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Abstract
Chromosome morphometry and nuclear DNA content are useful data for cytotaxonomy and for under-
standing the evolutionary history of different taxa. However, the chromosome number is the only karyo-
type aspect reported for the species of Dorstenia so far. In this study, the nuclear genome size of Dorstenia 
arifolia (Lamarck, 1786), Dorstenia bonijesu (Carauta & C. Valente, 1983) and Dorstenia elata (Hooker, 
1840) was evaluated and their karyotype morphometry accomplished, with the aim of verifying the po-
tential of those parameters to understand evolutionary issues. Mean nuclear 2C value ranged from 2C = 
3.49 picograms (pg) for D. elata to 2C = 5.47 pg for D. arifolia, a variation of ± 1.98 pg. Even though 
showing a marked difference in 2C value, the three species exhibited the same 2n = 32. Corroborating 
the flow cytometry data, differences in chromosome morphology were found among the karyotypes of 
the species investigated. Based on this and the only phylogeny proposed for Dorstenia thus far, structural 
rearrangements are related to the karyotype variations among the three species. Besides, the karyological 
analysis suggests a polyploid origin of the Dorstenia species studied here.
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Introduction

The pantropical genus Dorstenia Linnaeus, 1753 comprises about 105 species distrib-
uted in Asia, Africa and Neotropical regions (Carauta 1978, Berg 2001). Thirty-nine 
species occur in Brazil (Romaniuc-Neto et al. 2015), representing the sections Dor-
stenia Linnaeus, 1753, Emigdioa Carauta, 1976 and Lecanium Fischer & Meyer, 1846. 
Carauta (1978) and Berg (2001) have contributed much of the knowledge about the 
morphology of Neotropical species, while the phylogenetic reconstructions using mo-
lecular data (Misiewicz and Zerega 2012) consolidated the hypothesis about the ge-
nus’ monophyly. Despite the potential information of cytogenetic data for taxonomic 
(Stace 2000) and phylogenetic studies (Melo and Guerra 2003), this marker has been 
little explored in previous works on Dorstenia.

According to the current knowledge, the basic chromosome number in African 
species of Dorstenia is x = 12 and x = 13, while in American species x = 14, 15 and 16 
(Berg 2001) are found. Fagerlind (1944) reported Dorstenia mannii Hooker f., 1871 
as a tetraploid (2n = 48). In addition, intraspecific variation in chromosome number 
have been reported for subspecies of Dorstenia psilurus Welwitsch, 1869 (2n = 26 and 
2n = 40) (Misiewicz and Zerega 2012) and Dorstenia elata Hooker, 1840 2n = 26 or 
32 (Krause 1931, Hoen 1983, unpublished data). These data indicate that the evolu-
tion of the karyotype in Dorstenia involved euploidy and aneuploidy events. However, 
it is still necessary to invest efforts in confirming and understanding the chromosome 
changes reported for some species in previous studies. Considering that chromosome 
alterations are a significant mechanism of diversification and speciation in Angiosperms 
(Stace 2000, Peer et al. 2009, Weiss-Schneeweiss et al. 2013), the investigation of this 
aspect in Dorstenia can bring light to the knowledge of speciation processes in the genus.

Cytogenetic approaches, which regard the chromosome number, morphometric 
measurements and karyotype analysis, contribute to the understanding of evolutionary 
processes in plants (Shan et al. 2003). The knowledge of these aspects in related spe-
cies helps to elucidate issues related to diversification of a taxonomic group (Clarindo 
et al. 2012). Morphometric analysis of the chromosomes is a way to determine the 
karyotype changes that occurred throughout evolution, the processes that led to the 
diversification, and the direction taken by evolution (Gao et al. 2012).

Numeric and structural chromosome rearrangements have been reported as trig-
gers of karyotype changes in several plant taxa. Therefore, nuclear genome size varia-
tion occurs between phylogenetically related species due to these alterations (Bonifácio 
et al. 2012, Raskina et al. 2008). For this reason, nuclear DNA content measurement 
has been increasingly employed in systematic approaches using flow cytometry (FCM). 
In addition to its practicality and reproducibility, FCM is useful to reveal differences 
between taxa (Stace 2000), especially in groups of species that exhibit conserved chro-
mosome number (Mabuchi et al. 2005).

