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Abstract
There are many reports describing chromosome structure, organization and evolution within goatgrasses 
(Aegilops spp.). Chromosome banding and fluorescence in situ hybridization techniques are main methods 
used to identify Aegilops Linnaeus, 1753 chromosomes. These data have essential value considering the 
close genetic and genomic relationship of goatgrasses with wheat (Triticum aestivum Linnaeus, 1753) and 
triticale (× Triticosecale Wittmack, 1899). A key question is whether those protocols are useful and effec-
tive for tracking Aegilops chromosomes or chromosome segments in genetic background of cultivated cere-
als. This article is a review of scientific reports describing chromosome identification methods, which were 
applied for development of prebreeding plant material and for transfer of desirable traits into Triticum 
Linnaeus, 1753 cultivated species. Moreover, this paper is a resume of the most efficient cytomolecular 
markers, which can be used to follow the introgression of Aegilops chromatin during the breeding process.
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Introduction

There are twenty three species of goatgrasses (Aegilops spp.) (Slageren 1994) and sev-
eral of them are the closest relatives to wheats (Triticum spp.) (Kilian et al. 2011). The 
genomic constitution of goatgrasses is wide and include six genomes (D, S, U, C, N 
and M), which can be organized as diploids, tetraploids or hexaploids. What is more, 
most polyploid Aegilops Linnaeus, 1753 species are assumed to contain a common 
(pivotal) subgenome (U or D) while the second - differential genome (or genomes) is 
(are) much more genetically diversified (Zohary and Feldman 1962; Feldman and Levy 
2012; Mirzaghaderi and Mason 2017). The evolution of Aegilops species was also inter-
twined with speciation of Triticum Linnaeus, 1753 forms (Goncharov 2011). It is re-
ported that hexaploid wheat (Triticum aestivum Linnaeus, 1753; genomes AABBDD) 
originated through one or more hybridization events between a tetraploid wheat, T. 
turgidum Linnaeus, 1753 (genomes AABB), with the diploid goatgrass Aegilops tauschii 
Cosson, 1849 [genomes DD; syn. Triticum tauschii (Cosson,1849) Schmalhausen, 
1897; syn. Aegilops squarrosa auct. non Linnaeus, 1753, Patropyrum tauschii (Cosson, 
1849) A. Love, 1984] (Kihara, 1924, 1954; McFadden and Sears 1946). More pre-
cisely, Aegilops tauschii subsp. strangulata (Eig, 1929) Tzvelev, 1973, has been accepted 
to be a donor of D-genome of wheat (Dvořák et al. 1998). Tetraploid wheat originated 
via hybridization of a species closely related to the extant Aegilops speltoides Tausch, 
1837 [genomes SS; syn. Sitopsis speltoides (Tausch, 1837) Á. Löve, 1984; syn. Triti-
cum speltoides (Tausch, 1837) Grenier, 1890], which contributed the wheat B genome 
(Sarkar and Stebbins 1956; Dvořák et al. 1993; Feldman and Levy 2012; Salse et 
al. 2008), with diploid wheat (genomes AA). The most likely donor of A-genome of 
polyploid wheats is T. urartu Tumanian ex Gandilyan, 1972 (Konarev et al. 1974; Ped-
ersen et al. 2006; Golovnina et al. 2009). Some reports describe both genera jointly, 
as Aegilops-Triticum complex (Li et al. 2015; Ozkan et al. 2003; Zohary and Feldman 
1962). A close relationship between the genera Aegilops and Triticum is widely adopted 
for introducing new genes by interspecific hybridization into cultivated cereals (Ru-
ban and Badaeva 2018). Such introgression forms are important genetic resources for 
breeding. These kinds of genetic stocks can be used as an interesting plant material to 
study the expression of alien traits and for mapping particular loci (genes) onto Aegilops 
chromosomes (Rakszegi et al. 2017).

