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Abstract
The Schedonorus-Lolium complex of the subtribe Loliinae (Poaceae) includes several economically important 
forage and turf grasses. This complex encompasses Lolium Linnaeus, 1753, Festuca Linnaeus, 1753 subgenus 
Schedonorus (P. Beauvois, 1824) Petermann, 1849 and Micropyropsis Romero Zarco et Cabezudo, 1983. New 
FISH results of 5S and 18S–26S rDNA sequences are presented for three species and the results are inter-
preted in a review of distribution patterns of 5S and 18S–26S rDNA sequences among other species in the 
complex. Micropyropsis tuberosa Romero Zarco et Cabezudo, 1983 (2n = 2x = 14) displayed a distribution 
pattern of rDNA sequences identical to that of F. pratensis Hudson, 1762, supporting a close phylogenetic 
relationship at the bottom of the phylogenetic tree. “Lolium multiflorum” Lamarck, 1779 accessions sourced 
from Morocco showed a different pattern from European L. multiflorum and could be a unique and previ-
ously uncharacterised taxon. North African Festuca simensis Hochstetter ex A. Richard, 1851 had a marker 
pattern consistent with allotetraploidy and uniparental loss of one 18S–26S rDNA locus. This allotetraploid 
has previously been suggested to have originated from a hybrid with Festuca glaucescens (Festuca arundinacea 
var. glaucescens Boissier, 1844). However, the distribution patterns of the two rDNA sequences in this al-
lotetraploid do not align with F. glaucescens, suggesting that its origin from this species is unlikely. Further-
more, comparisons with other higher alloploids in the complex indicate that F. simensis was a potential donor 
of two sub-genomes of allohexaploid Festuca gigantea (Linnaeus) Villars, 1787. In the overall complex, the 
proximal locations of both rDNA markers were conserved among the diploid species. Two types of synteny 
of the two markers could, to a considerable extent, distinguish allo- and autogamous Lolium species. The 
ancestral parentage of the three Festuca allotetraploids has not yet been determined, but all three appear to 
have been sub-genome donors to the higher allopolypoids of sub-genus Schedonorus. Terminal locations of 
both the markers were absent from the diploids but were very frequently observed in the polyploids.
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Introduction

Ryegrasses of the genus Lolium Linnaeus, 1753 with ten diploid species and fes-
cues of the genus Festuca Linnaeus, 1753 subgenus Schedonorus (P. Beauvois, 1824) 
Petermann, 1849 are closely related and, together with Micropyropsis Romero Zarco 
et Cabezudo, 1983, form the “Schedonorus-Lolium complex”, belonging to the family 
Poaceae Barnhart, 1895, subtribe Loliinae Dumortier, 1829 (Inda et al. 2013; Cheng 
et al. 2016). Several of these Lolium and Festuca species, which are native to temper-
ate regions of Europe, Asia and Africa, are widely used for forage and turf purposes 
in all major temperate regions of the planet. Micropyropsis tuberosa Romero Zarco et 
Cabezudo, 1983 (Romero Zarco and Cabezudo 1983) is the sole species of the genus 
and is diploid (Romero Zarco 1988).

Since the last major taxonomic revision of the genus Lolium by Terrell (1968), 
new species have been discovered and named, notably Lolium saxatile H. Scholz et S. 
Scholz, 2005 (Scholz and Scholz 2005) and Lolium edwardii H. Scholz, Stierstorfer et 
van Gaisberg, 2000 (Scholz et al. 2000). Although Festuca has over 500 diploid to do-
decaploid species, subgenus Schedonorus is limited to approximately 20 species, most 
from Europe, W Asia or N Africa. However, the broad-leaved Festuca species from 
highland tropical Africa, including Festuca simensis Hochstetter ex A. Richard, 1851 
have also been shown to be part of the Schedonorus-Lolium complex (Namaganda et al. 
2006; Inda et al. 2014; Minaya et al. 2015).