The cytogenetic and FCM approaches in Dorstenia could provide relevant infor-
mation to sections and species taxonomy, as well as contribute to understanding the 
evolutionary history of the genus. The main goal of this study was therefore to meas-
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ure the nuclear 2C value, determine the chromosome number and characterize the 
karyotype of Neotropical species of Dorstenia: D. arifolia Lamarck, 1786, D. bonijesu 
Carauta & C. Valente, 1983 and D. elata Hooker, 1840.

Material and methods

Plant samples – Specimens of D. elata, D. bonijesu and D. arifolia (Fig. 1 a, c, e, respec-
tively) were collected in an Atlantic Rainforest remnant located in the city of Castelo 
– ES, Brazil. Voucher specimens were included in the herbarium VIES: T.T. Carrijo 
1516 (D. arifolia); T.T. Carrijo 1682 (D. bonijesu) and T.T. Carrijo 1618 (D. elata).

FCM – Nuclear suspensions were obtained by chopping (Galbraith et al. 1983) 
of leaf fragments (1 cm2) excised from each Dorstenia species (sample) and Solanum 
lycopersicum Linnaeus, 1753 (internal standard, 2C = 2.00 picograms – Praça-Fontes 
et al. 2011). Samples and standard leaf fragments were simultaneously chopped with 
razor blade in a Petri dish containing 0.5 ml OTTO-I nuclear extraction buffer (Otto 
1990) supplemented with 2 mM dithiothreitol and 50 µg ml-1 RNAse (Praça-Fontes et 
al. 2011). Afterwards, 0.5 ml of the OTTO-I buffer was added, the suspensions were 
filtered through 30-µm nylon mesh, placed into microtube and centrifuged at 100 × g 
for 5 min. The precipitate was resuspended in 100 µl OTTO-I buffer and incubated 
for 10 min (Praça-Fontes et al. 2011). The nuclei suspensions were stained with 1.5 
ml of OTTO-I:OTTO-II (1:2 – Otto 1990, Loureiro et al. 2006) solution supple-
mented with 2 mM dithiothreitol, 50 µg ml-1 propidium iodide and 50 µg ml-1 RNAse 
(Praça-Fontes et al. 2011). The nucleus suspensions were kept in the dark for 30 min, 
then filtered through 20-µm nylon mesh. The samples were analyzed in a flow cytom-
eter Partec PAS II/III (Partec GmbH, Germany). Histograms were analyzed with the 
Partec Flow Max software tools to measure nuclear DNA content. The genome size of 
the Dorstenia species was calculated according to the formula:

wherein:
2CD: value of 2C DNA content (pg) of each Dorstenia species,
C1: average G0/G1 peak channel of the Dorstenia species,
C2: average G0/G1 peak channel of S. lycopersicum,
2CS: value of 2C DNA content of S. lycopersicum (2.00 pg).

Cytogenetics – Stems with length of approximately 15 cm exhibiting one leaf pair 
were excised and disinfected with 1% NaOCl2 solution for 15 min. These propagules 
were maintained in hydroponic system for rooting. The system was oxygenated by a 
compressor coupled to a plastic hose, which was immersed in H2O. The roots were 
treated with 3 µM or 4 µM amiprophos-methyl (APM) for 16 h or 18 h at 4 °C. The 
roots were washed in dH2O for 20 min, fixed in methanol:acetic acid solution (3:1) 
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and stored at -20 °C (Carvalho et al. 2007). After 24 h, the roots were washed in dH2O 
and macerated in pectinase solution 1:40, 1:45, 1:50, 1:55 or 1:60 (enzyme:dH2O) for 
1 h 45 min or 2 h at 34 °C. The material was washed in dH2O, fixed again and kept 
at -20 °C until use. Using the macerated root meristems, slides were prepared by cell 
dissociation and air-drying techniques, then placed onto a hot plate at 50 °C (Carvalho 
et al. 2007). The slides were stained with 5% Giemsa (Merck®) for 8 min, washed twice 
in dH2O, and air-dried. All slides were analyzed under a Nikon Eclipse Ci-S micro-
scope (Nikon). The capture of metaphase images was performed using 100× objective 
and a CCD camera (Nikon EvolutionTM) coupled to a Nikon 80i microscope (Nikon).

