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Abstract
The elephantfish family Mormyridae is the most diverse lineage of the primitive teleostean clade Osteo-
glossomorpha distributed in inland waters of all continents except Antarctica and Europe. The family 
Mormyridae is endemic to Africa and includes 22 genera and almost 230 species. The evolutionary radia-
tion of mormyrids most probably should be attributed to their capability of both generating and receiving 
weak electric signals. Up-to-date cytogenetic studies have revealed substantial karyotype differentiation 
among the nine investigated elephantfish species and genera (a single species studied per each genus). In 
the present study, karyotypes of five species representing five mormyrid genera (four unexplored ones) 
collected from the White Nile system in southwestern Ethiopia are described for the first time. The results 
show substantial variety of the diploid chromosome and fundamental numbers: 2n = 48 and FN = 54 
in Brevimyrus niger (Günther, 1866), 2n = 50 and FN = 72 in Cyphomyrus petherici (Boulenger, 1898), 
2n = 50 and FN = 78 in Hippopotamyrus pictus (Marcusen, 1864), 2n = 50 and FN = 76 in Marcusenius cy-
prinoides (Linnaeus, 1758), 2n = 52 and FN = 52 in Mormyrops anguilloides (Linnaeus, 1758). Karyotype 
structure in the latter species seems to be close to the ancestral condition for the family. This hypothesis is 
discussed in the light of available data on karyotype diversity and phylogeny of mormyrids.
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Introduction

The elephantfish family Mormyridae belongs to one of the most primitive groups of 
teleostean fishes, the cohort Osteoglossomorpha (Nelson et al. 2016). The family is 
endemic to the African continent and includes 22 genera and almost 230 species (Fro-
ese and Pauly 2019; Eschmeyer et al. 2020). In genus and species diversity it exceeds 
all other extant osteoglossomorph lineages. The evolutionary radiation of mormyrids 
most probably should be attributed to their ability of both generating and receiving 
weak electric signals that provides dual functions of ‘electrolocation’ and communica-
tion (Hopkins 2009, Carlson and Arnegard 2011).

First cytogenetic data on the osteoglossomorphs and particularly mormyrids were 
published by Hinegardner and Rosen (1972) and Uyeno (1973) almost half a century 
ago. Thereafter, the karyotype structure and cellular DNA content of osteoglossomorphs 
were progressively studied (reviewed by Arai 2011; Canitz et al. 2016; Barby et al. 2018; 
Cioffi et al. 2019). The recent works on mormyrids (Krysanov and Golubtsov 2014; 
Ozouf-Costaz et al. 2015; Canitz et al. 2016) raised to nine the number of mormyrid 
genera studied. The number of species studied is also nine because one species only has 
been karyotyped for all genera. The diploid chromosome numbers in most mormyrids are 
similar (2n = 48 or 50 excepting Pollimyrus Taverne, 1971 with 2n = 40). Nevertheless, 
the varying bi-armed chromosome numbers and ‘amazing’ diversity in NOR positions 
and C-banding patterns provide evidence for the substantial divergence in the karyotype 
structure with the dominating role of pericentric inversions (Ozouf-Costaz et al. 2015).

There is a coherent hypothesis about phylogenetic position of the family Mormyridae 
among other Osteoglossomorpha (Lavoué and Sullivan 2004; Inoue et al. 2009; Nelson et 
al. 2016). The phylogenetic structure of mormyrids themselves is not well-elaborated, but 
three basal groups in their radiation (the genera Petrocephalus Marcusen, 1854; Myomyrus 
Boulenger, 1898; Mormyrops Müller, 1843) are reliably defined (Alves-Gomes and Hopkins 
1997; Sullivan et al. 2000; Lavoué et al. 2003). This makes it possible to hypothesize about 
the mormyrid karyotype evolution. Based on available data Canitz et al. (2016) suggested 
for Mormyridae the ancestral chromosome number 2n = 48–50, that is well-coordinated 
with the hypothetical ancestral karyotype for the teleostean fishes and early vertebrates in 
general (Ohno et al. 1969; Jaillon et al. 2004; Kohn et al. 2006; Nakatani et al. 2007).