The ability to distinguish alien chromosomes, which were introduced into a ge-
netic background of an acceptor plant, is the initial step in characterization of in-
trogression lines. The first chromosome identification studies in wheat were done by 
Sears (1948), who assigned the loci for several agronomic and morphological traits on 
particular chromosomes and chromosome arms. Later, in 1970s all chromosomes of 
wheat could be distinguished using the C-banding or N-banding techniques (Gill and 
Kimber 1974; Iordansky et al. 1978; Endo and Gill 1984; Lukaszewski and Xu 1995). 
In 1990s, molecular biology protocols were combined with classical cytogenetic tech-
niques to develop the fluorescence in situ hybridization (FISH) method. FISH allows 
the identification of DNA sequences directly on the chromosomes.
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The first molecular probes used for FISH purposes on Aegilops-Triticum chro-
mosomes contained conserved high-copy sequences, such as telomere sequences or 
5S and 45S ribosomal RNA genes (Gerlach and Bedbrook 1979; Gerlach and Dyer 
1980). The number and distribution of rDNA loci mapped on chromosomes of spe-
cies belonging to Aegilops-Triticum complex turned out to be invariant. Hence, these 
probes were often used as markers in evolution and speciation studies, as well as in the 
evaluation of interspecific divergence (Badaeva et al. 1996a; b; 2002; 2004; 2015). 
Mukai et al. (1993) used pSc119.2 and pAs1 sequences to identify all 21 chromo-
some pairs in wheat. Over time a number of cytomolecular markers were developed 
for the identification of chromosome arms or segments. For example, Cuadrado et al. 
(2000; 2008) used synthetic oligonucleotides (three base-pair repeats) to detect FISH 
signals on wheat chromosomes. BAC genomic libraries were also screened to develop 
FISH chromosome markers (Zhang et al. 2004). Komuro et al. (2013) screened 2000 
plasmid wheat clones in order to detect multiple tandem repeated sequences, using in 
situ hybridization, and selected 47 of them, which gave clear signals on wheat chro-
mosomes. Apart from physical mapping of DNA sequences onto chromosomes, the 
major breakthrough in chromosome identification was the development of an in situ 
hybridization technique utilizing total genomic DNA as a probe (GISH). This vari-
ant of in situ hybridization appeared to be a powerful tool for characterization of alien 
introgressions in cereals. The first GISH was carried out on chromosomes of synthetic 
hybrids of Hordeum chilense Roemer & Schultes, 1817 × Secale africanum Stapf, 1901 
(Schwarzacher et al. 1989) and Triticum aestivum (wheat) × S. cereale Linnaeus, 1753 
(rye) hybrids (Le et al. 1989). This technique is based on the divergence of repetitive 
DNA (Belyayev and Raskina 1998; Belyayev et al. 2001a; b) and was effectively used 
for identification of alien chromosomes/chromosome segments in hybrids or translo-
cation lines of cereals (Schwarzacher et al. 1989; 1992; Leitch et al. 1990). GISH in 
combination with FISH was also used to study the genome constitution of natural and 
artificial hybrids, or to identify the introgression of alien chromosomes or chromosome 
segments (Jiang and Gill 2006).

The structure and organization of chromosomes of species belonging to the 
genera Aegilops and Triticum are collinear, as chromosomes within each homoeolo-
gous group are related by descent from a chromosome of the ancestor of the Triti-
cum-Aegilops complex (Akhunov et al. 2003). Hence, large numbers of cytogenetic 
markers have a similar localization in the same homoeologous group (McCouch 
2001). Moreover, this genetic resemblance can hamper the use of GISH in some 
instances (Majka et al. 2017). The synteny between the homoeologous Aegilops 
and Triticum chromosomes may be disturbed because of chromosome rearrange-
ments, which appeared during the evolution process (Devos et al. 1993; Zhang et 
al. 1998). Moreover, it is known that the level of chromosome synteny decreases 
the more distant a chromosome region is from the centromere. It is also decreased 
in regions with increased meiotic recombination rates, also known as hotspots of 
recombination on chromosome arms (Akhunov et al. 2003). Such changes result 
in distribution variability of chromosome markers. This review summarizes cyto-
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molecular techniques, which differentiate Aegilops and Triticum chromosomes, and 
are used most often for effective tracking of Aegilops chromosomes (or chromosome 
segments) in cultivated cereals.