Several molecular genetic analyses involving DNA markers have been successfully 
carried out for the phylogenetic reconstruction of subtribe Loliinae. It has been shown 
that the Schedonorus-Lolium complex represents a monophyletic group, with Lolium 
clearly differentiated from Festuca (Charmet et al. 1997; Gaut et al. 2000; Catalán et al. 
2004; Namaganda et al. 2006; Hand et al. 2010; Inda et al. 2014; Minaya et al. 2015; 
Cheng et al. 2016). Fertile hybrids formed between Lolium and Festuca species show 
chromosome pairing and recombination but the chromosomes can be distinguished 
using genomic in situ hybridization (Humphreys et al. 1995).

Karyological differences featuring chromosome number, structure and morphol-
ogy have long been used to infer the systematic status and the evolutionary history of 
species divergence. However, in some groups of species conventionally stained chro-
mosome preparations do not clearly delineate structural differences among chromo-
somes or species karyotypes. Molecular cytogenetic mapping of specific DNA sequenc-
es through fluorescence in situ hybridization (FISH) can overcome such problems, 
and provide enhanced pictures of chromosome architecture, leading to clear karyotype 
and genome discrimination (Albert et al. 2010; Chester et al. 2010; Xiong and Pires 
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2011). Two different families of multicopy and highly conserved ribosomal RNA genes 
(rDNA), one coding for 5S and the other for 35S rRNA arrays are universally pre-
sent in plants. Tandemly repeated blocks of these genes are located independently at 
particular chromosomal sites and provide species-specific markers (Roa and Guerra 
2015). Each 35S rDNA unit carries 18S, 5.8S and 26S RNA genes along with two 
internal transcribed spacers (ITSs) and tandemly repeated blocks of these units form 
the nucleolar organizer regions (NORs) or secondary constrictions on chromosomes. 
FISH mapping of 5S and 35S rDNA sequences is widely used to compare the chro-
mosomal structural changes of related species and to infer the karyoevolutionary vari-
ations that accompany species diversification (Fukushima et al. 2011; Lan and Albert 
2011; Roa and Guerra 2012, 2015; Jang et al. 2013).

Species of the Schedonorus-Lolium complex all share x = 7 as the base chromosome 
number and all have very similar biarmed chromosome morphologies and symmetri-
cal karyotypes. Therefore, conventional karyological information is of little value for 
evaluating evolutionary changes (Malik and Thomas 1966; Namaganda et al. 2006; 
Kopecký et al. 2010). Molecular cytogenetic mapping of 5S and 35S rDNA has detect-
ed variations in the distributional patterns of the two rDNA markers among diploids 
and polyploids in this complex (Thomas et al. 1996, 1997; Ksia̧zczyk et al. 2010; Inda 
and Wolny 2013; Ansari et al. 2016; Ezquerro-López et al. 2017; Shafiee et al. 2020). 
Based on their report, Ezquerro-López et al. (2017) made a preliminary attempt to de-
cipher the evolutionary relationships among Festuca species belonging to this complex.

In this study, we have mapped the chromosomal dispositions of 5S and 18S rDNA 
loci in five taxa, three of which were previously unmapped, and have discussed the evo-
lutionary implications of the new results. Following this we have drawn together all the 
available information from disparate sources and have framed a more complete picture 
of rDNA chromosome patterns within the whole of this economically important com-
plex. This is the first time such information has been integrated across numerous studies.

Methods

Plant materials and chromosome preparations

Seeds from five populations (Table 1) belonging to the Schedonorus-Lolium com-
plex were accessed from the Margot Forde Forage Germplasm Centre at AgResearch 
Grasslands, Palmerston North and PGG Wrightson Seeds, Christchurch, New Zea-
land. Lolium multiflorum Lamarck, 1779 of Moroccan origin was designated MRCN 
to distinguish it from L. multiflorum material of European origin. Seeds were germi-
nated and grown in a glasshouse. Somatic chromosome preparations were obtained 
from the meristematic tissue of actively growing root tips according to the flame-dry-
ing technique described earlier (Ansari et al. 1999, 2016). Good quality cytological 
preparations were selected after screening using phase contrast optics.
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Fluorescence in situ hybridization (FISH)

