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Abstract
Two bacterial artificial chromosome (BAC) clones (350B21 and 299N22) of Pima 90-53 cotton [Gossypium 
barbadense Linnaeus, 1753 (2n=4x=52)] were screened from a BAC library using SSR markers. Strong hy-
bridization signals were detected at terminal regions of all A genome (sub-genome) chromosomes, but were 
almost absent in D genome (sub-genome) chromosomes with BAC clone 350B21 as the probe. The results 
indicate that specific sequences, which only exist at the terminal parts of A genome (sub-genome) chromo-
somes with a huge repeat number, may be contained in BAC clone 350B21. When utilizing FISH with 
the BAC clone 299N22 as probe, a pair of obvious signals was detected on chromosome 13 of D genome 
(sub-genome), while strong dispersed signals were detected on all A genome (sub-genome) chromosomes. 
The results showed that peculiar repetitive sequence, which was distributed throughout all A genome (sub-
genome) chromosomes, may exist in BAC clone 299N22. The absence of the repetitive sequences, which 
exist in the two BAC clones, in D genome may account for the genome-size variation between A and D 
genomes. In addition, the microcolinearity analysis of the clone 299N22 and its homologous region on 
G. raimondii Ulbrich, 1932 chromosome 13 (D513) indicated that the clone 299N22 might come from 
A sub-genome of sea island cotton (G. barbadense), and a huge number of small deletions, illegitimate 
recombination, translocation and rearrangements may have occurred during the genus evolution. The two 
BAC clones studied here can be used as cytological markers but will be also be helpful to research in cotton 
genome evolution and comparative genomics.
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Introduction

Cotton (Gossypium Linnaeus, 1753) provides an excellent model system for stud-
ies on polyploidization, genomic organization, and genome-size variation (Wang et 
al. 2010). The genus of cotton is known to be cultivated in over 100 countries and 
has been classified into eight diploid (2n=2x=26) genomic groups: A, B, C, D, E, F, 
G, K, and one allotetraploid (2n=4x=52) genomic group: AD (Percival et al. 1999). 
Approximately 5 MYA (million years ago) A and D genome diploids diverged, then 
later became reunited with allopolyploid formation 1–2 MYA (Cronn et al. 2002; 
Senchina et al. 2003). The latest research shows that the genome size of an A genome 
species is larger than that of a D genome species (Wang et al. 2012; Li et al. 2014). 
Many influential factors, such as polyploidization (Wendel 2000), transposable ele-
ment amplification (Bennetzen 2002; Kidwell et al. 2002; Piegu et al. 2006), tandem 
repeat expansion (Ellegren et al. 2002; Morgante et al. 2002), gene duplication (Zhang 
2003), organellar transfer to the nucleus (Shahmuradov et al. 2003), and intron size 
expansion (Deutsch et al. 1999; Vinogradov et al. 1999) are thought to be collectively 
responsible for the genome-size variation (Grover et al. 2007). Accumulation of dif-
ferent transposable elements classes among different genomes was thought to be the 
most important reason (Hawkins et al. 2006). The studies on genome-size differences 
between A and D genomes will help in understanding cotton evolution as well as fa-
cilitating genetic improvement of cotton.

The introduction of fluorescence in situ hybridization (FISH), involving hybridi-
zation of labeled DNA probes to cytological targets, such as metaphase chromosomes, 
interphase nuclei, and extended DNA fibers, marked the beginning of a new era for 
studies on chromosome structure and function. Modern methodologies and modifica-
tions, such as the development of probes from specificity for highly repeated sequences 
to single-copy sequence (Desel et al. 2001; Zhu et al. 1999), and from single-colored 
probes to multiple-colored probes (Tang et al. 2009), have all been designed to opti-
mize the probe detection sensitivity. Nowadays, FISH is a versatile and accurate tool 
for chromosome localization of sequences (Gomez et al. 1997), cytogenetic map con-
struction (Sun et al. 2013; Han et al. 2011; Cui et al. 2015), genome structure study 
(Zhao et al. 2011; Wang et al. 2001a), genome evolution (Wu et al. 2013), and com-
parative genomics study (Gan et al. 2013).

Eukaryotic genomes, with rare exceptions, are replete with interspersed repeti-
tive DNAs, of which most are transposable elements (Feschotte 2008). Large-scale 
DNA sequencing has revealed that genome size is highly correlated with transposable 
element content (Oliver et al. 2013). The genomes of G. arboretum Linnaeus, 1753 
and G. raimondii Ulbrich, 1932 have been sequenced and assembled, the comparison 
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between the two genomes showed the transposable elements, especially LTR, activities 
substantially contributed to the twofold genome-size variation (Wang et al. 2012; Li 
et al. 2014). In this study, two BAC clones with genome-specific repetitive sequences 
(350B21 and 299N22) were localized and microcolinearity of BAC clone 299N22 
and its homologous region on chromosome D513 was analyzed.