Banding methods for identification of Aegilops chromatin introgression

Since the 1970s C-banding and N-banding techniques were used to distinguish the 
chromosomes of Aegilops-Triticum complex (Friebe et al. 1992; Gill and Kimber 1974; 
Landjeva and Ganeva 2000). C-banding has been employed to study genetic diversity 
and to create karyotypes of many Aegilops species. Giemsa C-banding was one of the 
first methods which allowed for identification of all 21 chromosome pairs of wheat 
(Endo 1986; Gill et al. 1991). This method was widely used to identify Aegilops-Trit-
icum chromosome addition, substitution and translocation lines (Friebe et al. 1991; 
1992; 1995; 1996a; 1996b; 1999; 2000; 2003). The results obtained by means of C-
banding chromosome analysis of the majority of goatgrasses were reported in a series 
of articles describing the most important genomes of Aegilops (Badaeva et al. 1996a; 
2002; 2004). C-banding analyses allowed the authors to discover that the S-genome 
of Ae. speltoides was most syntenic to B- and G-genomes of Triticum, but was different 
from other species of section Sitopsis (Badaeva et al. 1996a). Moreover, those authors 
observed minor polymorphisms in C-banding patterns of chromosomes of D-genome 
(Badaeva et al. 2002) and U-genome (Badaeva et al. 2004) belonging to different Ae-
gilops species. All those results were later compared and confirmed by means of FISH 
studies (FISH methods are described in the third section of this review).

Polymorphisms in C-banding patterns were also utilised to distinguish Aegilops 
chromosomes in wheat genetic background. Ae. speltoides turned out to be one of the 
largest sources of valuable genes and was used to develop Aegilops-Triticum introgres-
sion lines. Friebe et al. (1991) used C-bands to establish the chromosome constitution 
of wheat streak mosaic virus (WSMV) and greenbug (Schizaphis graminum Rondani, 
1852) resistant lines, derived from wheat - Agropyron intermedium - Aegilops speltoides 
crosses. Three lines carried 7S(7A) chromosome substitution (derived from Ae. spel-
toides). The results indicated that the greenbug resistance gene Gb5 was located on 
chromosome 7S. This chromosome was also used to transfer leaf rust (caused by Puc-
cinia triticina Eriksson, 1899) resistance gene combined with greenbug resistance gene 
Gb5 into wheat genetic background (Dubcovsky et al. 1998). The authors induced a 
homologous recombination events using ph1b wheat mutant and developed Ti7AS-
7S#1S-7AS.7AL translocation line conferring resistance to leaf rust and Ti7AS.7AL-
7S#1L-7AL line conferring resistance to greenbug. The chromosome segments trans-
ferred from Ae. speltoides were characterized by means of C-banding and the fact of the 
translocation was supported by restriction fragment length polymorphisms (RFLP) 
analysis. Friebe et al. (1996a) applied C-banding analysis to identify T4AS.4AL-7S#2S 
chromosome translocations in wheat - Ae. speltoides lines with Lr28 leaf rust resistance 
gene. Moreover, a chromosome translocation (2B.2S) involved in the Lr35/Sr39 trans-
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fer derived from Ae. speltoides was identified using a C-banding method (Friebe et al. 
1996a). C-banding technique was also used to determine the introgression carrying 
Yr8/Sr34 yellow rust and stem rust resistance genes from Ae. comosa Smith, 1806 into 
wheat. Miller et al. (1988) detected 2AS-2ML.2MS and 2DS-2ML.2MS chromo-
some translocations. Friebe et al. (1992) adopted the C-banding method and identi-
fied complete set of chromosomes of Ae. caudata Linnaeus, 1753 in the amphiploid 
Triticum aestivum cv ‘Alcedo’ - Ae. caudata. Furthermore, the authors developed six 
chromosome addition lines in which the Ae. caudata chromosome pairs were called 
B, C, D, F, E and G. Friebe et al. (1995) established a karyotype of Ae. umbellulata 
Zhukovsky, 1928 using C-banding analysis of ten accessions collected in ten different 
geographic locations. This approach allowed for the identification of individual alien 
chromosomes in wheat-Ae. umbellulata chromosome monosomic and telosomic addi-
tion and wheat - Ae. umbellulata translocation lines (Friebe et al. 1995).

