, 1X PCR buffer, 2.5mM MgCl2, 0.5µmol each primer, 200µM dNTPs, 1U Taq 
polymerase (Fermentas, USA). The thermal cycling conditions were as follows: initial 
denaturation at 94°C for 4min followed by 35 cycles of 94°C for 30sec, 55-65°C for 
30sec, extension at 72°C for 1min and final extension for 10min at 72°C. The amplifi-
cation products were resolved on 10% polyacrylamide denaturing gel in 0.5X TBE and 
subsequently visualized by silver staining. For each microsatellite locus, size of the alleles 
was estimated by comparison with standard size. After scoring the allelic bands, other 
bands were also scored.

Results

During the present investigation, about 531 plants were screened cytologically for 
the presence of the B chromosome (Fig. 1a, 1b), since it is not possible to distinguish 
plants with and without B chromosomes, morphologically. In P. lagopus the size of 
the B chromosome is almost equal to one of the A chromosomes, therefore, we used 
FISH with 5S rDNA probe, to identify the B chromosome(s) in 1B and 2B plants 
(Fig. 1c–f ). As has been demonstrated in our earlier study (Dhar et al. 2002), the B 
chromosome gets completely painted when 5S rDNA is used as a probe (Fig. 1d). 
Therefore, in a 0B plant 5S rDNA signals were found only on two chromosomes 
(Fig. 1c). Similarly, 45S rDNA probe clearly identified the B chromosome, as the 
FISH signals were observed at the two ends of the B chromosome, besides the sig-
nals on the pair of NOR bearing chromosomes (Fig. 1e). In 2B plants, FISH with 
5S rDNA probe clearly identified B chromosomes at somatic pro-metaphase and 
metaphase (Fig. 2a–b).

Preferential transmission to progeny

The transmission of B chromosomes was ascertained through male and female sex 
tracks by attempting various reciprocal crosses. When 1B plant was used as a male, 
transmission rate was in accordance with the Mendelian expected ratio of 1:1 (p=0.05; 
χ2= 0.058) (Table 1). In the reciprocal crosses, when 1B plant was used as female par-
ent, progeny based on a total of 187 plants was screened for chromosome number 
(Table 2); the ratio between the plants with and without B chromosome(s) was 3.1:1. 
Thus, it is clear that frequency of B chromosome bearing plants was higher than the 
Mendelian expected value (p < 0.05, χ2=50.30) when 1B chromosome plant was used 
as female parent. The deviation obtained from the Mendelian ratio was significant. 
These results clearly indicate that the B chromosome has preferential transmission 
through the female sex track.
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Figure 1. Root tip mitosis in different plants. a Metaphase spread showing 12 standard (A) chromosomes 
of Plantago lagopus. NOR bearing chromosomes have been marked b Metaphase spread showing 12 A 
and one B chromosome. Note the B chromosome is indistinguishable c Mapping of 5S rDNA sequences 
in 0B plant using FISH. Note the presence of 5S rDNA signals on two A chromosomes d Painting of B 
chromosome with 5S rDNA probe, besides signals of 5S rDNA on two A chromosomes e A metaphase 
spread containing one B chromosome probed with 45S rDNA, showing two additional NOR sites (arrow 
heads) f 5S rDNA probed metaphase spread showing 12 A and two B chromosomes g FISH of a metaphase 
spread of 23-chromosome plant revealing the presence of 5 B chromosomes h Metaphase spread showing 
28 chromosomes. Scale bars: 10µm.

Meiotic behaviour of B chromosome

To understand the meiotic behaviour of B chromosome in 1B plants, a total of 1450 
pollen mother cells from 145 plants were scanned at anaphase I and II. At metaphase-I 
the B chromosome remained as a univalent and at anaphase-I, in 1160 (80%) cells the 
B chromosome was present at one of the poles. In majority of the cases, the B chromo-
some seemed to have reached the pole earlier than the A chromosomes. At anaphase-II, 
the B chromosome divided into chromatids, which segregated to the poles. Similarly, 
in 2B plant at metaphase-I of meiosis, B chromosomes existed either as a bivalent 
(Fig. 2c) or two univalents (Fig. 2d). During anaphase-I the two chromosomes moved 
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Table 2. Data on crosses among 1B (female) × 0B (male) plants.