The DNA probes used for FISH were pTr18S (GenBank accession number AF071069), 
a 1.8 kb fragment from Trifolium repens Linnaeus, 1753 containing almost the en-
tire 18S rDNA sequence representing the 35S rDNA and pTr5S (GenBank acces-
sion number AF072692), a 596 bp DNA fragment encoding the T. repens 5S rRNA. 
35S and 5S rDNA probes were directly labelled with fluorochromes Fluor-X-dCTP 
and Cy-3-dCTP (GE Healthcare, NZ), respectively by nick translation according to 
manufacturer’s specifications. Double target FISH using the above DNA probes, post-
hybridisation washing and counterstaining of somatic chromosomes with DAPI were 
carried out as described earlier (Ansari et al. 1999). Chromosome preparations were 
mounted in Vectashield (Vector Laboratories). Fluorescence images were acquired us-
ing a Zeiss monochrome MRm CCD camera on a Nikon epifluorescence microscope 
Microphot-SA and were processed with an ISIS FISH Imaging System (MetaSystems, 
Germany). At least five good quality early to late metaphase cells from each plant were 
used for analysing hybridization signals.

Results

Results of double colour FISH mapping using 35S and 5S rDNA sequences as probes 
on pro-metaphase or metaphase chromosomes of Lolium perenne Linnaeus, 1753 (2n 
= 2x = 14) are given in Fig. 1. Six 35S rDNA signals representing three loci were lo-
cated proximally on three pairs of chromosomes (Fig. 1a, b). One locus was on the 
short arm of one chromosome pair, and the other two displayed hybridization on the 
long arms of two pairs of chromosomes. One of the chromosome pairs with 35S on 
the long arm displayed co-localization of the single 5S rDNA locus proximally on the 
short arm. The chromatin housing 35S rDNA regions, representing GC-rich nucleolus 
organizer regions (NORs) or secondary constrictions, were frequently decondensed 
and sometimes stretched in our flame-dried somatic chromosome preparations. These 
loci are positioned pericentromerically, and the cloudy decondensed and stretched 35S 
rDNA FISH signals could be observed joining the two condensed parts of NOR-
bearing chromosomes (Fig. 1a, b). L. multiflorum (2n = 2x = 14) of north European/
Mediterranean origin produced rDNA FISH signals identical to the pattern observed 
for L. perenne (Fig. 1c, d).

Table 1. List of Schedonorus-Lolium complex taxa used in this study.

Taxon Identity and source of seed
Festuca simensis Hochstetter ex A. Richard, 1851 BL 2043, Margot Forde Forage Germplasm Centre
Lolium perenne Linnaeus, 1753 Cv Impact, Margot Forde Forage Germplasm Centre
Lolium multiflorum Lamarck, 1779 B 3380, Margot Forde Forage Germplasm Centre
Lolium multiflorum MRCN Cv. Barberia, PGG Wrightson Seeds
Micropyropsis tuberosa	 Romero Zarco et Cabezudo, 1983 BZ 8319, Margot Forde Forage Germplasm Centre

http://www.ncbi.nlm.nih.gov/nuccore/AF071069
http://www.ncbi.nlm.nih.gov/nuccore/AF072692
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Figure 1. DAPI stained (grey scale) metaphase cells in the left column and the same cells in the 
right column displaying FISH mapping of 5S (red signals) and 35S rDNA sequences (green signals) 
in a, b L. perenne c, d L. multiflorum, European origin e, f L. multiflorum MRCN Moroccan origin 
g, h M. tuberosa i, j F. simensis. Dotted lines in a, c, e, g, and i denote decondensed 35S rDNA chromatin.
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In contrast to L. perenne and L. multiflorum of north European origin, L. multiflo-
rum (2n = 2x = 14) of Moroccan origin displayed only two pairs of NORs (Fig. 1e, f ), 
each pair located proximally on the long arm. One of these NOR-bearing chromo-
some pairs co-localised 5S sequences proximally on the short arm.

