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Abstract
In this paper, we present new cytogenetic data for three species of the family Pentatomidae: Dichelops melacan-
thus (Dallas, 1851), Loxa viridis (Palisot de Beauvois, 1805), and Edessa collaris (Dallas, 1851). All studied spe-
cies presented holocentric chromosomes and inverted meiosis for the sex chromosomes. D. melacanthus has 2n 
= 12 (10A + XY); L. viridis showed 2n = 14 (12A + XY); and E. collaris showed 2n = 14 (12A + XY). C-banding 
was performed for the first time in these species and revealed terminal and interstitial heterochromatic regions 
on the autosomes; DAPI/CMA3 staining showed different fluorescent patterns. In all species, fluorescence in 
situ hybridization (FISH) with 18S rDNA probe identified signals on one autosomal bivalent, this being the 
first report of FISH application in the species D. melacanthus and L. viridis. The results obtained add to those 
already existing in the literature, enabling a better understanding of the meiotic behavior of these insects.
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Introduction

The suborder Heteroptera has approximately 40,000 species distributed in seven in-
fraorders (Enicocephalomorpha, Dipsocoromorpha, Gerromorpha, Nepomorpha, 
Leptopodomorpha, Cimicomorpha, and Pentatomomorpha) and is considered the 
largest and most diverse group of hemimetabolous insects (Štys and Kerzhner 1975; 
Weirauch and Schuh 2011). Although many of these insects play an important role 
as indicators of environmental quality (Brown 1997), other species are responsible for 
significant economic importance as vectors of diseases (Alevi et al. 2015) and agricul-
tural pests (Schaefer and Panizzi 2000).

Pentatomidae are considered the fourth largest family in the suborder Heteroptera, 
with approximately 900 genera and almost 4,800 species classified in 10 subfamilies 
with a worldwide distribution (Rider 2011). The Neotropical region, which includes 
Brazil, is known for its vast biodiversity (Goldani 2012), where 230 genera and more 
than 1,400 Pentatomidae species have already been described (Grazia et al. 2015).

Several cytogenetic studies have been conducted on this insect family, where more 
than 300 species have been analyzed (Ueshima 1979; Rebagliati et al 2005; Kaur and 
Semahagn 2010; Kerisew 2012; Souza et al. 2007, 2011; Grozeva et al. 2011; Souza 
and Itoyama 2011; Bardella et al. 2013a, 2016a). The diploid numbers ranging from 
2n = 6 in Rhytidolomia senilis (Say, 1832) to 2n = 27 in Thyanta calceata (Say, 1832) 
with a predominance of 2n = 14 and sex chromosome system XX/XY. These insects like 
the rest species of Heteroptera have specific cytogenetic features, such as (i) holocen-
tric chromosomes; (ii) kinetic activity located in the terminal region of chromosomes 
during meiosis (telokinetic activity); (iii) chiasmatic autosomal bivalents, in contrast 
to the sex chromosomes that are achiasmatic; and (iv) inverted meiosis in the sex chro-
mosomes, which is different from the typical equation reduction-sequence observed in 
the meiosis of organisms with monocentric chromosomes (Ueshima 1979; Nokkala 
and Nokkala 1984, 1997; Nokkala and Grozeva 2000; Pérez et al. 2000; Papeschi et 
al. 2003; Poggio et al. 2009; Melters et al. 2012).

Because of the importance and diversity of the family Pentatomidae, we present 
cytogenetic data for three species of Pentatomidae in this paper: Dichelops melacanthus 
(Dallas, 1851), Loxa viridis (Palisot de Beauvois, 1805), and Edessa collaris (Dallas, 1851).

Methods

Chromosomal preparations and conventional staining

For this study, only male adults were used (Table 1). Specimens were collected with the 
authorization of the ICMBio (31946-4). The insects were anesthetized and dissected in 
a physiological solution for insects (7.5 g NaCl, 2.38 g Na2HPO4, and 2.72 g KH2PO4 
in 1 l of distilled water). The gonads were washed with tap water and fixed in methanol 
and acetic acid (3:1, v:v). The slides were prepared based on the protocol of Pijnacker 
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and Ferwerda (1984), using a portion of the testes, which was macerated in 45% acetic 
acid and then dried on a hot plate at 45–50 °C. These preparations were stained using 
conventional staining with Giemsa 3%.

C-banding and fluorochromes

The slides were submitted to C-banding following the protocol of Sumner (1972) with 
the modifications of Grozeva et al. (2011). The slides were treated with 0.2 N HCl 
solution at room temperature for 30 min, incubated in 5% barium hydroxide solution 
at room temperature for 8 min, and then incubated in 2 × SSC saline at 60 °C for 1 h. 
The slides were washed with distilled water; some were stained with propidium iodide 
according to Lui et al. (2012), and others were stained with the fluorochromes 4’6-di-
amidino-2-phenylindole (DAPI), which identify AT-rich regions, and chromomycin 
A3 (CMA3), which identify GC-rich regions (Schweizer 1980).

