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Abstract
The blue butterfly species Polyommatus (Plebicula) atlanticus (Elwes, 1906) (Lepidoptera, Lycaenidae) is 
known to have a very high haploid number of chromosomes (n= circa 223). However, this approximate 
count made by Hugo de Lesse 45 years ago was based on analysis of a single meiotic I metaphase plate, 
not confirmed by study of diploid chromosome set and not documented by microphotographs. Here 
I demonstrate that (1) P. atlanticus is a diploid (non-polyploid) species, (2) its meiotic I chromosome 
complement includes at least 224-226 countable chromosome bodies, and (3) all (or nearly all) chromo-
some elements in meiotic I karyotype are represented by bivalents. I also provide the first data on the 
diploid karyotype and estimate the diploid chromosome number as 2n=ca448-452. Thus, P. atlanticus is 
confirmed to possess the highest chromosome number among all the non-polyploid eukaryotic organisms.
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Introduction

Trends and mechanisms of chromosome number and chromosome structure changes 
are currently a matter of a sharp discussion (Qumslyeh 1994, Imai et al. 2002, Eichler 
and Sankoff 2003, Schubert 2007, Lukhtanov et al. 2005, 2011, 2015a, Vila et al. 
2010, Dincă et al. 2011, Bureš and Zedek 2014, Fleischmann et al. 2014, Lukhtanov 
2014, Vershinina et al. 2015). These changes are important in evolution of eukaryotic 
organisms since they can trigger speciation via hybrid-sterility or/and via suppressed-
recombination mechanisms (Faria and Navarro 2010). Fixation of these changes plays 
a serious role in maintaining postzygotic isolation between well-established species 
and protects hybridizing lineages from merging (Kandul et al. 2007). Change of chro-
mosome number results in change of linkage groups and thus affects rate of meiotic 
recombination (Dumont and Payseur 2011).

Comparative analysis of chromosomal data is a promising way for understand-
ing the patterns of karyotype evolution (Vershinina and Lukhtanov 2013), and this 
analysis requires accurate and precise data on chromosome complements of species 
under study. The blue butterfly Polyommatus (Plebicula) atlanticus (Elwes, 1906) is 
mentioned in many publications devoted to chromosome number evolution since it 
is supposed to possess the highest chromosome number (n= circa 223) among all the 
non-polyploid metazoan animals (e.g. White 1973, Imai et al. 2002, Bureš and Zedek 
2014). However, this approximate count made by Hugo de Lesse 45 years ago was 
based on analysis of a single meiotic I metaphase plate, not confirmed by studies of 
diploid chromosome set and not documented by microphotographs (de Lesse 1970).

The aim of this study is cytogenetic reinvestigation and documentation of P. atlan-
ticus karyotype with a special consideration of diploid chromosome set of this species.

Material and methods

The studied species is often mentioned in the literature as a member of the genus Ly-
sandra Hemming, 1933 (e.g. de Lesse 1970, White 1973). However, according to the 
last revision of the tribe Polyommatina, it should be transferred to the genus Polyom-
matus Latreille, 1804 (Talavera et al. 2013a). The adult male samples used for chromo-
somal analysis (NK02A032, NK02A033 and NK02A035) were collected in Morocco 
(Atlas range, Col du Zad pass, 2200 m alt., 27 June 2002) by Roger Vila, Santiago 
Ramirez and Nikolai Kandul. The methods of chromosomal analysis were described 
previously (Lukhtanov and Dantchenko 2002, Lukhtanov et al. 2008, 2014, Vershin-
ina and Lukhtanov 2010, Talavera et al. 2013b, Przybyłowicz et al. 2014). Haploid 
(n) chromosome numbers were analyzed in meiotic I (MI) and meiotic II (MII) cells. 
Diploid (2n) chromosome numbers were analyzed in asynaptic meiotic cells that can 
be observed in so called atypical meiosis (see Lorković 1990 for more details on atypi-
cal meiosis in Lepidoptera).
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Results

The haploid chromosome number n=ca 224–226 was found in MI cells of three stud-
ied individuals (Fig. 1a, b). This count was based on analysis of 12 selected MI plates 
with best quality of chromosome spreading. The meiotic karyotype included one large 
bivalent, one medium bivalent and 222–224 small chromosome bodies. Multiple MII 
cells were also observed. The MII cells demonstrated one large and one medium chro-
mosome and multiple dot-like elements, however the precise count of these elements 
was impossible. The diploid chromosome set was observed in male atypical (asynaptic) 
meiosis (Fig. 1c, d) in three studied individuals (20 cells were analysed). At this stage at 
least 434 chromosome entities could be observed: one pair of large chromosomes, one 
pair of medium chromosomes and at least 430 (most likely more) very small, dot-like 
chromosomes. Combination of chromosome number count at MI and diploid stages 
results in conclusion that all (or nearly all) chromosome elements in MI karyotype 
are represented by bivalents. This assumption results in diploid chromosome number 
estimation of 2n=ca 448–452.