Parent plants (1B × 0B)
Progeny plants Total plants Ratio

0B 1B 2B 0B B 0B: B
36-1-07 × 36-9-07 06 24 09 06 (15.4) 33 (84.6) 1:5.5
36-2-07 × 36-9-07 03 09 06 03 (16.6) 15 (83.33) 1:5

40-11-07 × 40-6-07 03 04 03 03 (30.0) 07 (70.0) 1:2.3
40-13-07 × 40-607 21 24 12 21 (36.8) 36 (63.2) 1:1.7

1M-1-06 × 1M-4-06 06 21 06 06 (18.2) 27 (81.8) 1:4.5
35-2-06 × 35-5-07 06 18 06 06 (20.0) 24 (80.0) 1:4

TOTAL 45 100 42 45 (24.06) 142 (75.93) 1:3.1

Percentage in parenthesis.

Figure 2. FISH on cells having 2 B chromosomes. Root tip metaphase cells at prometaphase (a) and 
metaphase (b) showing two B chromosomes. Segregation pattern of B chromosomes during meiosis (c–f). 
Note the two B chromosomes at the same pole (f). Scale bar: 10µm.

Table 1. Data on crosses among 0B (female) × 1B (male) plants.

Parent plants (0B × 1B)
Progeny plants Total plants Ratio

0B 1B 2B 0B B 0B:B
36-9-07 × 36-1-07 06 09 06 06 (28.5) 15 (71.4) 1:1.2
36-9-07 × 36-2-07 09 06 03 09 (50.0) 09 (50.0) 1:1
40-6-07 × 40-11-07 18 09 09 18 (50.0) 18 (50.0) 1:1
40-6-07 × 40-13-07 27 21 09 27 (47.3) 30 (52.6) 1:1.1
1M-4-06 × 1M-1-06 15 06 0 15 (71.4) 06 (28.5) 2.5:1

TOTAL 75 51 27 75 (49.01) 78 (50.9) 1:1.04

Percentage in parenthesis.

to the opposite or to the same pole (Fig. 2e, f ). In 2B plants, 670 pollen mother cells 
were scanned, of which 490 cells showed B chromosomes at the poles earlier than the 
A chromosomes.
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Accumulation of B chromosomes

In some progenies of 1B plants, rarely, plants with very high number of chromosomes were 
observed, which included plants having 23, 26 and 28 chromosomes (Fig. 1g, h). FISH 
analysis of 23-chromosome plant with 5S rDNA probe revealed its chromosome constitu-
tion as 18A + 5B chromosomes. Similarly, plants with 26 and 28 chromosomes had 24A 
+ 2B chromosomes and 24A + 4B chromosomes, respectively (figures not given). In other 
words, the B chromosomes were found in addition to triploid and tetraploid states.

Origin of plants with 26 and 28 chromosomes

In order to trace the origin of plants with 2n = 26 and 2n = 28 chromosomes, three 
molecular markers were tried. The details are presented below:

SSCP analysis

As shown in our earlier study (Dhar et al. 2002) and the present study, B chromosome 
is mainly composed of 5S rDNA sequences, therefore, SSCP analysis was carried out 
by targeting these sequences. For this purpose, DNA isolated from the selfed progeny 
plants of 1B and 2B parents (separately), including plants with 26 and 28 chromo-
somes, respectively, was used. The banding pattern of 1B (mother plant) and 26 chro-
mosome progeny plant, 2B (mother plant) and 28 chromosome progeny plant showed 
100% similarity. The remaining plants in the two progenies composed of 0B, 1B and 
2B plants showed variable banding pattern (Suppl. material 3: Fig. S2).