Meanwhile, only a small fraction of the total mormyrid diversity (less than 5% of 
species) has been yet studied cytogenetically. New findings may correct the existing 
views on their karyotype evolution. In the present study, new data for five mormyrid 
species from northern East Africa are presented using cytogenetic analysis (chromo-
some number and morphology). Relevance of these data to undrstanding of karyotype 
evolution within the family Mormyridae is considered.

Material and methods

The fifteen individuals studied represent five species of different genera – Brevimyrus 
niger (Günther, 1866), Cyphomyrus petherici (Boulenger, 1898), Hippopotamyrus pic-
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tus (Marcusen, 1864), Marcusenius cyprinoides (Linnaeus, 1758) and Mormyrops an-
guilloides (Linnaeus, 1758) – of the elephantfish family Mormyridae (Table 1). Fish 
were collected in southwestern Ethiopia under the umbrella of the Joint Ethiopian-
Russian Biological Expedition (JERBE) at three sites in November of 2017: the Baro 
River downstream of the City of Itang (8°10'47"N, 34°15'2"E), the Tida River half 
way between the cities of Gambela and Itang (8°16'15"N, 34°25'52"E) and the Al-
vero River downstream of the Abobo Dam (7°52'23"N, 34°29'48"E). All three rivers 
belong to the Sobat River drainage discharging into the White Nile in South Sudan. 
Fish were caught with cast or gill nets, delivered in 80-l plastic containers into the 
field laboratory, where they were kept in permamently aerated water for several hours 
before treatment.

Before preparation fish were treated intraperitoneally with 0.1% colchicine for 
3–4 hours. Then fish were euthanized with an overdose of tricaine methanesulfonate 
(MS-222), identified based on morphological key characters (Golubtsov et al. 1995, 
Levin and Golubtsov 2018), measured to an accuracy of 1 mm, dissected for gonad 
examination and tissue sampling, and preserved in 10% formaldehyde. Vouchers 
are deposited at the Institute of Ecology and Evolution (Moscow) under provisional 
labels of JERBE.

Chromosome preparations were obtained from anterior kidney according to 
Kligerman and Bloom (1977). Briefly, the anterior kidney tissue was incubated with 
0.075M KCl hypotonic solution for 20–30 min at room temperature and fixed with 
3:1 methanol : acetic acid. To prepare slides a fixed tissue was incubated with 50% 
glacial acetic acid, suspended, and dropped onto a hot slides. Air-dried chromosome 
spreads were stained conventionally with 4% Giemsa solution in phosphate buffer at 
pH 6.8 for 8 min.

Chromosome spreads were analysed under “Axioplan 2 Imaging” microscope 
(Carl Zeiss, Germany) equipped with “CV-M4+CL” camera (JAI, Japan) and “Ika-
ros” software (MetaSystems, Germany). Karyotypes were established according to 
the centromere position following the nomenclature of Levan et al. (1964). Chro-
mosomes were classified as metacentric (a), submetacentric (sm) and acrocentric (a), 
including subtelocentric and telocentric chromosomes, and grouped according to 
their morphology in order of decreasing size. To determine the fundamental number 
(FN), metacentrics and submetacentrics were considered bi-armed and acrocentrics 
as uni-armed. The number of complete metaphase plates studied for each specimen 
is presented in Table 1.

Table 1. Species, fish standard length (SL), numbers of individuals (N) and metaphases (Nmt) studied, 

and collection site.

Species SL, mm N Nmt Collection site
Brevimyrus niger 81–87 3 (1♀, 2♂) 32 Tida River
Cyphomyrus petherici 69–153 5 (3♀, 2♂) 54 Alvero River
Hippopotamyrus pictus 197 1 (♂) 11
Marcusenius cyprinoides 196–217 3 (2♀, 1♂) 30
Mormyrops anguilloides 409–498 2 (1♀, 1♂) 21

413 1 (♀) 17 Baro River
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Figure 1. Karyotypes of five elephantfishes of the family Mormyridae. Scale bar: 10 μm.
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Results and discussion

Brevimyrus niger has a karyotype with 2n = 48 (Fig. 1) consisting of 4 metacentrics (m), 2 
submetacentrics (sm) and 42 acrocentrics (a). Three taxa share the same diploid numbers 
of chromosomes 2n = 50 but differ in karyotypic formula: Cyphomyrus petherici has 18m, 
4sm and 28a, Hippopotamyrus pictus has 24m, 4sm and 22a, and Marcusenius cyprinoides 
has 22m, 4sm and 24a. Finally, Mormyrops anguilloides has karyotype with 2n = 52 con-
sisting exclusively of acrocentrics gradually decreasing in size. In the other species studied 
by us one or two pairs of metacentrics or submetacentrics noticeably exceed in size most 
acrocentrics that admits an origin of the larger chromosomes via the centric fusions.