Micropyropsis tuberosa, 2n = 2x = 14, with a symmetrical karyotype, displayed one 
5S and one 35S rDNA locus, each on separate chromosome pairs, and located proxi-
mally on the short arms (Fig. 1g, h). Co-localization of the two rDNA sequences on 
the same chromosome was not observed in M. tuberosa.

Festuca simensis, 2n = 4x = 28, displayed all biarmed chromosomes and a sym-
metrical karyotype. The eight FISH signals were distributed on separate chromosomes 
(Fig.  1i, j). One of the three pairs of 5S rDNA signals hybridized interstitially on 
the short arms. Each of the remaining two pairs of 5S signals were located distally in 
terminal regions, one in the short arm and the other in the long arm of two pairs of 
chromosomes. The only pair of 35S signals was located proximally on the short arms 
of a chromosome pair. Again, F. simensis did not show co-localization of the two rDNA 
sequences.

Discussion

We have mapped the diversity in the chromosomal locations of the two rDNA se-
quences for five taxa of the Schedonorus-Lolium complex. Three of these, M. tuberosa, 
L. multiflorum MRCN and F. simensis, were previously unmapped. The results for 
L. perenne and N European L. multiflorum agree with previous studies (Thomas et al. 
1996; Ansari et al. 2016). The new results are discussed first and then rDNA chromo-
somal patterns across the complex are reviewed.

Micropyropsis tuberosa exhibited single 5S and 35S rDNA loci positioned proxi-
mally on separate chromosomes as was also the case for F. pratensis (Thomas et al. 
1997). In phylogenetic reconstructions within the Schedonorus-Lolium complex based 
on ITS and plastid DNA sequences, the divergence of M. tuberosa preceded the basal 
split between the diploid lineages of Festuca and Lolium (Torrecilla and Catalán 2002; 
Catalán et al. 2004; Inda et al. 2008, 2014; Šmarda et al. 2008). The similar arrange-
ment of single 5S and 35S rDNA loci in M. tuberosa and F. pratensis is consistent with 
the interpretation that this was the ancestral diploid Schedonorus arrangement before 
the Lolium split.

The “L. multiflorum” of Moroccan origin is typical of the main Lolium lineage in 
having more than one 35S rDNA locus. One of these 35S loci has a syntenic 5S locus on 
the opposite chromosome arm, in common with L. perenne and L. multiflorum of Eura-
sian origin. However, compared with Eurasian L. multiflorum the Moroccan taxon has 
one fewer 35S locus. The Moroccan “L. multiflorum” could be a new and unique N Afri-
can taxon that has chromosomal affinities with the allogamous Eurasian Lolium species.

A previous cytological analysis of the tropical African broad-leaved fescue, F. simen-
sis, showed it to be tetraploid (2n = 4x = 28) and AFLP fingerprinting revealed a close 
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phylogenetic relationship with European broad-leaved fescues, especially with hexa-
ploid F. gigantea, (Namaganda et al. 2006). Nuclear and plastid DNA sequence studies 
also placed F. simensis in the Schedonorus-Lolium complex, close to Lolium (Inda et al. 
2014). In this first molecular cytogenetics analysis of F. simensis, we have confirmed the 
tetraploidy, revealed a symmetrical biarmed karyotype and a distributional pattern of 
the two rDNA sequences consistent with allopolyploidy (Figs 1 and 2). In addition to 
two terminal 5S loci, on separate chromosomes, an interstitial 5S locus was observed on 
the short arm of a separate chromosome, a new location for this group of fescues. None 
of these 5S positions was consistent with the suggested close relationship with Lolium. 
On the other hand, the 35S rDNA locus was positioned proximally and could represent 
a link with a common ancestor to Lolium. Only one 35S locus was encountered in this 
allotetraploid, indicating uniparental loss during diploidisation. There are numerous 
examples of uniparental loss of 35S loci occurring in other allopolyploids (Ansari et al. 
1999; Kotseruba et al. 2003, 2010; Williams et al. 2012; Kolano et al. 2016).

