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Abstract
B chromosomes occur in approximately 15% of eukaryotes and are usually heterochromatic and rich in 
repetitive DNAs. Here we describe characteristics of a B chromosome in the grasshopper Eumastusia koe-
belei koebelei (Rehn, 1909) through classical cytogenetic methods and mapping of some repetitive DNAs, 
including multigene families, telomeric repeats and a DNA fraction enriched with repetitive DNAs ob-
tained from DOP-PCR. Eumastusia k. koebelei presented 2n=23, X0 and, in one individual, two copies 
of the same variant of a B chromosome were noticed, which are associated during meiosis. The C-positive 
blocks were located in the pericentromeric regions of the standard complement and along the entire 
length of the B chromosomes. Some G+C-rich heterochromatic blocks were noticed, including conspicu-
ous blocks in the B chromosomes. The mapping of 18S rDNA and U2 snDNA revealed only autosomal 
clusters, and the telomeric probe hybridized in terminal regions. Finally, the DOP-PCR probe obtained 
from an individual without a B chromosome revealed signals in the heterochromatic regions, including 
the entire length of the B chromosome. The possible intraspecific origin of the B chromosomes, due to 
the shared pool of repetitive DNAs between the A and B chromosomes and the possible consequences of 
their association are discussed.
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Introduction

The grasshoppers of the subfamily Leptysminae (Orthoptera, Acrididae) are divided 
into two tribes, Leptysmini and Tetrataeniini, comprising 75 species distributed ex-
clusively in the Neotropical region (Amedegnato 1974, Carbonell 1977, Roberts and 
Carbonell 1982). The genus Eumastusia (Rehn, 1909) belongs to Tetrataeniini, with 
one species and two subspecies recognized, E. koebelei koebelei (Rehn, 1909) and E. 
k. chapadendis Roberts & Carbonell, 1980. For Leptysminae, few chromosomal data 
are available and, as in other Acrididae grasshoppers, most species exhibit the basic 
karyotype 2n=23, X0♂ with acrotelocentric chromosomes (Mesa et al. 1982, Loreto 
and de Souza 2000, Rocha et al. 2004). However, derived karyotypes arising from 
diploid number reduction were reported in Stenopola pallida (Bruner, 1906), Leptysma 
argentina Bruner, 1906 and Tetrataenia surinama (Linnaeus, 1764) (Mesa et al. 1982, 
Bidau and Hasson 1984). Additionally, B chromosomes have been reported in some 
species (Bidau and Hasson 1984, Confalonieri and Bidau 1986, Rocha et al. 2004), 
but no studies using molecular cytogenetic approaches have been conducted to eluci-
date the origin and evolution of these chromosomes.

B chromosomes are present in approximately 15% of eukaryote species and al-
though discovered in 1907, they remain a mystery regarding their origin and evolution 
in most species (Houben et al. 2014). They are dispensable elements, largely known for 
their selfish nature as genomic parasites with patterns of non-Mendelian inheritance 
and a tendency to accumulate (Camacho 2005, Houben et al. 2014). These elements 
may arise from chromosomes of the carrier species or as a result of interspecific hybrid-
ization (Camacho et al. 2000), and they have their own evolutionary fate in different 
species and types of B chromosome (Banaei-Moghaddam et al. 2015). In some species, 
iso B chromosomes, formed by two identical arms, were described, which usually arise 
from centromere misdivision of telo- or acrocentric B chromosomes (see for example 
Grieco and Bidau 2000, Marques et al. 2012, Valente et al. 2014).