Material and methods

Materials

The plant materials were obtained from National Wild Cotton Nursery in Hainan 
Island, China, sponsored by the Institute of Cotton Research of Chinese Academy of 
Agricultural Sciences (CRI-CAAS). They are also conserved in the greenhouse at CRI-
CAAS’ headquarter in Anyang City, Henan Province, China.

Chromosome-specific BAC clones (Wang et al. 2007) used to identify the indi-
vidual chromosomes were kindly provided by Prof. Tianzhen Zhang (Nanjing Agri-
cultural University, China).

The G. raimondii genome sequence was downloaded from the sequenced genome of 
land plants in Phytozome (http://www.phytozome.net). The G. arboreum genome sequence 
was downloaded from Cotton Genome Project (CGP: http://cgp.genomics.org.cn).

Screening of BAC library

Pima 90–53 (G. barbadense) BAC library screened in this paper was kindly provided 
by Prof. Zhiying Ma (Hebei Agricultural University, China). The simple sequence 
repeat (SSR) markers were selected from 3 genetic maps (Table 1) (Nguyen et al. 
2004; Zhao et al. 2012; Han et al. 2006) and used to screen the BAC library. To fa-
cilitate PCR screening, a rapid method of screening BAC libraries was used to obtain 
positive BAC clones (Cheng et al. 2012). First, one-dimensional pools (plate pools) 

Table 1. SSR markers and their genetic maps.

SSR marker Genetic map of cotton
NAU1215 Han et al. (2006) Theor Appl Genet
CIR342 Han et al. (2006) Theor Appl Genet

NAU1023 Han et al. (2006) Theor Appl Genet
NAU1201 Han et al. (2006) Theor Appl Genet
NAU3022 Zhao et al. (2012) BMC Gnomics 
NAU3384 Zhao et al. (2012) BMC Gnomics 
NAU5100 Zhao et al. (2012) BMC Gnomics 
CIR096 Nguyen et al. (2004) Theor Appl Genet

http://www.phytozome.net
http://cgp.genomics.org.cn
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were made; 384 clones were pooled together on a same plate. Then, bacterial colony 
PCR was used to screen one-dimensional pools. Secondly, two-dimensional pools 
(line pools) were made and used to screen, in each of which 24 clones in a same line 
were pooled together. Thirdly, each clone was screened for the target DNA. Bacterial 
colony PCR was carried out with 1µL of Bacterial colony template in the presence of 
0.5 µL of dNTPs (10mM), 0.5 U Taq DNA polymerase, 1.0 µL 10×Reaction buffer 
and 0.5 µL of each primer, for a final volume of 10 µL. Following initial denaturation 
at 95 °C for 3 min, 30 cycles of 94 °C for 45 s, annealing temperature for 45 s and 
72 °C for 1 min was performed. PCR products were separated by 0.8% polyacryla-
mide gel electrophoresis.

DNA probe preparation

The BAC clone DNA was isolated using a standard alkaline extraction (Sambrook et 
al. 2002). The chromosome-specific BAC clones were labeled with digoxigenin-dUTP 
via nick translation, whereas the screened BAC clones were labeled with biotin-dUTP 
via nick translation, according to the instructions of the manufacturer (Roche Diag-
nostics, USA).

Chromosome preparation and FISH

Mitotic chromosome preparation and FISH procedures were conducted using a 
modified protocol (Wang et al. 2001b). Biotin-labeled and digoxigenin-labeled 
probes were detected by avidin-fluorescein (green) and anti-digoxigenin-rhodamine 
(red) (Roche Diagnostics, USA), respectively. Chromosomes were counterstained 
by 4’,6-diamidino-2-phenylindole (DAPI) in antifade VECTASHIELD solutions 
(Vector Laboratories, Burlingame, CA). The concentration of block DNA (genomic 
DNA) was 200 times that of the chromosome-specific BAC DNA. The hybridization 
signals were observed using a fluorescence microscope (Leica MRA2) with a charge-
coupled device (CCD) camera. Final image adjustments were performed using Adobe 
Photoshop CS3 software.