Based on a low-copy nuclear gene analysis, Minaya et al. (2015) suggested a Medi-
terranean origin of Afromontane F. simensis through hybridization between a diploid 
F. glaucescens and a Lolium-like diploid species. However, none of the distribution pat-
terns of the two rDNA sequences in this allotetraploid align with F. glaucescens (Festuca 
arundinacea var. glaucescens Boissier, 1844). Instead, the distribution patterns are con-
sistent with the possible involvement of F. simensis in the formation of 6x F. gigantea 
(Linnaeus) Villars, 1787. Festuca pratensis Hudson, 1762 is a putative diploid sub-
genome donor of allohexaploid F. gigantea (Hand et al. 2010), but the sources of the 
other subgenomes remain unknown. We have noted a close similarity between the 5S 
and 35S patterns of allotetraploid F. simensis (present results) and F. gigantea (Thomas 
et al. 1997, Fig. 2). These species also show a close phylogenetic proximity based on 
DNA sequences (Namaganda et al. 2006; Inda et al. 2014). Hence, we infer that al-
lotetraploid F. simensis could be a potential donor of the remaining two sub-genomes 
of allohexaploid F. gigantea (Fig. 2).

rDNA locus patterns across the diploid Schedonorus-Lolium taxa

All Lolium species, along with M. tuberosa and F. pratensis are natural diploids. The 
Lolium species, are evolutionarily more recent than the Festuca species based on DNA 
sequence phylogenies (Gaut et al. 2000; Catalan et al. 2004; Inda et al. 2014). All Loli-
um taxa studied so far, comprising eight of the ten extant species, displayed exclusively 
proximal chromosomal locations of both 5S and 35S rDNA sequences (Fig. 2). After 
the divergence from Festuca, the Lolium lineage invariably conserved the proximal lo-
cations of both the rDNA loci, but changes in the numbers and syntenic status of these 
loci apparently occurred later. The proximal localization of 5S rDNA in these diploids 
matches well with the general distribution pattern of this locus among angiosperms 
but contrasts with most Poaceae (Roa and Guerra 2015). The proximal mapping of 
35S loci contrasts with more terminal localizations in the majority of angiosperms, 
including Poaceae (Roa and Guerra 2012; Garcia et al. 2017).
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Figure 2. Schematic representation of the putative evolutionary lineages for chromosomes carrying 5S and 
35S rDNA loci in the Schedonorus-Lolium complex. The numbers of marker and non-marker chromosomes 
are given inside the boxes. Red and black double circles represent 5S and 35S rDNA loci, respectively. *spe-
cies in solid boxes were investigated during the present study; †synonym for L. rigidum var rottbollioides; 
††synonym for F. arundinacea subsp. fenas (Lagasca y Segura) Bornmüller, 1928 (Ezquerro-López et al. 2017).
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A single 5S rDNA locus (two FISH signals per cell) consistently occurred in all 
Lolium species. The number of 35S loci displayed has previously been noted as a 
distinguishing feature between F. pratensis (one locus) and Lolium species (more than 
one locus) (Thomas et al. 1996; Inda and Wolny 2013). All the Lolium taxa displayed 
increases in the number of 35S loci ranging from 2 to 5 (Fig. 2). Accordingly, there 
are two loci in L. multiflorum (Moroccan origin), L. persicum Boissier et Hohenack-
er, 1854, L. temulentum Linnaeus, 1753, L. remotum Schrank, 1789, L. rigidum var. 
rottbollioides Heldreich ex Boissier, 1884 and L. canariense Steudel, 1855, three in L. 
perenne and L. multiflorum (European origin) to four or five in L. rigidum var. rigidum 
Gaudin, 1811. These results were consistent with those of angiosperms in general, 
where numbers of 5S sites vary considerably less than 35S sites (Lan and Albert 2011; 
Garcia et al. 2017).