SSAP analysis

The SSAP exploits the insertional polymorphism of long terminal repeats (LTR retro-
transposons) in the genome. In the present case SSAP analysis was used with twelve 
different primer combinations. It was observed that plant with 26 chromosomes 
showed 100% similarity with the 1B mother plant while other progeny plants showed 
polymorphism. Similarly, progeny plant with 28 chromosomes recovered from the 
selfed progeny of 2B plant showed 100% similarity with its mother plant as compared 
to other progeny plants.

SSR analysis

For the present investigation we used 14 SSR primers. From SSR data generated dem-
onstrated that 1B and 2B mother plants showed 100% similarity with the 26 (Suppl. 
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material 4: Fig. S3a, b) and 28 (Suppl. material 4: Fig. S3c, d) progeny plants respec-
tively, while differences were detected in other progeny plants.

The results obtained from the above three molecular markers clearly establish the 
maternal origin of 26 and 28 chromosome plants.

Discussion

Structure and behavior of B chromosome

In Plantago lagopus Dhar et al. (2002) demonstrated that the B chromosome is mainly 
composed of 5S rDNA sequences. Using FISH and reverse GISH techniques, the 
entire chromosome was found to get painted with 5S rDNA probe, while 45S rDNA 
sequences were localized at the two ends, just below the telomeric sequences. There 
are several reports on identification of B chromosomes using FISH (reviewed in Jones 
et al. 2008a). Most of the B chromosomes reported in different organisms are hetero-
chromatic mainly due to the presence of repetitive DNA sequences made of satellite 
DNA, ribosomal DNA and transposable elements (Martis et al. 2012). Since 0B, 1B 
and 2B plants are indistinguishable morphologically (Dhar et al. 2002), therefore, in 
order to confirm the chromosomal status of the parents and the progeny plants, FISH 
with 5S rDNA probe was used in the present investigation.

The B chromosome does not pair or recombine with any A chromosome. B chro-
mosomes, in general, have been reported to follow non-Mendelian mode of inherit-
ance (Jones and Rees 1982) attributed to their irregular mitotic and meiotic behavior 
(Jones 1991). The meiotic behavior of the B chromosome in the pollen mother cells 
was very interesting. During anaphase, the B chromosome generally reached the poles 
earlier than A chromosomes. Thus, the B chromosome showed meiotic drive, which 
ensures its segregation and subsequent inclusion in the microspore mother cells.

Transmission of the B chromosome

In the present case, transmission of the B chromosome was ascertained through male 
and female sex tracks by following the progenies of the reciprocal crosses. Interest-
ingly, when 1B plant was used as a male, transmission rate was in accordance with the 
expected Mendelian ratio. The differences in segregation ratio observed among various 
cross combinations can be attributed to the heterozygous nature of P. lagopus - being 
a cross-pollinated species. On the other hand, when 1B plant was used as a female, 
there was significant deviation from 1:1 ratio; frequency of B chromosome bearing 
plants was higher than the Mendelian expected value. These results clearly indicate 
preferential transmission of B chromosome through the female sex track. According to 
Houben and Carchilan (2012), variation in transmission rate is a common feature of B 
inheritance, such that the Bs tend to distort Mendelian expectation in their favor. Their 
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rate of transmission can be irregular with different levels of meiotic and post-meiotic 
drive or drag (Beukeboom 1994, Rusche et al. 1997). The drive through the female sex 
track can be explained on the basis of the fact that during female meiosis in plants, only 
one out of the four meiotic products survives. Therefore, in order to ensure inclusion 
in the surviving megaspore/egg, the B chromosome must be hosting a meiotic drive 
locus, as has been shown in Mimulus Linnaeus, 1753 - a phenomenon called female 
meiotic drive (Fishman and Saunders 2008). These authors have demonstrated that 
selfish chromosomal drive can be an important fitness determinant in natural popula-
tions. It can therefore be concluded that the B chromosome of P. lagopus is perpetuated 
preferentially due to drive, expressed during both male and female meiosis. The same 
is true of rye, where the drive happens in both male and female sex tracks (Jones and 
Houben 2003).