Morphometric analysis – The chromosomes of three Dorstenia species were charac-
terized as to the total length, length of the long and short arms, and classes. The chromo-
some class was determined as proposed by Levan et al. (1964) and reviewed by Guerra 
(1986): r = length of the long arm / length of the short arm. The asymmetry of the karyo-
type was evaluated using the method proposed by Zarco (1986), using the formulae:

where A2 = interchromosomal asymmetry index, s = standard deviation, and X̄ = average 
length of the chromosomes.

Results

Flow cytometry measurements

The nuclear suspensions resulted in histograms with G0/G1 peaks showing coefficient 
of variation below 3.45%. Thus, the isolation and staining procedures provided suspen-
sions containing isolated, intact and stoichiometrically stained nuclei. Using the histo-
grams, the mean 2C nuclear DNA content of Dorstenia species was measured for the 
first time. The values were 2C = 3.49 pg ± 0.0035 (1C = 1.71 bp × 109) for D. elata; 2C 
= 4.05 pg ± 0.014 (1C = 1.98 bp × 109) for D. bonijesu; and 2C = 5.47 pg ± 0.002 (1C = 
2.67 bp × 109) for D. arifolia (Fig. 1 b, d, f ). The mean value for D. arifolia was 36.20% 
higher than for D. elata, and 26.00% greater than for D. bonijesu. Besides, D. bonijesu 
showed a DNA content 13.83% higher than that of D. elata. Based on these values, 
an interspecific variation of the nuclear genome size was identified between the species.

Cytogenetics

The rooting of vegetative propagules occurred after 40 days in hydroponic system. The 
disinfection of the propagules contributed for relatively rapid rooting due to absence 
of contamination. Owing to the lack of cytogenetic studies for the genus Dorstenia, we 
tested different treatments with microtubule inhibitor as well as distinct procedures of 
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Figure 1. Representative adult plants of D. elata (a), D. bonijesu (c) and D. arifolia (e) of the Atlantic 
Rainforest remnant located in the Castelo city (ES, Brazil). FCM histograms showing G0/G1 peaks gener-
ated by nuclei suspensions of S. lycopersicum (internal standard, channel 200, 2C = 2.00 pg), and of D. 
elata (b channel 349, 2C = 3.49 pg), D. bonijesu (d channel 405, 2C = 4.05 pg) and D. arifolia (f channel 
547, 2C = 5.47 pg).
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enzymatic maceration. Root meristems treated with 4 µM APM for 16 h at 4 °C and 
macerated in 1:60 pectinase solution for 1 h 45 min at 34 °C resulted in metaphases 
adequate for karyotype characterization of the Dorstenia species (Fig. 2).

The differences chromatin compaction levels verified among the metaphases (Fig. 
2 a, b) of the species allowed morphometric analysis (Table 1) and karyogram assembly 
(Fig. 2). All Dorstenia species showed a conserved number of 32 chromosomes.

Morphometric analysis of the chromosomes

The mean values for the sum of total length as well as short- and long-arm length 
differed among the species (Table 1). D. arifolia showed the highest total, short- and 
long-arm length in relation to other species, corroborating the FCM data. D. bonijesu, 
which exhibited an intermediate mean 2C value, presented the lowest total chromo-
some and short-arm length. In comparison to D. elata, D. bonijesu displayed a greater 
mean value for the long arm (Table 1). The A2 index also varied between the species: 
D. bonijesu exhibited the most asymmetrical karyotype, with A2 = 0.16, followed by D. 
arifolia (A2 = 0.14) and D. elata (A2 = 0.13).

Based on the morphometric data, the chromosome class was determined and the 
differences between the karyotypes for the three species were endorsed. D. elata showed 
twelve metacentric chromosome pairs (1, 2, 4, 5, 7, 8, 9, 10, 13, 14, 15 and 16), two 
submetacentric (3 and 6) and two acrocentric pair (11 and 12) (Fig. 2 a, b). D. bonijesu 
exhibited four metacentric chromosome pairs (1, 2, 3 and 15), ten submetacentric (4, 
5, 6, 8, 9, 10, 11, 12, 13 and 14) and two acrocentric ones (7 and 16) (Fig. 2c). D. 
arifolia presented four metacentric chromosome pairs (1, 2, 5 and 10) and twelve sub-
metacentric ones (3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 16) (Fig. 2d).