DNA extraction and isolation of the 18S rDNA probe

Total DNA was extracted using the phenol-chloroform method of Sambrook and Rus-
sel (2006). The 18S rDNA probe was obtained via a polymerase chain reaction (PCR) 
using the primers Forward 5'-CCTGAGAAACGGCTACCACATC-3' and Reverse 
5'-GAGTCTCGTTCGTTATCGGA-3', as described by Whting et al. (1997). The 
PCR was performed with a final volume of 25 μl containing 100 ng of genomic DNA 
(1 μl), 10 mM primer (1 μl each), 10 mM dNTP mix (1 μl), 50 mM MgCl2 (1.5 μl), 
and 10 × PCR buffer (2.5 μl); Taq polymerase at 5 U/μl (0.5 μl) was added to ultra-
pure water to complete the reaction. The PCR was used in the following conditions: 
first step at 94 °C for 2 min, followed by 35 cycles at 94 °C for 1 min, 58 °C for 1 min, 
72 °C for 1 min, and a final extension of 72 °C for 5 min. Amplified 18S rDNA probes 
were labeled using digoxigenin-11-dUTP (Roche Applied Science, Indianapolis, EUA).

Fluorescence in situ hybridization (FISH)

FISH was based on the protocol of Schwarzacher and Heslop-Harrison (2000): the slides 
were treated with RNase (0.4% RNAse/2 × SSC) and pepsin (0.005%) for 1 h and 10 min, 
respectively, both at 37 °C, and dehydrated in ethanol series (75% and 100%) for 3 min 
each. Subsequently, 40 μl of the hybridization mix containing 100% formamide (20 μl), 

Table 1. Studied species and collection sites.

Species Number of 
samples (N)

Collection site

Dichelops melacanthus 40 District of Maravilha, Londrina, Paraná, Brazil (23°28'03"S, 51°00'46.3"W)
Loxa viridis 15 Iguaçu National Park in Foz do Iguaçu, Paraná, Brazil (25°04'–25°41"S, 

53°58'–25°04"W)
Edessa collaris 15 Iguaçu National Park in Foz do Iguaçu, Paraná, Brazil (25°04'–25°41"S, 

53°58'–25°04"W)
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50% polyethylene glycol (8 μl), 20 × SSC (4 μl), 10% sodium dodecyl sulfate (SDS) 
(1 μl), and 100 ng of probes (4 μl) was added to ultra-pure water to complete the reaction. 
The hybridization mix was denatured at 75 °C for 10 min and then was transferred to 
the ice. After this time, the mix was applied onto the slides and taken to the thermocycler 
for denaturing/renaturing following the steps (90 °C, 56 °C, and 38 °C for 10 min each); 
hybridization occurred at 37 °C in a humidified chamber overnight. After probe detection 
with anti-digoxigenin-rhodamine (Roche Applied Science, Indianapolis, EUA), the chro-
mosomes were counterstained with DAPI and mounted in Vectashield (Thermo Fisher 
Scientific, Massachusetts, EUA) and left in the dark for 24 h before analysis.

The slides were analyzed in an epifluorescence microscope (Leica DM 2000), 
which was equipped with a digital camera Moticam Pro 282B. The images were cap-
tured using Motic Images Advanced software, version 3.2. The chromosome images 
were acquired separately with specific filters for each fluorophore or in light field.

Results

The stink bug D. melacanthus had 2n = 12 (10A + XY) (Fig. 1a, b) with one pair of au-
tosomes larger than the other autosomes. L. viridis (Fig. 1g, h) and E. collaris (Fig. 1m, 
n) had chromosomes of homogeneous size and 2n = 14 (12A + XY), in both species. 
The sex chromosome system of all species was simple (XY male). The analysis of the 
meiotic behavior revealed a kinetic activity in the terminal regions of the chromosomes 
owing to their positioning and migration to the opposite poles. In metaphase II, it was 
possible to observe a radial plate the autosomes forming a ring and the sex chromo-
somes positioned in the center of the ring in a brief association, known as touch-and-
go-pairing in all species (Fig. 1b, h, n).