Accumulation of B chromosomes

One of the important characteristics of B chromosomes is their accumulation in selfed 
or outcrossed progenies. In some species the accumulation is mainly due to non-dis-
junction of B chromosomes during pollen mitosis. The present case is perhaps the first 
in plants where the entire complement of the species gets duplicated in presence of a B 
chromosome. Earlier, Bidau (1987) reported the presence of macrospermatids (>dip-
loid chromosome number) in B containing individuals of a grasshopper, Dichroplus 
pratensis Bruner, 1900. The formation of macrospermatids was attributed to nuclear 
fusion. In the present case, the plants with 23, 26 and 28 chromosomes were obtained 
from the selfed progenies of B chromosome bearing plants. The origin of these plants 
can be attributed to formation of unreduced gametes, followed by their fusion with 
other gametes or their endoreduplication and parthenogenetic development of the 
plant. Earlier, it has been postulated by Sharma et al. (1985) that in P. lagopus unre-
duced egg of the trisomic mother plant may have developed parthenogenetically giving 
rise to plants with 13 chromosomes. The authors reported formation of aneutriploid 
individuals with 19 chromosomes (Sharma et al. 1985) in the progeny of a cross be-
tween a trisomic and disomic plants. Similarly, Bhan et al. (1990) reported an auto-
tetraploid in P. lagopus isolated from an experimental population, which could be the 
result of fusion of unreduced gametes.

Formation of unreduced gametes has been reported in many plants and has been 
proposed as an important mechanism for origin of polyploids (Mason et al. 2011, 
Mason and Pires 2015).

Molecular markers in tracing origin of 26 and 28 chromosome plants

To substantiate the proposed mode of origin of plants with 26 and 28 chromosomes, 
recovered from selfed progeny of B chromosome plants, recourse was taken to mo-
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lecular markers namely SSCP, SSAP and SSR. For SSCP analysis we targeted those 
sequences, which are present on the B chromosome. The technique was used to check 
whether Single Nucleotide Polymorphism exists among 1B and 2B mother plants and 
their progeny plants, including 26 and 28 chromosome plants. The SSCP pattern of 
1B (mother) and 26 (progeny) plant showed 100% similarity, as compared to rest of 
the progeny plants. Similarly 2B (mother) and 28 chromosome progeny plants showed 
monomorphic pattern of bands, while in other 14 chromosome plants polymorphic 
pattern was observed. Thus SSCP analysis of 5S rDNA showed that the mother plants 
and the higher chromosome plants are 100% similar, thereby suggesting that they must 
have originated from the maternal genome. The experiments were repeated 3-4 times, 
however, similar SSCP pattern was observed in the mother plant and the offsprings 
with 26 and 28 chromosomes. SSCP technique is known to detect variation due to 
SNPs. Recombination is known to affect the SNPs; the SNP variation is less in regions 
of low recombination while it is more in high recombination regions (Brumfield et al. 
2003). Recombination frequencies vary due to several genetic and non-genetic factors 
such as sex, the genetic background, genes and structures involved in meiotic recom-
bination, age, irradiation, chemicals, nutrient salts and antibiotics (Barth et al. 2000). 
Occurrence of such processes more frequently during sexual reproduction in compari-
son to asexual reproduction, will lead to generation of SNPs in the former. This gets 
exemplified in the present case, by detection of large number of SNPs among progeny 
plants bearing 1B and 2B chromosomes than in 26 or 28 chromosome plants.

SSAP has also been used for the recombination studies in the selfed progeny plants 
of Pisum Linnaeus, 1753 (Jing et al. 2007). The marker has been used to detect the 
variation at genic level due to recombination and the combination of male and female 
genome mutation. Similarly, the inheritance of the B chromosome at the genome level 
has been analyzed using the SSR markers in Brassica sp. Linnaeus, 1753 (Navabi et al. 
2011). SSAP and SSR used in the present case have also shown the same pattern in case 
of mother and the progeny plant having higher chromosome number. The molecular 
data does not support occurrence of recombination events in the origin of 26 and 
28 chromosome plants, therefore, it can be presumed that the latter have originated 
through a two step process; formation of unreduced gametes in the parent, followed by 
parthenogenetic development of unreduced gametes, as has been proposed by Sharma 
et al. (1985).