The accumulation of repetitive DNAs as an evolutionary process has been fre-
quently reported for B chromosomes (Camacho 2005, Houben et al. 2014, Banaei-
Moghaddam et al. 2015). These repetitive DNAs have been informative for under-
standing chromosomal and genomic evolution among grasshoppers (Cabrero and 
Camacho 2008, Cabrero et al. 2009, Cabral-de-Mello et al. 2011a, Anjos et al. 2015, 
Camacho et al. 2015, Palacios-Gimenez et al. 2015), as well as the possible evolution-
ary history of B chromosomes (Teruel et al. 2010, Oliveira et al. 2010, Bueno et al. 
2013). To contribute to the understanding of chromosomal diversification, B chromo-
some evolution and patterns of repetitive DNA organization in Leptysminae, a poorly 
studied group, we analyzed the chromosomes of the species Eumastusia koebelei koebe-
lei (Acrididae, Leptysminae). The analyses were performed through conventional and 
differential chromosome staining and through fluorescent in situ hybridization (FISH) 
using distinct probes, such as 18S rDNA, the TTAGG telomeric motif, U2 snDNA 
and a repetitive DNA fraction obtained by degenerate oligonucleotide-primed PCR 
(DOP-PCR).
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Material and methods

Ten adult males of E. k. koebelei were collected in Serrolândia/Pernambuco, Brazil. 
The testes were fixed in Carnoy’s solution (3:1 absolute ethanol:acetic acid) and stored 
at -20°C until use. For chromosomal preparations, the tissues were macerated in a 
drop of 50% acetic acid and the slides were dried using a hot plate at 40–45°C. All 
individuals were studied using conventional staining with 5% Giemsa to describe the 
general karyotype structure. C-banding was performed according to Sumner (1972) 
and fluorochrome staining (CMA3/DA/DAPI) was performed according to Schweizer 
et al. (1983).

The 18S ribosomal DNA (rDNA) sequence and the U2 snDNA were obtained 
through polymerase chain reaction (PCR) from the genomes of Dichotomius semi-
squamosus (Curtis, 1845) (Coleoptera, Scarabaeidae) and Abracris flavolineata (De 
Geer, 1773) (Orthoptera, Acrididae), respectively, using primers described by Cabral-
de-Mello et al. (2010) and Bueno et al. (2013). Telomeric probes were obtained by 
PCR using the complementary primers (TTAGG)5 and (CCTAA)5, following the 
protocol proposed by Ijdo et al. (1991). Genomic amplification preferential for the 
repetitive DNAs was performed through DOP-PCR using as template the DNA from 
an individual without B chromosomes (Telenius et al. 1992). The DOP primer (5’ 
CCG ACT CGA GNN NNN NAT GTG G3’) was used following the specifications 
described by Mazzuchelli and Martins (2009).

The 18S rDNA probe and DOP-PCR product were labeled using biotin-14-dATP 
through nick translation (Invitrogen, San Diego, CA, USA), while the telomeric probe 
and U2 snDNA were labeled through PCR with digoxigenin-11-dUTP (Roche, Man-
nheim, Germany). Fluorescent in situ hybridization (FISH) was performed accord-
ing to the protocol proposed by Pinkel et al. (1986) with modifications described by 
Cabral-de-Mello et al. (2010). Single or double-color FISH was performed with the 
distinct probes and at least 200 ng of each probe was used. Probes labeled with biotin-
14-dATP were detected using streptavidin-Alexa Fluor 488 (Invitrogen), and probes 
labeled with digoxigenin-11-dUTP were detected using anti-digoxigenin-Rhodamine 
(Roche). All preparations were counterstained with 4’,6-diamidino-2-phenylindole 
(DAPI) and mounted in Vectashield (Vector, Burlingame, CA, USA). Chromo-
somes and signals were observed using an Olympus BX61 epifluorescence microscope 
equipped with appropriate filters. Photographs were recorded with a DP70 cooled 
digital camera. The images were merged and optimized for brightness and contrast 
with Adobe Photoshop CS2.