No distinguishable sex chromosomes were observed in complements of the four 
species in which individuals of both sexes were studied (B. niger, C. petherici, M. cypri-
noides, and M. anguilloides), while the only male of H. pictus was karyotyped (Table 1). 
This is in agreement with the lack of reports on sex chromosomes in other mormyrids, 
but presence of heteromorphic sex chromosomes was supposed in the Asian arowana 
Scleropages formosus (Müller & Schlegel, 1840) from the family Osteoglossidae dis-
tantly related to Mormyridae (Bian et al. 2016; but see Cioffi et al. 2019).

Data for all mormyrid taxa studied cytogenetically in the present study and earlier 
are presented in Table 2. Taxa within the subfamily Mormyrinae are listed in alphabeti-
cal order. Recognition of the subfamily Petrocephalinae, as a sister group to all other 
mormyrids, is well-grounded by morphological (including structure of electrocytes) 
and molecular phylogenetic data (Taverne 1972; Alves-Gomes and Hopkins 1997; 
Sullivan et al. 2000; Lavoué et al. 2003). For the two earlier studied taxa names are 
changed in accordance with recent taxonomic arrangements (Eschmeyer et al. 2020): 
Brienomyrus brachyistius (Gill, 1862) was reported as “Marcusenius brachistius Gill” by 
Uyeno (1973) and Campylomormyrus rhynchophorus (Boulenger, 1898) as C. compres-
sirostris (Pellegrin, 1924) by Canitz et al. (2016). Brienomyrus sp.7 of Ozouf-Costaz et 
al. (2015) is listed as Paramormyrops sp.7 following to Ráb et al. (2016).

Brevimyrus niger shares the karyotype with 2n = 48 with three other mormyrid 
taxa, but differs from two of them – Campylomormyrus rhynchophorus with FN = 78 
and Gnathonemus petersii (Günther 1862) with FN = 64 or 68 – by a smaller number 
of biarmed elements (FN = 54). For third taxon, Brienomyrus brachyistius, the unbal-
anced karyotype with FN = 53 was described in a single specimen (Uyeno 1973). 
Apart from the unpaired metacentric chromosome of the unclear nature, its karyotype 
looks similar to that of Brevimyrus niger. Both species have two pairs of large biarmed 
chromosomes, while a pair of uni-armed chromosomes in Brienomyrus brachyistius 
might be substituted by a pair of submetacentrics in Brevimyrus niger lineage.

The karyotype with 2n = 50 was found to be dominating in both presently and 
previously studied mormyrids (three and five taxa, respectively). Cyphomyrus petherici 
(FN = 72), Hippopotamyrus pictus (FN = 78) and Marcusenius cyprinoides (FN = 76) have 
more biarmed elements in their compliment than any other mormyrid studied except 
Campylomormyrus rhynchophorus (FN = 78). Congeneric Marcusenius cyprinoides and 
M. moorii (Günther, 1867) sharing the same chromosome number differ substantially in 
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their karyotype structure. Up to recently Cyphomyrus petherici was considered as belong-
ing to the genus Pollimyrus (Taverne 1971; Moritz et al. 2019). Substantial cytogenetic 
dissimilarity between the single studied species of the latter genus (2n = 40, FN = 42) and 
C. petherici corroborates the change of its generic position (Levin and Golubtsov 2018).