The two types of rDNA loci can be located on the same chromosome (syntenic) 
or on separate chromosomes (non-syntenic) (Morales et al. 2012; Barros e Silva et 
al. 2013; Olanj et al. 2015). The Macaronesian Lolium species, L. canariense, has no 
synteny of 5S and 35S loci (Inda and Wolny 2013). However, the remaining Lolium 
taxa (including both geographical races of L. multiflorum) have synteny (Fig. 2). The 
syntenic patterns can be differentiated into two groups. In one (allogamous) group, 
the two types of rDNA sequences were located proximally on either side of the cen-
tromere of the same chromosome, as represented by L. perenne and both geographical 
forms of L. multiflorum. In the other (largely autogamous) group, represented by L. 
persicum, L. temulentum, L. remotum, and subspecies and races of L. rigidum, both 
types of rDNA sequences were adjacent on the same chromosome arm, with 35S 
always distal to 5S. L. canariense shows the diploid Micropyropsis-F. pratensis arrange-
ment with proximally located 5S and 35S rDNA loci on separate chromosomes as 
well as an additional pair of 35S loci (a Lolium characteristic, Fig. 2). On this basis, 
Inda and Wolny (2013) have suggested that L. canariense could be the link between 
the Festuca and Lolium lineages.

rDNA locus patterns among the polyploid Festuca species

The data presented in Fig. 2, based on the present investigation as well as earlier reports 
and analyses of DNA sequences (Thomas et al. 1997; Hand et al. 2010; Inda et al. 
2014; Minaya et al. 2015; Ezquerro-López et al. 2017), summarise the patterns among 
polyploid species in subgenus Schedonorus. All the species are allopolyploid (Cao et al. 
2000; Hand et al. 2010; Inda et al. 2014; Minaya et al. 2015; Ezquerro-López et al. 
2017) and show no changes in the basic chromosome number (x = 7) and no apparent 
changes in the ancestral karyotype.

The numbers of 5S loci range from two in the tetraploids, F. mairei St. Yves, 1922 
and F. glaucescens to eight in decaploid F. letourneuxiana (Festuca arundinacea var. le-
tourneuxiana (St. Yves) Torrecilla et Catalán, 2002) while 35S numbers ranged from 
one in tetraploid F. simensis to six in F. letourneuxiana (Fig. 2). Localisation of two 35S 
loci on the same chromosome, as in the tetraploids F. mairei and F. glaucescens (Thomas 
et al. 1997) is not frequently encountered in plants.
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Seven of the eight Festuca polyploids had the 5S rDNA loci in the proximal re-
gion, either exclusively or in addition to other regions (Fig. 2). Terminal 5S loci were 
encountered in only three polyploid species and an interstitial 5S locus was found 
only in F. simensis (present study). In contrast, terminal 35S loci were more frequent. 
Five species mapped at least one 35S locus in the terminal region while four displayed 
exclusively terminal 35S loci (Fig. 2). Among these were tetraploids either with termi-
nal 35S loci on each arm of one chromosome (F. glaucescens) or two 35S loci adjacent 
to each other on the same arm (F. mairei) (Fig. 2; Thomas et al. 1997). Three poly-
ploids displayed exclusively proximal 35S hybridization signals including tetraploid F. 
simensis with only one 35S locus. The higher frequency of terminal 35S loci among 
the Festuca polyploids aligns well with the majority of angiosperms (Roa and Guerra 
2012; Garcia et al. 2017). None of the Festuca species in the Schedonorus-Lolium com-
plex studied so far have a syntenic arrangement of 5S and 35S rDNA loci, except for 
hexaploid F. corsica Salm-Reifferscheid-Dyck, 1840 which displayed synteny only in 
heteromorphic form (Ezquerro-López et al. 2017).