Results and discussion

The karyotype of E. k. koebelei is in accordance with previous descriptions (Mesa and 
Fontanetti 1983), corresponding to the modal karyotype for grasshoppers (Hewitt 
1979, Mesa et al. 1982), which consists of 23 acrotelocentric chromosomes and the 
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X0 sex-determining system in males (Figure 1). This chromosomal pattern is also fre-
quent in Leptysminae, occurring in 20 of 22 species studied (Mesa et al. 1982, Bidau 
and Hasson 1984, Confalonieri and Bidau 1986, Loreto and de Souza 2000, Rocha 
et al. 2004). Among the ten analyzed individuals, one carried two acrocentric B chro-
mosomes, which showed differential or similar condensation between them, depend-
ing on the cell analyzed (Figure 1). For the other Leptysminae, distinct variants of B 
chromosomes were previously observed in Stenopola dorsalis (Thunberg, 1827) (Rocha 

Figure 1. Conventional staining with Giemsa in meiotic cells of E. k. koebelei harboring B chromosomes. 
a zygotene b early pachytene c metaphase I d anaphase I e metaphase II. B chromosomes are associated 
side by side in initial meiosis (a, b) and by centromere in other cells (c–e). These chromosomes are also 
segregated to the same pole in d and maintained together in metaphase II (e). X and B chromosomes are 
indicated. Bar: 5 µm.
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et al. 2004), Cylindrotettix obscurus (Thunberg, 1827) and C. santarosae Roberts, 1975 
(Confalonieri and Bidau 1986). Throughout meiosis, the two B chromosomes were 
associated, including metaphase II (Figure 1). From initial meiosis to pachytene, the B 
chromosomes were associated side by side, apparently linked by the centromere (Figure 
1a, b). After diplotene, these elements remained connected by centromeres (Figure 1c–
e), appearing as a single large biarmed chromosome under conventional analysis. These 
two B chromosomes segregate to the same pole during anaphase I (Figure 1d). This 
association suggests similarity between the two B chromosomes and that they could be 
two copies of the same B variant. Moreover, this association could influence the inher-
itance of these extra chromosomes, increasing the possibility of their segregation to the 
same anaphase pole, causing accumulation of these elements. In other grasshoppers, 
there are examples of acrocentric B chromosomes that are not associated throughout 
meiosis, such as in Rhammatocerus brasiliensis (Bruner, 1904) (Loreto et al. 2008).

C-banding revealed pericentromeric C-positive heterochromatic blocks in the A 
complement (Figure 2a), with the blocks in pairs 1, 2, 4-7, 9-11 and X chromosome 
being G+C-rich, while the rest of the heterochromatin was neutral for CMA3 or DAPI 
fluorochromes. The blocks in pairs 4 and 7 occurred in only one of the homologues. In 
pairs 3 and 5, terminal CMA3

+ blocks were also noticed, being heteromorphic for pair 
3 (Figure 2b). This pattern of C-positive pericentromeric blocks associated with CMA3

+ 
heterochromatic blocks and/or heterochromatin without base specificity (A+T or G+C) 
observed for the A chromosomes of E. k. koebelei is similar to other Leptysminae spe-
cies, such as Cornops aquaticum (Bruner, 1906), Stenopola dorsalis, Stenacris xanthochlora 
(Marschall, 1836), Tucayaca parvula Roberts, 1977 and Belosacris coccineipes (Bruner, 
1906), as well as in other species of Acrididae (Hewitt 1979, King and John 1980, Loreto 
and de Souza 2000, Rocha et al. 2004). In the two B chromosomes, the heterochromatin 
was distributed along their entire length (Figure 2d), and in the pericentromeric region a 
remarkable CMA3+ block was noticed. This CMA3

+ area appeared as a conspicuous block 
in metaphase I while in initial meiosis (pachytene), due to less condensation, dispersed 
dots were always observed side by side (Figure 2e, f) due to the association of the two B 
chromosomes. The shared CMA3

+ block in both B chromosomes reinforces their simi-
larity, and we could speculate that a G+C-rich repetitive DNA, such as satellite DNA, 
could be present in the centromere of these B chromosomes, facilitating their constant 
association. This situation could cause a centromeric division failure that could favor the 
occurrence of whole-arm translocations leading to the formation of an isochromosome, 
proposed as a hypothesis for B isochromosome origin in the grasshopper Metaleptea 
brevicornis adspersa (Johannson, 1763) (Grieco and Bidau 2000).