BAC clone sequencing and microcolinearity analysis

Both BAC clone 350B21 and 299N22 were outsourced to a biological company for 
sequencing. The sequences of BAC clones were used as query sequences to search for 
its homologous regions using BLASTN algorithms against A2 genome and D5 genome. 
Microcolinearity analysis of homologous regions was achieved using software CIRCOS.
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Results

Identification and selection of cotton BAC clones

A total of 192 plate pools (73728 BAC clones, nearly covering G. barbadense genome 
3 times) were constructed and screened using bacterial colony PCR. Nineteen positive 
BAC clones were identified (Table 2) and selected to be probes for FISH. Seventeen 
clones, which showed ambiguous FISH signals or no FISH signal on G. barbadense 
mitotic metaphase chromosomes, were discarded. BAC clones 350B21 and 299N22, 
which showed obvious characteristic signals on G. barbadense mitotic metaphase chro-
mosomes, were selected for further study.

Localization of BAC 350B21

Obvious signals were detected on terminal parts of all G. barbadense Linnaeus, 1753 
(A2D2, 2n=4x=52) A sub-genome chromosomes with BAC clone 350B21 as probe. 
And signals were alike when using four other tetraploid species [G. hirsutum Linnaeus, 
1753 (A1D1, 2n=4x=52), G. tomentosum Nuttall ex Seemann, 1865 (A3D3, 2n=4x=52), 
G. mustelinum Miers ex Watt, 1907 (A4D4, 2n=4x=52), G. darwinii Watt, 1907 (A5D5, 
2n=4x=52)] mitotic metaphase chromosomes as target DNAs. Then, mitotic meta-
phase chromosomes of two A genome species [G. arboretum (A1, 2n=2x=26), G. herba-
ceum Linnaeus, 1753 (A2, 2n=2x=26)] were used as target DNAs and obvious signals 
were detected at terminal parts of all the chromosomes. On the contrast, no obvious 
signal, except two pair of weak signals, was detected on chromosomes of two D ge-
nome cotton species [G. thurberi Todaro, 1878 (D1, 2n=2x=26) and G. raimondii (D5, 
2n=2x=26)]. The signals were alike between A genomes and A sub-genomes as well as 
D genomes and D sub-genomes (Fig. 1).

Table 2. Screened clones of Pima 90-53 BAC library.

SSR markers Screened clones from BAC library

NAU1215 300N10
CIR342 268E2; 268K2 

NAU1023 311A4; 311A11
NAU1201 299N22; 323O3; 317K24; 185N14
NAU3022 30A18; 106P24
NAU3384 328L13
NAU5100 389J15; 376M12; 311M1
CIR096 399A22; 162G3; 350B21;342O11
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Localization of BAC 299N22

Obvious disperse signals were detected on all A sub-genome chromosomes of tetra-
ploid species [G. hirsutum (A1D1, 2n=4x=52), G. barbadense (A2D2, 2n=4x=52), G. 
tomentosum (A3D3, 2n=4x=52), G. mustelinum (A4D4, 2n=4x=52), G. darwinii (A5D5, 
2n=4x=52)] with BAC clone 299N22 as probe. When mitotic metaphase chromo-
somes of two A genome species [G. arboretum (A1, 2n=2x=26), G. herbaceum (A2, 
2n=2x=26)] were used as target DNAs, obvious signals were detected on all the chro-
mosomes, while only a pair of obvious signals was detected on chromosome 13 of 
two D genome cotton species [G. thurberi (D1, 2n=2x=26) and G. raimondii (D5, 
2n=2x=26)]. The relative position of FISH signals on chromosome D513 was meas-
ured to be about 62.4FL (FL: the percentage of the distance from the FISH site to the 
end of the short arm relative to the total length of the chromosome) after measuring 
more than 10 cells with clear chromosome spreads (Fig. 2).

Figure 1. The FISH images of BAC clone 350B21(green) hybridized to mid-mitotic chromosomes 
in different Gossypium species, Bar: 5 µm. A G. hirsutum (A1D1, 2n=4x=52) B G. barbadense (A2D2, 
2n=4x=52); C G. tomentosum (A3D3, 2n=4x=52) D G. mustelinum (A4D4, 2n=4x=52) E G. darwinii 
(A5D5, 2n=4x=52) F G. arboretum (A1, 2n=2x=26) G G. herbaceum (A2, 2n=2x=26) H G. thurberi (D1, 
2n=2x=26) I G. raimondii (D5, 2n=2x=26).
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Analysis of BAC clones sequences and microcolinearity