One of the most notable applications of the C-banding technique was the iden-
tification of radiation-induced translocation lines resistant to leaf rust (Lr9) and as-
signment of Lr9 loci to 6UL chromosome of Ae. umbellulata. The following chromo-
some translocations were identified by means of C-banding analysis: 6BL.6BS-6UL, 
T4BL.4BS-6UL, 2DS.2DL-6UL, T6BS.6BL-6UL and 7BL.7BS-6UL (Friebe et al. 
1995). C-banding method was also used to identify 3BL.3BS-3S and 3DL.3DS-3S 
chromosome translocations conferring resistance to powdery mildew (Pm13 gene), 
which was transferred from Ae. longissima Schweinfurth & Muschler, 1912 into wheat 
(Ceoloni et al. 1992; Friebe et al. 1996a). Another powdery mildew gene (Pm32) was 
transferred from Ae. speltoides into wheat and T1BL-1SS chromosomal translocation 
was revealed by means of C-banding analysis (Hsam et al. 2003). However, in some 
cases the C-banding method was not sufficient to discriminate between Aegilops-Trit-
icum translocations. For example, C-banding patterns of the translocated 7DL arms 
from Aegilops ventricosa Tausch, 1837, carrying Pch1 gene (responsible for resistance to 
eyespot) in cultivars Rendevous and Roazon was impossible to visualize as the patterns 
identified in 7DL chromosome of Chinese Spring wheat and 7DL of Ae. ventricosa 
were similar (Martin 1991). It was not until more sensitive C-banding protocol was 
applied that clear differences in the C-banding patterns between 7D of Chinese Spring 
and 7D of Ae. ventricosa were demonstrated by Badaeva et al. (2008). Another difficulty 
was reported by Apolinarska et al. (2010), who could not unambiguously identify the 
Aegilops variabilis Eig, 1929-rye chromosome translocations by means of C-banding.

The N-banding method was less often used to investigate Aegilops-Triticum in-
trogression lines. Landjeva and Ganeva (1996; 2000) reported the N-banded karyo-
type of Aegilops ovata Linnaeus, 1753 (syn. Ae. geniculata Roth, 1787) and the chro-
mosomal constitution of its partial amphiploid with bread wheat Triticum aestivum 
cv.‘Chinese Spring’. N-banding patterns made it possible to distinguish all Ae. ovata 
and wheat chromosomes. Ganeva et al. (2000) also used this technique, supported 
by gliadin electrophoresis, to reveal the structural changes in chromosomes 1A, 2A, 
4B, 6B, 7B, 1D, and 2D of the Ae. umbellulata-wheat amphiploid (2n=6x=42, AAB-
BUU), which showed leaf rust resistance conferred by Lr9 gene homolog. C- and 
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N-banding methods are effective techniques to distinguish alien chromatin in a large 
number of introgression lines. However, the precise identification of translocation 
breakpoints requires additional supporting technique – in most cases genomic in situ 
hybridization (GISH) would suffice.

Fluorescence in situ hybridization methods for identification of Aegilops 
introgressions

A combination of molecular techniques and classical cytology became a breakthrough 
tool for science and crop breeding, especially for the development and characterization 
of Aegilops-Triticum introgression lines. First reports of adaptation of fluorescence in 
situ hybridization protocol for analyses of wheat chromosomes were published by Ray-
burn and Gill (1985) and Yamamoto and Mukai (1989). The ideal set of chromosome 
markers should cover the entire chromosome arms. This is a crucial requirement, which 
defines the usefulness of cytological landmarks for the identification of chromosome 
translocations. Hence, the most useful landmarks are DNA repetitive sequences that 
are richly represented in almost all chromosome regions, and can be used for evalua-
tion of intra- and interspecific or intergeneric chromosome polymorphisms (Table 1).

To date the most popular probe used for identification of Aegilops-Triticum chro-
mosomes is a D-genome specific repetitive DNA sequence called pAs1, derived from 
of Aegilops squarrosa Linnaeus, 1753 (syn. Ae. tauschii Cosson, 1849; 2n = 14, genome 
DD) (Nagaki et al. 1995; Rayburn and Gill 1985). This sequence is AT rich (65.2%) 
and is widely distributed in many species of Aegilops-Triticum complex. It is included 
into Afa-family repeated sequences, because the recognition site of AfaI restriction en-
zyme was the most conserved sequence in this unit (Nagaki et al. 1995). Another 
much-used chromosome marker is a pSc119.2 repetitive sequence, derived from rye 
(Secale cereale ) (Bedbrook et al. 1980). FISH landmarks of pSc119.2 and pAs1 are 
widely distributed in the chromosomes of Aegilops and Triticum species. A combi-
nation of those two probes was the first effective marker set used for chromosome 
identification of Triticum (Mukai et al. 1993) and Aegilops (Badaeva et al. 1996a; b; 
Schneider et al. 2005) species. However this set of markers was insufficient to describe 
some of Aegilops segments transferred into Triticum chromosomes. Hence, there was a 
need to develop more diversified and abundant chromosome landmarks.