In all analyzed species, a heterochromatic region corresponding to sex chromo-
somes was observed, which are associated in the early stages of meiosis (Fig. 1c, i, o). 
In D. melacanthus, the DAPI/CMA3 staining was homogeneous for all chromosomes 
(Fig. 1d, e). In L. viridis presented interstitial and terminal heterochromatic regions in 
some autosomes (Fig. 1i), and after staining with fluorochromes, the Y chromosome 
stood out as DAPI+ (Fig. 1j). A similar pattern was observed in one of the autosomes 
but with more discrete coloration; the DAPI+ interstitial regions were not so evident 
in another autosome (Fig. 1j). Staining with CMA3 showed very weak terminal dots 
in a bivalent (Fig. 1k). The specie E. collaris showed terminal and interstitial hetero-
chromatic bands in the autosomal bivalents in addition to the sex chromosomes that 
were associated (Fig. 1o). The DAPI/CMA3 staining revealed the presence of several 
interstitial and a terminal DAPI+ bands (Fig. 1p) as well as CMA3

+ bright terminal dots 
in a bivalent, and the DAPI+/CMA3

+ sex chromosomes (Fig. 1p, q).
FISH revealed the following distribution patterns of 18S rDNA among species: 

D. melacanthus showed discrete dots in the terminal region of the larger bivalent at 
metaphase I (Fig. 1f ); two 18S rDNA sites in the terminal region of a bivalent were 
observed in the initial meiotic phases of L. viridis and E. collaris (Fig. 1l, r).
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Discussion

Conventional staining analysis performed here confirmed the presence of holocentric 
chromosomes and kinetic activity localized in the terminal region during meiosis, as 
observed in most Heteroptera (Ueshima 1979; Nokkala and Nokkala 1984, 1997; 
Nokkala and Grozeva 2000; Pérez et al. 2000; Papeschi et al. 2003; Poggio et al. 2009; 
Melters et al. 2012). In addition, it was possible to observe the occurrence of inverted 
meiosis for the sex chromosomes, as evidenced by the presence of these chromosomes 
as univalents in metaphase I and the presence of heteromorphic chromatids with 
touch-and-go-pairing behavior in metaphase II, a feature already reported in other 
species of Pentatomidae (Viera et al. 2009).

According to data available for Pentatomidae (Rebagliati et al. 2005; Bardella 
et al. 2013a), a diploid number conservation of L. viridis (2n = 14) was observed. 
D. melacanthus presented 2n = 12 (10A + XY), as previously observed by other authors 
(Rebagliati et al. 2002, 2005; Souza et al. 2011). The population of E. collaris analyzed 
in this study had 2n = 14 (12A + XY); however, Souza et al. (2011) reported 2n = 12 
(10A + XY) for the same species, which may indicate an interpopulation polymor-
phism because the collection sites were distinct. Another explanation of the difference 
in the chromosome number of E. collaris could be an error in species identification 
because of the morphological similarity between species in this genus, making identi-
fication difficult (Fernandes and Doesburg 2000).

Figure 1. Meiotic stages of Dichelops melacanthus (a–f), Loxa viridis (g–l) and Edessa collaris (m–r). (a, g 
and m) metaphase I by Giemsa conventional staining; (b, h and n) metaphase II by Giemsa conventional 
staining; (c, i and o) C-banding pachytenes; (d and j) metaphase I by DAPI staining; (p) diplotene by 
DAPI staining; (e and k) metaphase I by CMA3 staining; (q) diplotene by CMA3 staining; (f, l and r) 
Fluorescence in situ hybridization with digoxigenin-labeled 18S rDNA probe and counterstained with 
DAPI. X and Y correspond to the sex chromosomes. Arrows show heterochromatic marks in autosomes. 
Scale bar: 10 µm.
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The stink bug D. melacanthus was the only species in the study that presented 
2n = 12 (10A + XY), a result confirming previous observations reported for other popu-
lations of this species (Rebagliati et al. 2002, 2005; Souza et al. 2011). This diploid 
number is described in nine other Pentatomidae species: Euschistus crassus Dallas, 1851 
(Foot and Strobell 1912 according to Ueshima 1979, Hughes-Schrader and Schrader 
1956); Oechalia patruelis Stål, 1859 (Heizer 1950), Scotinophara sp. (Jande 1959 and 
1960c according to Rebagliati et al. 2005), Scotinophara coarctata Fabricius, 1979 
(Satapathy et al. 1990 according to Rebagliati et al. 2005), Dichelops furcatus Fabricius, 
1775 (Rebagliati et al. 2001), Mecocephala maldonadensis Schwertner, Grazia, and 
Fernandes, 2002 (Rebagliati et al. 2005), Acledra bonariensis Stål, 1859 (Rebagliati and 
Mola 2010), Edessa collaris (Souza et al. 2011) and Cahara confusa Distant, 1879 (Kaur 
and Sharma 2015).

Apart from the differences in the diploid number, D. melacanthus was distin-
guished by the presence of a pair of autosomal chromosomes of large size in relation to 
the other chromosomes. According to Souza et al. (2011), the presence of this visibly 
larger autosomal pair suggests that this reduced karyotype originated through a fu-
sion between two autosomes. The same characteristic has also been observed in other 
species of the family with 2n = 12, as in E. crassus, D. furcatus, M. maldonadensis, and 
A. bonariensis (Hughes-Schrader and Schrader 1956; Ueshima 1979; Rebagliati et al. 
2001, 2005; Rebagliati and Mola 2010), which supports the hypothesis of the fusions 
resulting in a reduction of the diploid number in this group.