Sequencing of BAC clone 350B21 failed, as too many simple repeat sequences existed 
in the BAC clone. A new lineage-specific LTR family, which accounted for about 35% 
of A2 genome while being absent in D5 genome, was identified analyzing the sequence 
of BAC 299N22. The sequence of BAC clone 299N22 was used as query sequence to 
search for its homologous regions using BLASTN algorithms against A2 genome (G. 
arboretum) and D5 (G. raimondii) genome, respectively. When A2 genome was used 
as a database, multiple dispersedly distributed hits on all chromosomes of A2 genome 
were obtained (Fig. 3A), so the homologous region of BAC 299N22 in A2 genome was 

Figure 2. The FISH images of BAC clone 299N22 (green) hybridized to mid-mitotic chromosomes dif-
ferent Gossypium species, Bar: 5 µm. A G. hirsutum (A1D1, 2n=4x=52) B G. barbadense (A2D2, 2n=4x=52) 
C G. tomentosum (A3D3, 2n=4x=52) D G. mustelinum (A4D4, 2n=4x=52) E G. darwinii (A5D5, 2n=4x=52) 
F G. arboretum (A1, 2n=2x=26); G G. herbaceum (A2, 2n=2x=26) H G. thurberi (D1, 2n=2x=26) I G. rai-
mondii (D5, 2n=2x=26). Red: the signal of chromosome-specific BAC clone for chromosome D113, D513.
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not identified. When D5 genome was used as a database, similar sequences were only 
detected in chromosome 13, and the density was obviously higher at the region of 
34067000bp—34098000bp (58.41% of chromosome D513, the position was almost 
the same as FISH result) than that of other regions of D513 chromosome. When the 
E value was set lower, the hits were only found in that region (Fig. 3B). Therefore, the 
31kb region on chromosome D513 was thought to be the homologous region of BAC 
299N22. Using the CIRCOS software analysis, the microcolinearity of BAC clone 
299N22 and its homologous region on chromosome D513 proved to be poor. The 
orders of the highly conserved fragments showed discrepancies, even the orientations 
of some highly conserved fragments were different. According to cotton SSR primer 
sequence information on NCBI and G. raimondii genome annotation information, 4 
SSR markers, NAU1201, NAU1141, HAU3220, and MON_CGR5697, and 2 genes 

Figure 3. The distribution of BAC 299N22 clone on chromosomes. X-coordinate indicates the length 
of chromosome, y-coordinate indicates the hits of sequence alignment of BAC clone 299N22 and chro-
mosomes. A the result of BLASN, with chromosome A202 as database B the result of BLASTN, with 
chromosome D513 as database.
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013G130100 and 013G130200, were contained in the pair of homologous regions 
(Fig. 4). However, the distance between the two genes in BAC clone 299N22 was 
much longer than that on D513, and gene 013G130100 in BAC clone 299N22 was 
divided into two segments. The results also showed special sequences, which do not ex-
ist in D genome, repeated a huge number of times in A genome, exist in BAC 299N22.

Discussion

New cytological markers

Chromosome identification is the foundation of research on plant genetics, evolution 
and genomics. Conventional individual chromosome identification is mainly based on 

Figure 4. Microcolinearity of the BAC 299N22 and its homologous fragment on chromosome D513 of 
G. raimondii. Lower-left is BAC 299N22, top-right is its homologous fragment on chromosome D513 of 
G. raimondii. Red: gene 013G130100, yellow: 013G130200, light blue: 4 SSR markers.
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analyzing chromosomal relative lengths and arm ratios, and, as a result, is very difficult 
and inaccurate when identifying chromosomes small and similar. Therefore finding 
suitable molecular cytogenetic markers becomes very necessary for the unambiguous 
identification of individual chromosomes. FISH is a reliable cytological technique for 
chromosome identification, and has been adapted successfully to identify the chro-
mosomes for many plant species, including rice (Cheng et al. 2001), potato (Dong et 
al. 2000), sorghum (Kim et al. 2005) and so on. A set of chromosome-specific BAC 
clones for G. hirsutum chromosomes identification has been developed and was ap-
plied successfully in many cotton species (Wang et al. 2007; Wang et al. 2008; Gan 
et al. 2011; Gan et al. 2012). In this study, BAC clone 299N22 could be a new cy-
tological marker for chromosome 13 of D genome (sub-genome), and its cytogenetic 
position was measured to be approximately 62.4 FL. As BAC clone 299N22 showed 
well-distributed repetitive signals on all A genome (sub-genome) chromosomes, it also 
could be used as a cytological marker for identifying A genome (sub-genome) chro-
mosomes. BAC clone 350B21, which showed repetitive signals at the terminal regions 
of all A genome (sub-genome) chromosomes could be used as a cytological marker 
for identifying or labeling terminal regions of all A genome (sub-genome) chromo-
somes. The addition of these new cytological markers will facilitate the study of cotton 
genomics and evolution.