Vershinin et al. (1994) identified dpTa1 family of repetitive sequences that are 
present in subtelomeric and interstitial regions of chromosomes belonging to Aegilops-
Triticum complex. Salina et al. (2004; 1998; 2009) isolated, characterized and desig-
nated repetitive sequence called Spelt-1, which is located in subtelomeric regions of 
Ae. speltoides. Another repetitive sequence, Spelt52, pGC1R-1 belongs to the family 
of tandem repeats pAesKB52, located at subtelomeric regions of chromosomes Ae. 
speltoides, Ae. longissima and Ae. sharonensis Eig, 1928 (Anamthawat-Jonsson and Hes-
lop-Harrison 1993; Zhang et al. 2002; Salina et al. 2004). Additionally, Kishii and 
Tsujimoto (2002) characterized TaiI family of tandem repeats, which are localized to 
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the centromeric regions. Moreover, there are some groups of repetitive sequences, orig-
inated from related genera such as Secale sp. (subtelomeric repeats represented by 350 
family pSc200 and pSc250) (Vershinin et al. 1994) and Hordeum vulgare Linnaeus, 
1753 (HvRT telomere-associated sequences) (Kilian and Kleinhofs 1992), which are 
also represented in chromosomes of cultivated wheat or triticale. Other repetitive 
sequences that effectively discriminate between Aegilops and Triticum chromosomes 
were derived from BAC libraries of species belonging to Triticeae tribe. Komuro et 
al. (2013) screened 2000 plasmid wheat clones for signal occurence using FISH. 47 
clones showed distinct signals on wheat chromosomes, and clones pTa-86 and pTa-535 
were related to pSc119.2 and pAs1, respectively (Komuro et al. 2013). Kwiatek et al. 
(2017a; 2017b) used pTa-86, pTa-103, pTa-k374, pTa-465, pTa-535, pTa-k566, and 
pTa-713 to discriminate between the chromosomes of Aegilops biuncialis de Visiani, 
1851, Ae. ovata, respectively and Ae. kotschyi Boissier, 1846 (unpublished, Figure 1) 
which were transferred into a triticale genetic background. This set of chromosome 
markers allowed for the identification of 1BS-1BL.5ML, 5MS-5ML.1BL, 7US.6BS-
6BL, 6BS.7US-7UL, 1BS-1BL.5ML and 5MS-5ML.6BL chromosome translocations 
(Kwiatek et al. 2017a). Zhao et al. (2016) combined pSc119.2, pTa71 and pTa-713 
and identified each of the 14 pairs of Ae. variabilis chromosomes.

Apart from the use of long repetitive sequences, one of the most effective ways to 
saturate chromosome regions with markers as much as possible is to apply microsatel-
lite sequences as cytomolecular probes. Such trinucleotide sequences (i.e. AAC, GAA, 
ACG) were used to distinguish between chromosomes of wheat (Cuadrado et al. 2000) 
and Aegilops (Molnar et al. 2011). Furthermore, GISH effectively complemented FISH 
analysis so as to locate and identify the Aegilops-Triticum chromosome translocation 
breakpoints (Friebe et al. 1992; Kwiatek et al. 2017a). A combination of banding tech-
niques and FISH/GISH methods were used for precise Aegilops chromosome identifica-
tion in a Triticum background during the development of introgression lines with valu-
able traits. Friebe et al. (1995) combined C-banding and GISH using total genomic 
DNA of Ae. umbellulata to identify the chromosome breakpoints in radiation-induced 
Triticum-Aegilops translocation lines resistant to leaf rust (Lr9), which involved 4B and 
6B chromosomes of wheat and 4U chromosome of Ae. umbellulata. In addition, Friebe 
et al. (2003) used C-banding and FISH to identify Ae. sharonensis chromosomes car-

Table 1. Tandem repeats used as effective FISH markers for identification of Aegilops chromatin introgression.