Discussion

Previously, the chromosome number was estimated in P. atlanticus as n=ca217-223 
(de Lesse 1970). This number has later been interpreted as 2n=446 (e.g. see Bureš 
and Zedek 2014). However, interpretation of all chromosome bodies visible at MI 
stage as bivalents should be considered with caution. As it was mentioned by White 
(1973), “there seems to be no means of distinguishing between univalents, bivalents 
and multivalents in lepidopteran spermatogenesis – they all look like small spheres 
or isodiametric bodies in which no structure is observable”. For example, multi-
ple B-chromosomes (which can be often represented by univalents in meiosis) can 
sometimes accumulate through processes of mitotic or meiotic drive (Jones 2008). 
Therefore, I believe that analysis of diploid karyotype is indispensable prerequisite 
for inferring the diploid chromosome number. In my research the combination of 
chromosome number counts at MI and diploid stages results in conclusion that all 
(or nearly all) chromosome elements in MI karyotype are represented by bivalents. 
This assumption leads to conclusion that diploid chromosome number can be esti-
mated in P. atlanticus as 2n=ca 448–452, and the haploid number can be estimated 
as n=ca 224–226.

In eukaryotic organisms the highest number of chromosomes has been so far re-
ported in radiolarian species, e.g. in Aulacantha scolymantha Haeckel, 1862 (Cerco-
zoa, Aulacanthidae) there are more than 2000 chromosomes (Lecher 1978). This high 
number is an output of polyploidization (Lecher 1978, Parfrey et al. 2008), which 
includes 7 or 8 cycles of endomitosis resulting in each chromosome represented by 128 
or 256 copies (Lecher 1978).
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Figure 1. Male karyotype of Polyommatus (Plebicula) atlanticus, sample NK02A032. a MI plate b chro-
mosome count in MI plate: red dots indicate distinct separate entities, blue dots indicate doubtful entities, 
n=224 red dots + 2 blue dots c diploid chromosome set observed in male asynaptic meiosis d chromosome 
number count in diploid chromosome set; at least 434 entities can be distinguished. Bar = 10 μm.

500 chromosomes were reported for asexual lobose amoebae, Amoeba proteus (Pal-
las, 1766) (Amoebozoa, Amoebidae) (Parfrey et al. 2008). This high number is also 
considered to be polyploid although the questions about the precise number of chro-
mosomes and the ploidy level are still unanswered despite the fact that cytology of this 
well-known species has been under study for about 200 years (Podlipaeva et al. 2013).

Very high chromosome numbers are known in some plants, e.g. in ferns of the ge-
nus Ophioglossum Linnaeus, 1753 (Pteridophyta, Ophioglossaceae) n=120–720 (Shi-
nohara et al. 2013). However, this genus is also characterized by a high degree of poly-
ploidization with x=120 as a basic chromosome number and with the highest n=720 in 
hexaploid species Ophioglossum reticulatum Linnaeus, 1753 (Khandelwal 1990, Barker 
2013, Shinohara et al. 2013).
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In vertebrate animals the highest chromosome number (372 elements in mitotic 
cell divisions) is known in sturgeon Acipenser brevirostrum Lesueur, 1818 (Acipenseri-
formes, Acipenseridae) (Kim et al. 2005), however this species is hexaploid one, too 
(Kim et al. 2005). In mammals the highest chromosome number 2n=102 is found in 
vizcacha rat Tympanoctomys barrerae (B. Lawrence, 1941) (Rodentia, Octodontidae) 
(Suárez-Villota et al. 2012).

According to White (1973), the highest haploid chromosome number recorded 
in invertebrate animals (except for P. atlanticus) is n=191 in the butterfly Polyom-
matus nivescens (Keferstein, 1851) (Lepidoptera, Lycaenidae) (de Lesse 1970, White 
1973). The next highest haploid numbers were reported in crayfish, Pacifastacus leni-
usculus trowbridgii (Stimpson, 1857) (Crustacea, Astacidae) (n=188, Niiyama 1962) 
and Astacus leptodactylus (Eschscholtz, 1823) (Crustacea, Astacidae) (n=184, Silver and 
Tsukersis 1964). The last two counts were even erroneously cited as the records for the 
highest chromosome numbers in the animal kingdom (Fetzner and Crandall 2002). 
However, the numbers in crayfish are, first, lower than the numbers discovered in the 
blue butterflies. Second, they were disputed in the more recent publications (e.g. n=93 
was mentioned in P. l. trowbridgii, Murofushi 1999, Imai et al. 2002 and n=90 was 
mentioned in A. leptodactylus, Mlinarec et al. 2011). All these haploid numbers are es-
sentially lower than numbers found in P. atlanticus.

The data obtained indicate that P. atlanticus is a diploid (not polyploid) species 
since it possesses double (not multiple) number of chromosomes that can be indi-
vidually recognized: one pair of large and one pair of medium chromosomes. Thus, P. 
atlanticus is confirmed to have the highest chromosome number among all the non-
polyploid eukaryotic organisms.
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