Two allotetraploids, F. mairei and F. glaucescens have been suggested as the ances-
tral parents of allo-octoploid F. atlantigena (Festuca arundinacea subsp. atlantigena (St. 
Yves) Auquier, 1976) based on the formation of fertile interspecific hybrids between 
the two suggested ancestral parental species (Chandrasekharan and Thomas 1971) and 
FISH mapping of the two marker loci (Ezquerro-López et al. 2017). Six proximal 5S 
loci in the octoploid would reflect locus additivity from the ancestral parents while 
the elimination of one 35S locus may reflect genomic diploidisation. The ancestral 
parents of decaploid F. letourneuxiana could not be narrowed down by FISH mapping 
(Ezquerro-López et al. 2017). The allohexaploid species continental F. arundinacea 
Schreber, 1771 and F. corsica are hypothesised to share the same ancestral parents, viz., 
diploid F. pratensis and allotetraploid F. glaucescens (Humphreys et al. 1995; Thomas 
et al. 1997; Ezquerro-López et al. 2017; Fig. 2). Two distribution patterns of 5S and 
35S rDNA sequences were observed in these allohexaploids, with differential losses 
of 35S loci and transpositions of both 5S and 35S loci. The display of two different 
trajectories of speciation in allopolyploids sharing the same lower-ploid ancestors has 
been proposed in other angiosperms (Bao et al. 2010; Weiss-Schneeweiss et al. 2012).

All four Festuca higher polyploids with putative parents reveal additivity of numbers 
of 5S loci, but, in three cases, losses of 35S loci, (Fig. 2). Diploidisation of polyploids 
may lead to the evolutionary loss of repetitive sequences and duplicate copies of genes 
(Renny-Byfield et al. 2013). Older polyploids often, but not always, show losses of cop-
ies of 35S rDNA genes and, in allotetraploids, uniparental losses of 35S loci are com-
mon (Leitch et al. 2008; Pellicer et al. 2010; Roa and Guerra 2012; Weiss-Schneeweiss 
et al. 2013; Garcia et al. 2017). Although there were positional shifts involving both 5S 
and 35S types, the results were consistent with the general observation for angiosperms 
that 5S loci are less variable than 35S loci (Lan and Albert 2011; Garcia et al. 2017).

The three allotetraploids (F. simensis, F. mairei and F. glaucescens), as the putative 
sub-genome donors to the allohexaploid and octoploid species, provide a novel exam-
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ple of sequential allopolyploidisation. The putative progenitors of all three allotetra-
ploids remain unknown. However, nuclear and chloroplast DNA sequence analyses 
(Hand et al. 2010), supported by FISH mapping (Thomas et al. 1997) indicate that 
a diploid sub-genome is shared between F. mairei and F. glaucescens. The tetraploid 
species that became the sub-genome donors for higher ploidy fescues had terminal 
5S and 35S loci that were largely conserved in the derivative species (Fig. 2). Among 
the Schedonorus-Lolium complex diploids studied so far, none have shown terminal 
localization of either marker, and neither were their DNA sequences consistent with 
them having been progenitors of these tetraploids (Hand et al. 2010). Harper et al. 
(2004) speculated on the basis of molecular cytogenetic findings, that diploid F. scari-
osa Lagasca y Segura ex Willkomm, 1861, belonging to the sub-genus Scariosae outside 
the Schedonorus-Lolium complex, was a potential ancestral parent for allotetraploid 
F. mairei. The likelihood of involvement of diploid sub-genome donor species from 
outside the Schedonorus-Lolium complex should be further explored using molecular 
and cytogenetic methods, including genomic in situ hybridization.

The variations in numbers of 35S sites in Lolium and the post-polyploidisation 
changes in the Festuca species have apparently occurred without any obvious chang-
es in the symmetrical bi-armed karyotype that is a consistent feature of the Schedo-
norus-Lolium complex. Such lability in the absence of obvious structural changes 
might be attributable to paracentric chromosome rearrangements and/or the activ-
ity of transposable elements (Datson and Murray 2006; Raskina et al. 2008; Lan 
and Albert 2011; Barros e Silva et al. 2013; Weiss-Schneeweiss et al. 2013; Kolano 
et al. 2015).

Conclusion

This report has extended the distributional data on the rDNA sequences to seven of the 
ten known Lolium species and has added F. simensis to the list of seven polyploid fescue 
species already characterised. It has also explored the distribution patterns of rDNA 
loci within the Schedonorus-Lolium complex and considers some possible evolutionary 
trends. While these patterns can be used to deduce relationships among the higher 
polyploid Festuca species, the diploid progenitors of the allotetraploid species remain 
unidentified and enigmatic.
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