Mormyrops anguilloides has a karyotype unique for the mormyrids studied and com-
posed of 52 uni-armed chromosomes. There are two mormyrids – Petrocephalus micro-
phthalmus Pellegrin, 1909 and Stomatorhinus walkeri (Günther, 1867) – with 2n = 50 
and FN = 52. Karyotypes of these three taxa dominated by the uni-armed elements seem 
to be close to each other and to a hypothetical ancestral karyotype of the family Mormy-
ridae. Mutial trasnformation of these karyotypes could occur in a few evolutionary steps 
(Fig. 2). It is important that two of the three genera under consideration (Petrocephalus 
and Mormyrops) appear to be well-defined basal groups in the family phylogeny (Sul-
livan et al. 2000; Lavoué et al. 2003). Phylogenetic position of the third genera (Stoma-
torhinus) is unclear. Though it appears in the rather basal position (next to Petrocephalus) 
in the small cladogram by Ozouf-Costaz et al. (2015) based of the mitochondrial cy-
tochrome b sequences, in the more extensive mormyrid phylogenies this genus is nested 
deeper in the phylogenetic trees but in varying and poorly surported positions (Lavoué 
et al. 2003; Sullivan et al. 2016; Levin and Golubtsov 2018). Unfortunatelly, cytoge-
netic data for one more genus with the well-defined basal position in the mormyrid 
phylogeny (Myomyrus, stemming out between Petrocephalus and Mormyrops) are absent.

Based on the simultaneous phylogenetic analysis of molecular data and chromo-
some number, Canitz et al. (2016) recognized karyotype with n = 24 as the most parsi-
monius ancestral state for the order Osteoglossiformes, while the haploid chromosome 
number of n = 24–25 was inferred for the most recent common ancestor of the family 
Mormyridae. Their analysis, however, did not include the most recent cytogenetic data 
for several osteoglossomorph clades (Ráb et al. 2016; Barby et al. 2018; Hatanaka et 
al. 2018; Jegede et al. 2018; Cioffi et al. 2019; de Oliveira et al. 2019). Moreover, the 
recent genomic data evidence for the ancestral Euteleostomi karyotype of 50 chromo-
somes with domination by acrocentric elements (Nakatani et al. 2007; Sacerdot et al. 
2018; de Oliveira et al. 2019). If the ancestral karyotype of Mormyridae contained 
50 uni-armed elements, three chromosomal rearrangements only might produce the 
observed karyotype structure in the three mormyrid genera (Petrocephalus, Stomatorhi-
nus and Mormyrops) tentatively recognized by us as the least cytogenetically advanced 
(Fig. 2). The solitary submetacentic pairs in Petrocephalus and Stomatorhinus are sug-
gested to be not syntenic because of some differences in chromosome morphology 
(Ozouf-Costaz et al. 2015). If the ancestral karyotype of Mormyridae contained 50 
uni-armed elements, it is apparently not retained by any extant mormyrid or osteo-
glossomorph, in general. Although the karyotype with 2n = 50 is dominating among 
mormyrids, it contains from 1 to 14 pairs of bi-armed elements (Table 2).

Based on available data the most parsimonius scenarios of the early karyptype evo-
lution in Mormyridae are presented in Figure 2. Three different ancestral karyotypes 
are considered: 2n = 50 and FN =50 (no bi-armed elements), 2n = 50 and FN = 52 (the 
only pair of bi-armed elements), 2n = 52 and FN = 52 (no bi-armed elements). The 
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Figure 2. Most parsimonious scenarios of the early karyotype evolution within the family Mormyridae 
including three variants (A–C) of karyotype structure in a hypothetic ancestor (HA) and three studied 
lineages (the genera Petrocephalus, Stomatorhinus and Mormyrops) with least advanced karyotype structure 
within the family. The alternative transformations of karyotype structure are joint with a dashed line. The 
solitary submetacentric pairs in Petrocephalus and Stomatorhinus are suggested to be not syntenic.
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karyotype structure suggested for a hypothetic ancestor could not be retained in any 
extant mormyrid lineage (Fig. 2A) or retained in Petrocephalus (Fig. 2B) or Mormyrops 
(Fig. 2C). It is impossible to judge which of the scenarios considered is more prefer-
able. There are also plenty of less parsimonious scenarios that are not considered by us.

We believe that further cytogenetic studies of various mormyrid taxa may shape the 
existing views on the karyotype evolution within this diverse group of fish. Looking for the 
probable interspecific variation of the karyotype structure within the three phylogeneti-
cally basal groups (the genera Petrocephalus, Myomyrus, Mormyrops) is of special interest.
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al. 2015
Subfamily Mormyrinae
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Campylomormyrus rhynchophorus (Boulenger, 1898) 48 26m + 4sm + 18a 78 Unknown (laboratory 
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