Tandem repeats Clones/sequences References

Satellite DNA 
sequences

pAs1, pSc119.2, pTa-71, pTa-86, 
pTa-465, pTa-535, pTa-566, pTa-

713, pTa-794

Badaeva et al. 1996a; b; 2015; Schneider et al. 2005; 
Zhao et al. 2016; Kwiatek et al. 2015; 2016a; 2016b; 

2017a; 2017b; Goriewa-Duba et al. 2018
Microsatellite 
DNA sequences 
(simple sequence 
repeats - SSR)

AAC, ACG, GAA Molnar et al. 2005; 2011
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Figure 1. Karyograms of Aegilops kotschyi 2n=4x=28 chromosomes; UUSS) showing U- and S-genome 
chromosomes after two rounds of FISH with: a pTa-86 (green; Atto-488 fluorochrome; Jena Bioscience), 
pTa-535 (red; Atto-550 fluorochrome; Jena Bioscience), pTa-374 (25S rDNA; yellow; Atto-647 fluo-
rochrome; Jena Bioscience) and b pTa-713 (green; Atto-488 fluorochrome; Jena Bioscience), pTa-k566 
(red; Atto-550 fluorochrome; Jena Bioscience) and pTa-465 (yellow; Atto-647 fluorochrome; Jena Biosci-
ence) probes (Kwiatek, unpublished)

rying gametocidal genes in a wheat genetic background. A 4BS.4BL-4S chromosome 
translocation was identified using clone pGclR-1, which is a 258 bp fragment of a 
tandem repetitive element and hybridizes to telomeric and subtelomeric regions of Ae. 
speltoides, Ae. sharonensis, and Ae. longissima chromosomes (Friebe et al. 2000).

A combination of C-banding and GISH methods was also used for development 
of wheat introgression lines with resistance genes against one of the most virulent races 
of stem rust (Puccinia graminis var. tritici Persoon, 1794), namely Ug99. Liu et al. 
(2011a) used this combination of cytomolecular methods, supported by SSR marker 
analysis, to identify three Robertsonian translocations (T3AL·3SsS, T3BL·3SsS and 
T3DL·3SsS) and one recombinant (T3DS-3SsS·3SsL) line with stem rust resistance 
as a common feature of the analysed forms. Faris et al. (2008) examined a durum 
wheat-Aegilops speltoides chromosome translocation line (DAS15), which was resistant 
to Ug99 and six other races of stem rust. GISH methods made it possible to identify 
2BL-2SL.2SS translocation, which harbours stem rust resistance. GISH was also used 
to identify the 5DL-5MgL·5MgS chromosome translocation, which introduced resist-
ance to stem rust races RKQQC and TTKSK (Ug99) into wheat (Liu et al. 2011b). 
Chromosome 5Mg of Ae. geniculata is also a source of leaf and yellow rust resistance 
genes (Lr57 and Yr40, respectively). Kuraparthy et al. (2007) identified wheat-Ae. 
geniculata translocation lines (5DL·5DS-5MgS) using GISH. Molnar et al. (2005) 
combined GAA sequence probe with GISH to discriminate between the 1U, 2U, 4U 
and 5U chromosomes of Ae. biuncialis in wheat introgression lines, which showed lim-
ited tolerance to drought stress. Furthermore, Schneider et al. (2005) combined GISH 
and FISH using three repetitive DNA clones (pSc119.2, pAs1, and pTa71) to identify 
2M, 3M, 7M, 3U, and 5U chromosome pairs in those lines. FISH/GISH methods, 
using pSc119.2, pAs1, 5S and 35S rDNA (from pTa71) sequence FISH probes togeth-
er with GISH probes were also used to identify 2Dt and 3Dt chromosomes, carrying 
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Lr39 and Lr32 genes, respectively in Ae. tauschii-triticale introgression lines (Kwiatek 
et al. 2015). The same set of FISH markers was used together with GISH to discrimi-
nate between 2S and 3S chromosomes of Ae. variabilis, which were transferred into 
triticale with intent to introduce the powdery mildew resistance gene Pm13 (Kwiatek 
et al. 2016a). Mirzaghaderi et al. (2014) observed FISH patterns of the Ut- and Ct -ge-
nome chromosomes of Ae. triuncialis Linnaeus, 1753 and Ae. cylindrica (Host, 1802) 
in wheat background. The following probes: pSc119.2-1, pTa535-1, pAs1-1, (CTT)10 
and the 45S rDNA clone from wheat (pTa71), supported by GISH, were sufficient 
to discriminate between three different non-reciprocal homologous or heterologous 
translocations involving Cc and Dc chromosomes of Ae. cylindrica.