Discussion

Despite exhibiting the same number of chromosomes (2n = 32), the species of Dor-
stenia studied here show distinct mean nuclear 2C values. The interspecific DNA 
content variation indicates that the karyotypes differ between the species (Gitaí et al. 
2014). Considering that the Dorstenia species have the same chromosome number, the 
karyotype divergences are probably associated to chromosome structure.

The morphometric analysis revealed karyomorphological differences in the sum of 
the mean values for total chromosome length, and the short arm and long arm (Table 
1). Besides, some chromosomes presented distinct classes among the species, such as 
in chromosomes 7 and 16, which are submetacentric in D. arifolia, acrocentric in D. 
bonijesu and metacentric in D. elata (Fig. 2, Table 1). In view of this, structural chro-
mosomal rearrangements have occurred during the evolutionary history of the group. 
This is supported by the interchromosomal asymmetry index (A2, Zarco 1986), which 
also varied between the three Dorstenia species, despite the predominance of meta-
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Figure 2. Karyograms assembled from mitotic chromosomes of D. elata (a, b), D. bonijesu (c) and D. 
arifolia (d). Note the distinct chromatin compact level (a, b) showed by the mitotic chromosomes of 
D. elata. a, b D. elata showed twelve metacentric chromosome pairs (1, 2, 4, 5, 7, 8, 9, 10, 13, 14, 15 
and 16), two submetacentric (3 and 6) and two acrocentric pair (11 and 12) c D. bonijesu exhibited four 
metacentric chromosome pairs (1, 2, 3 and 15), ten submetacentric (4, 5, 6, 8, 9, 10, 11, 12, 13 and 14) 
and two acrocentric ones (7 and 16) d D. arifolia presented four metacentric chromosome pairs (1, 2, 5 
and 10) and twelve submetacentric ones (3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 16). Bar: 5 μm.
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centric and submetacentric chromosomes. Therefore, the FCM and cytogenetic data 
indicate that structural chromosome changes have occurred throughout the evolution 
of these Dorstenia species.

According to the more recent phylogeny for the genus, D. arifolia occupies a basal 
position in comparison to D. elata (Misiewicz and Zerega 2012). Given that D. arifolia 
has mean nuclear 2C value and total genome length (Fig. 1 and 2, Table 1) greater 
than D. elata, the structural chromosome alterations seem to promote loss of DNA 
sequences. Thus, deletions can be involved in the karyotype changes in Dorstenia.

Based on the morphometric analysis, groups of morphologically identical chromo-
some pairs were found for each Dorstenia species: 3–4, 6–7, 11–12 and 13–14 in D. 
arifolia; 5–6, 11–12 and 13–14 in D. bonijesu; and 7–8 and 14–15 in D. elata (Fig. 2, 
Table 1). Regarding this karyotype aspect, polyploidization events have occurred during 
the evolution of these species. As the three species produces reduced reproductive cells (x 
= 16), the disploidy can also explain the evolutionary scenario of the Dorstenia karyotype. 
The polyploid origin of plant species has been shown by classical cytogenetics, such as for 
the genera Psidium Linnaeus, 1753 (Souza et al. 2015), Claytonia Linnaeus, 1753 (McI-
ntyre 2012) and Cardamine Linnaeus, 1753 (Marhold et al. 2010). From the assembly of 
accurate karyograms using chromosomes with different levels of chromatin compaction, 
the type of polyploidy was also evidenced, with autopolyploidy being found in Glycine 
max (Linnaeus, 1753) Merrill, 1917 (Clarindo et al. 2007) and Zephyranthes Herbert, 
1821 (Felix et al. 2011), and allopolyploidy in Paullinia cupana Kunth, 1821 (Freitas et 
al. 2007) and Triticum aestivum Linnaeus, 1753 (Kamel 2006). Polyploidy has played 
a key role in plant evolution, with estimates maintaining euploidy in the ascendancy of 
all angiosperms (Abbott et al. 2013, Soltis et al. 2014). In addition, 15% of speciation 
events in this taxon are directly involved with polyploidization (Abbott et al. 2013).

Conclusion

The nuclear 2C value and karyogram indicate changes covering chromosome number 
and structure that occurred during the karyotype evolution of D. arifolia, D. bonijesu 
and D. elata. The combination of FCM and classical cytogenetics revealed differences 
among the Dorstenia species that can be exploited in phylogenetic approaches, as the 
results support the current knowledge on the phylogeny of Dorstenia.
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