In all species studied, the location and composition of heterochromatin was first 
performed. In relation to the characteristics of heterochromatin in the autosomes, we 
can classify the species studied into two distinct patterns: (i) presence of AT-rich het-
erochromatin as in D. melacanthus and (ii) predominance of DAPI+ blocks and few 
CMA3

+ blocks as in L. viridis and E. collaris. According to Poggio et al. (2011), most 
of the reports concerning the characterization of heterochromatin in the autosomes in 
species of the order Hemiptera are described as DAPI+, as was reported by Bressa et 
al. (2005) in Athaumastus haematicus (Stål, 1860), Leptoglossus impictus (Stål, 1859), 
Phthia picta (Drury, 1770) (Coreidae), Largus rufipennis (Laporte, 1832) (Largidae) 
and Jadera sanguinolenta (Fabricius, 1775) (Rhopalidae), and by Franco et al. (2006) 
in Spartocera batatas (Fabricius, 1798) (Coreidae).

The heterogeneity of heterochromatin in chromosomes was observed. In 
D. melacanthus and L. viridis, the sex Y chromosome was completely heterochro-
matic and DAPI+, while the sex X chromosome in these two species showed homo-
geneous staining with both DAPI and CMA3. In most species of Heteroptera, the 
Y chromosome presents a large amount of heterochromatin, sometimes being com-
pletely heterochromatic (Grozeva and Nokkala 2001). This has been reported for the 
subfamily Triatominae (Panzera et al. 1995), in species of Belostomatidae (Papeschi 
1988) and in three species of pentatomids of the genus Antiteuchus (Dallas, 1851) 
(Lanzone and Souza 2006). Although studies in Reduviidae show that the DAPI pos-
itive Y chromosome is quite common, particularly in species of the Triatomini tribe 
(Bardella et al. 2016b), it is not observed with the same frequency in Pentatomidae, 
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being pointed out only in Halys serrigera (Westwood, 1837) and Perillus bioculatus 
(Fabricius, 1775) (Kerisew 2012).

In this study, E. collaris presented associated sex chromosomes and DAPI+/CMA3
+ 

in early meiotic phases. This has also been reported in Nabis viridulus Spinola, 1837 
(Grozeva et al. 2004) and in species of the genus Edessa in E. meditabunda (Fabricius, 
1974) and E. rufomarginata (De Geer, 1773) (Rebagliati et al. 2003).

Studies on the characterization and localization of heterochromatin are important 
because in addition to the numerous functions that it performs during the cell cycle, it 
is related to karyotype evolution since chromosomal breaks and rearrangements occur 
frequently in these regions (Huisinga et al. 2006; Grewal and Jia 2007). The occur-
rence of small CMA3

+ blocks and/or dots related to co-localization with the nucleolus-
organizing regions is a common feature (Camacho et al. 1985; Rebagliati et al. 2001; 
Bardella et al. 2013b). We confirmed this for E. collaris, where the heterochromatic 
dots showed specificity to the fluorochrome CMA3, and subsequently by 18S rDNA 
hybridization. A higher percentage of CG repeats in the nucleotide composition of the 
18S gene has already been observed by Bargues et al. (2000) in study with triatomines.

Signals of 18S rDNA in a single bivalent were observed for all species of this study, 
and this pattern is commonly found in the species of the Pentatomidae (Papeschi et 
al. 2003; Grozeva et al. 2015). Most studies of the Pentatomidae report the presence 
of this cluster on an autosomal pair (Papeschi et al. 2003; Cattani and Papeschi 2004; 
Cattani et al. 2004; Bressa et al. 2008, 2009; Grozeva et al. 2011, 2015; Bardella et al. 
2013a, 2016a; Souza-Firmino et al. 2020).

In this study, first data on FISH with the 18S rDNA probe with D. melacanthus 
and L. viridis are presented and both species showed terminal blocks in autosomes, be-
ing the larger bivalent in D. melacanthus. This terminal location is highly conserved in 
the infraorder Pentatomomorpha, even in related species that exhibit wide variations in 
chromosome number; chromosome position of the 18S rDNA sites is commonly sub-
terminal (Bardella et al. 2013a). The species E. collaris showed two signals of hybridiza-
tion in an autosomal bivalent, as previously reported by Souza-Firmino et al. (2020).

Our results confirm the karyotype conservation of the family and present original 
cytogenetic data for three species: (i) analysis of heterochromatin in all species; and 
(ii) FISH with 18S rDNA probe data for D. melacanthus and L. viridis. In conclusion, 
we present new data for future studies that can collaborate in the evolutionary study 
of the Pentatomidae family.
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