Cotton A genome (sub-genome) has unique repetitive sequences

Repetitive DNA sequences form a large portion of the genomes of eukaryotes, indicat-
ing a major contributor to variation in genome size among organisms of similar com-
plexity (Charlesworth et al. 1994). The genus Gossypium, which provides a facile sys-
tem for investigating the genomic organization and evolution, also has a high content 
of repetitive sequences in its genome. Different types of repeat sequences accounted 
for as much as 68.5% of the G. arboreum genome and approximately 57% of the G. 
raimondii genome, respectively. And most of the repetitive sequences are long terminal 
repeat (LTR) retrotransposons (Wang et al. 2012; Li et al. 2014).

When using BAC clone 350B21 as a probe, strong signals were detected at the 
terminal parts of all chromosomes of A genome (sub-genome), while being absent on 
D genome (sub-genome) chromosomes. The results may indicate that special repeti-
tive sequences in BAC clone 350B21 have a bias of insertion sites at terminal parts of 
A genome (sub-genome) chromosomes. Another kind of repetitive sequence exists in 
BAC clone 299N22 showed well-distributed dispersed signals on all A genome (sub-
genome) chromosomes. These unique repetitive sequences may be the major reason for 
the genome-size difference between A genome and D genome.

A new LTR family, which accounts for about 35% of A2 genome while almost 
being absent in D5 genome, was identified analyzing the sequence of BAC clone 
299N22. The LTR family was inserted randomly along each chromosome in G. ar-
boretum genome, and was different from any reported repetitive sequences in cotton 
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(Hawkins et al. 2006). As the LTR family accounts for so much of A genome, it should 
be different from any sequence reported by Zhao et al (1995) and Hanson et al (1998). 
The identification of the new LTR family will facilitate understanding of the differ-
ences between the two genomes. Sequencing of BAC clone 350B21 failed as too many 
simple repeat sequences existed in the BAC clone. This indicates that the terminal 
regions of A genome (sub-genome) chromosomes may be replete with simple repeat 
sequences. Their absence in D genome (sub-genome) indicates that they may appear 
after the divergence of A, D genomes and contributed to the genome-size difference 
between the two genomes. The similarity of signals in D genome and D sub-genome 
suggests that the repetitive sequences in the two BAC clones may not occur coloniza-
tion after polyploidization event, this indicate they may turned to be silent before the 
polyploidization event.

Many factors contributed to genome-size evolution.

Many factors are thought to be responsible for the genome-size variation. The analysis 
of AdhA and CesA regions of different cotton genomes indicated that many forces oper-
ated collectively among genomic regions to reflect genome-size evolution (Grover et al. 
2007). The microcolinearity analysis, comparative analysis of homologous sequences 
from different genomes, is a method of comparative genomics research for studying 
and speculating upon the relationships between genomes and evolution patterns. In the 
present study, the homologous region of BAC clone 299N22 on chromosome D513 
was obtained using bioinformatics analysis. As the sequence of BAC clone 299N22 is 
much longer than its homologous region on chromosome D513, BAC clone 299N22 
was thought to be from A sub-genome of G. barbadense. Microcolinearity analysis of 
the homologous regions showed that the orders of the most highly conserved frag-
ments were different, even the orientations of some highly conserved fragments was 
different, which may indicate that a large number of translocations, inversions, and 
segmental rearrangements occurred during evolution. The analysis showed the length 
of gene parts appeared similar between the homologous regions, while gene-free re-
gions were not. This may provide a hint that the evolution between gene islands or in 
gene-free regions may be the main reason for the genome-size variations, as previously 
reported (Grover 2004). The repetitive sequences which were distributed dispersedly 
on A genome chromosomes were located at the non-genetic regions, and this may in-
dicate that the difference in non-genetic regions may be attributed to the accumulation 
of repetitive sequences.

Conclusions

In recent years, many achievements, such as in the study of cytogenetic map con-
struction, genome evolution, and comparative genomics, have been obtained by using 
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BAC-FISH. The repetitive sequences in the two BAC clones showed distribution bias 
and may be an important reason for the genome-size variation. Analysis of the repeti-
tive sequences will be helpful in the studies on cotton genome evolution and compara-
tive genomics.
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