Another argument favoring the notion of repetitive DNA enrichment in the C-
positive regions was confirmed through the use of the DOP-PCR fraction as a probe, 
which revealed strong signals in these areas (Figure 2c). This is also valid for the B 
chromosomes, which were completely labeled (Figure 2g). The enrichment of distinct 
classes of repetitive DNAs in B chromosomes is a common pattern and these sequences 
could be involved with B chromosome differentiation and evolution (Houben et al. 
2014, Banaei-Moghaddam et al. 2015). Considering that the DOP-PCR probe was 
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Figure 2. C-banding (a, d), CMA3 staining (b, e, f) and FISH using as probes DOP-PCR (c, g), 18S 
rDNA-green and TTAGG-red (h) and U2 snDNA (i) in meiotic cells of E. k. koebelei with B chromo-
somes (d–i) and without them (a–c). a, h late pachytene b early diakinesis c, d, g diplotene e, i meta-
phase I f zygotene. Images d–g partially highlight B chromosomes. X, B and other chromosomes har-
boring specific signals are indicated; arrowheads point to the centromeres of B chromosomes. Inserts in 
g, h highlight B chromosomes. Bar: 5 µm.

obtained from an individual without B chromosomes, the repetitive DNA amplified 
using this approach is from the A genome. The hybridization signals in the B chromo-
somes indicate that this element shares repetitive sequences with the A complement, 
suggesting an intraspecific origin for the B chromosome. An intraspecific origin for B 
chromosomes was also suggested for other grasshoppers using distinct chromosomal 
markers, such as Abracris flavolineata (Menezes-de-Carvalho et al. 2015) and Locusta 
migratoria (Linnaeus, 1758) (Teruel et al. 2010), as well as other animal groups. Our 
result is similar to reports for the beetle Dichotomius geminatus (Arrow, 1913) us-
ing as probe the C0t-1 DNA fraction that also isolates repetitive DNAs, such as the 
DOP-PCR, indicating the sharing of sequences between the B chromosome and the 
A complement (Cabral-de-Mello et al. 2011b). Although we suggest an intraspecific 
origin for the B chromosome in E. k. koebelei, it is impossible to determine if this event 
is related either to autosomes or the X chromosome, because both presented signals 
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for the DOP-PCR probe and CMA3
+ blocks. It is also impossible to define the specific 

type of shared sequence, as the DOP-PCR probe is anonymous.
FISH with the telomeric probe revealed terminal signals in all chromosomes, in-

cluding the B chromosome (Figure 2i). This result was expected considering that the 
karyotype of E. k. koebelei does not experienced gross chromosomal rearrangements 
observed in other Leptysminae, such as Stenopola pallida, Tetrataenia surinama and 
Leptysma argentina, bearing in mind the ancestral karyotype for grasshoppers (Mesa 
et al. 1982, Bidau and Hasson 1984). For the B chromosome, this probe confirmed 
that one individual harbored two B chromosomes (Figure 2i, insert) instead of one 
large biarmed chromosome, as suggested by conventional analysis. The mapping of 
multigene families revealed one pair of clusters on the same bivalent for 18S rDNA, 
proximally in pair 9. For U2 snDNA, four clusters on two bivalents were noticed, with 
interstitial placement in pair 1 and 8 in decreasing order of size (Figure 2h, i). This 
multigene family and the U1 snDNA located in pair 3 (Anjos et al. 2015) were not ob-
served in the B chromosomes (Figure 2 h, i). It is more parsimonious to consider that 
chromosomes 1, 3, 8 and 9 were not involved in the origin of B chromosomes, but it 
could not be completely ruled out. Alternatively, these sequences could be lost during 
B chromosome differentiation, or the origin of the B chromosome did not involve the 
regions containing these sequences.
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