Modifications and changes of FISH protocols for identification of Ae-
gilops introgressions

In order to screen large populations of Aegilops-Triticum introgression forms, the meth-
ods for cytomolecular marker analysis should be easy to handle and cost-efficient. FISH 
protocols require fluorescent DNA probes, heat treatment and are labour and time con-
suming. There are reports describing modifications and changes to the protocols used 
to conduct repetitive sequence preparation for FISH. One of such techniques, primed 
in situ labeling (PRINS), combines polymerase chain reaction (PCR) with FISH to 
visualize sequences on chromosomes (Koch et al. 1989). This technique is based on 
the annealing of short, sequence-specific unlabelled DNA to denatured chromosomes 
(Kubalakova et al. 2001). Tang et al. (2014) designed oligonucleotides to replace the 
repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for Ae-
gilops-Triticum chromosome identification. Kwiatek et al. (2016b) and Goriewa-Duba 
et al. (2018) developed specific primers to amplify some of the repetitive sequences re-
ported by Komuro et al. (2013) from wheat genomic DNA. This approach reduces the 
time and the costs of BAC library maintenance. The modifications of FISH protocols 
also facilitate the chromosome identification. Cuadrado and Jouve (2010) investigated 
telomeres of barley (Hordeum vulgare L.) using non-denaturing FISH (ND-FISH). 
This method was used to study chromosomes of Triticum (Fu et al. 2015). The analyti-
cal potential of this technique was demonstrated by Tang et al. (2018), who developed 
new oligo probes that make possible the identification of particular chromosomal seg-
ments, i.e.: the intercalary regions of 4AL and 2DL chromosome arms, and the peri-
centromeric regions of 3DL and 6DS arms of wheat chromosomes.

Another way to saturate the chromosome arms with markers is the use of cDNA 
probes. Danilova et al. (2014) carried out FISH experiment with more than 60 full 
length wheat cDNAs, which were selected using BLAST against mapped EST markers 
(expressed sequence tags). FISH analysis revealed 1U-6U chromosome translocation 
in Aegilops umbellulata and showed synteny between chromosome A of Ae. caudata and 
group-1 wheat chromosomes. There are certain reports, showing technical modifica-
tions of FISH procedures, which reduce the time and costs of experiments. For exam-
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ple, Kwiatek et al. (2016b) used four different fluorescence labels (Atto488, Atto550, 
Atto647 and DAPI) that made possible the examination of three different probes at the 
same time. Of course, this approach requires investing in excitation wavelength spe-
cific filter cubes, which are cost-consuming. When there is a need to examine hundreds 
of plants resulting from genetic crosses, in some cases the time and labour consuming 
cytological methods could be substituted. For example, Rey and Prieto (2017) used 
dot-blot genomic hybridization experiments instead of microscopy to detect alien ge-
netic introgressions to bread wheat.

Closing remarks: large scale selection of Aegilops-Triticum introgres-
sions, perspectives for the future

Cytogenetic methods seem to be essential to verify genomic constitution in interspecific 
hybrids. The main problems are: limited sensitivity and spatial resolution, laborious 
and expensive protocols, which seriously limit the application of cytogenetic markers 
for large scale selection of Aegilops-Triticum introgressions. High-resolution and high-
throughput methods are being progressively developed for identification of micro-intro-
gressions, chromosome breakpoints and spatial localization of alien chromatin in donor 
nuclei. These require the use of new DNA markers, sequencing and new combinations 
of cytomolecular techniques. For example, three dimension FISH (3D-FISH) was ap-
plied to track the spatial organization of rye chromatin in wheat host genome (Burešová 
2018). However, the main aim for development of Aegilops-Triticum introgressions is 
the transfer of desirable genes. Hence, there is a need to improve the cytogenetic meth-
ods for single gene physical mapping. Danilova et al. (2014) used single copy gene 
FISH with probes developed from cDNA of cytosolic acetyl-CoA carboxylase (ACCase) 
gene (Acc-2) and mapped them onto chromosomes of wheat. Another promising tool 
can be the combination of CRISPR (clustered regularly interspaced short palindromic 
repeats) with FISH. Deng et al. (2015) used a bacterial protein, CRISPR, combined 
with RNA sequences as probes to find the genes of interest. This method is comparably 
rapid and allows for keeping natural organization of the nucleus. What is more, CRIS-
PR-FISH enables the analysis of spatial relationships between the genetic elements that 
are significant for gene expression. Apart from identification of Aegilops-Triticum intro-
gressions, newly developed cytogenetic markers and methods could shed some light on 
the behaviour of chromatin, incorporated into the wheat genome, and show the results 
of the interaction between wheat genome and expression of introduced alien genes.
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