Unreduced gametes and parthenogenetic development

Apomixis, or clonal propagation by seed, has been reported in many genera of higher 
plants following the gametophytic apomixis (Carman 1997). Plants arising from apo-
mixis retain the maternal genotype. The main components of apomixis include un-
reduced gamete formation and parthenogenetic development (Koltunow and Gross-
niklaus 2003), which are also exemplified by the plants studied in present investigation. 
The genes and pathways involved in gametophytic apomixis have not been discovered 
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as yet and are the subject of intense research (Hand and Koltunow 2014). Polyploidy is 
the common feature of almost all apomicts (Roche et al. 2001). B chromosomes have 
been documented in apomictic species (Jones and Rees 1982), however, there is no re-
port on apomixis gene(s) necessarily residing on a B-chromosome (Roche et al. 2001). 
In an animal species, B-chromosomes were found in polyploid individuals reproducing 
by pseudogamous parthenogenesis but were conspicuously absent in the diploid sexual 
individuals (Beukeboom et al. 1998).

Preferential transmission of B chromosomes and occurrence of plants with high 
chromosome numbers (2n =23, 26, 28) can have serious implications in the evolution 
of Plantago lagopus genome and the speciation. Recently, in Arabidopsis thaliana (Lin-
neaus) Heynh., 1842, unreduced gamete-producing mutants, on account of defects in 
the meiotic cell cycle machinery, have been identified which has further advanced our 
understanding of the mechanisms behind unreduced gamete formation (Brownfield and 
Kohler, 2011). In the present case, plants with 23, 26 and 28 chromosomes were isolated 
in the progenies of the plants carrying B chromosome(s), therefore, it can be presumed 
that some DNA element located on B chromosome is activating the gene(s) promoting 
unreduced gamete formation, which is (are) located on A chromosome. Similar observa-
tions have been made in rye (Carchilan et al. 2009). However, more intense molecular 
studies need to be conducted to identify the gene/genes responsible in P. lagopus.
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original source and author(s) are credited.
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Figure S1
Authors: Manoj K. Dhar, Gurmeet Kour, Sanjana Kaul
Data type: Images
Explanation note: SSCP profile of 5S rDNA amplified from various plants. M = 100bp 

ladder. Lane1: 1B mother plant. Lane 2: progeny plant with 2n = 26 chromosomes. 
Lanes 3, 4: progeny plants (1B). Lane 5: 2B mother plant. Lane 6: progeny plant 
with 2n = 28 chromosomes. Lanes 7-9: progeny plants (2B). The band pattern of 
higher chromosome plants completely matches that of the mother plants as indi-
cated by arrows.
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Figure S2
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Data type: Images
Explanation note: S2a: SSAP profile of 1B mother plant and progeny plants. M = 

100bp ladder. Lane1: 1B mother plant. Lane 2: progeny plant with 2n = 26 chro-
mosomes. Lanes 3-8: 1B progeny plants. S2b: SSAP profile of 2B mother plant and 
progeny plants. M = 100bp ladder. Lane 1: 2B mother plant. Lane 2: progeny plant 
with 2n = 28 chromosomes. Lanes 3-8: 2B progeny plants.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Supplementary material 4

Figure S3
Authors: Manoj K. Dhar, Gurmeet Kour, Sanjana Kaul
Data type: Images
Explanation note: S3a, b: SSR profile of 1B mother and its selfed progeny plants. M = 

100bp ladder. Lane1: 1B mother plant. Lane 2: progeny plant with 2n = 26 chro-
mosomes. Lanes 3- 26: 1B chromosome containing progeny plants. S3c, d: SSR 
profile of 2B and its selfed progeny plants. M = 100bp ladder. Lane1: 2B mother 
plant. Lane 2: progeny plant with 2n = 28 chromosomes. Lanes 3- 14: 2B chromo-
some containing progeny plants. Note exactly similar band pattern of mother and 
higher chromosome progeny plants.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
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original source and author(s) are credited.
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