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Abstract
Lignobrycon myersi is an endemic fish species from a few coastal rivers in northeastern Brazil. Based on 
molecular evidence, L. myersi and genera Triportheus Cope, 1872, Agoniates Müller & Troschel, 1845, 
Clupeacharax Pearson, 1924 and Engraulisoma Castro, 1981 were placed in the family Triportheidae. In 
the present work, we report the first cytogenetic data for L. myersi to test the hypothesis that Lignobrycon 
and Triportheus are closely related. Studied specimens presented 2n=52 with 28 metacentric (m), 18 sub-
metacentric (sm) and six subtelocentric (st) chromosomes for males and 27 m, 19 sm and 6 st for females, 
characterizing a ZZ/ZW sex chromosome system. The Z chromosome corresponds to the largest chromo-
some in karyotype while the W is about 50% smaller than the Z and largely heterochromatic. Terminal 
nucleolus organizer regions, GC-rich sites and 18S rDNA signals were detected on pair 14. However, ad-
ditional 18S rDNA sites were observed in the W chromosome. The 5S rDNA was mainly detected on long 
arms of pair 7. The apparent synapomorphic chromosomal traits of Triportheus and L. myersi reinforce 
their close phylogenetic relationship, suggesting that the ZZ/ZW chromosome system in both genera has 
arisen before cladogenic events.
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Introduction

Lignobrycon myersi Miranda-Ribeiro, 1956 is a small characin fish (about 11 cm in 
length) characterized by a compressed body with keeled coracoids, adapted to swim 
near the surface. The type-locality of L. myersi is located in the Almada river basin, 
a costal drainage in Bahia (Castro and Vari 1990). Nearly 10 years later, this species 
was also collected in the nearby Contas river basin in Bahia (Castro and Jucá-Chagas 
2008). Because of its narrow geographic range, associated with intensive environmental 
degradation (deforestation, pollution and impoundment), L. myersi is currently listed 
in the IUCN Red List of Threatened Species of Brazil (Castro and Jucá-Chagas 2008).

Based on external morphology and osteological evidence, L. myersi has been re-
garded as the only living sister-group of the elongate hatchetfish Triportheus Cope, 
1872, composing the subfamily Triportheinae within Characidae (Malabarba 1998). 
Nonetheless, phylogenetic studies using DNA sequences of two mitochondrial and 
three nuclear genes revealed that this monophyletic group should be expanded and 
elevated to a family status (Triportheidae), including the following genera of tetras or 
freshwater sardines: Agoniates Müller & Troschel, 1845, Clupeacharax Pearson, 1924, 
Engraulisoma Castro, 1981, Triportheus and Lignobrycon (Oliveira et al. 2011).

Interestingly, Triportheus is one of the few fish groups in which sex chromosomes 
have probably appeared prior to the adaptive radiation of this genus (Artoni and Ber-
tollo 2002). Thus, all species of Triportheus studied so far share a 2n = 52 and a ZZ/
ZW sex chromosome system in which the W is remarkably smaller than Z chromo-
somes and usually carries 18S rDNA cistrons (Artoni and Bertollo 2002, Diniz et al. 
2008a, 2009, Marquioni et al. 2013). Only Triportheus venezuelensis Malabarba, 2004 
is differentiated by presenting nucleolus organizer regions (NORs) on Z chromosomes 
(Nirchio et al. 2007) (Table 1). This trend combined to the close relationship between 
Lignobrycon and Triportheus revealed by morphological and molecular analyses is ap-
pealing to cytogenetic studies in L. myersi.

Therefore, the present work reports the first cytogenetic characterization in L. my-
ersi in order to understand the evolution of sex chromosomes within Triportheidae, 
particularly in relation to Triportheus species.

Material and methods

Fourteen specimens of L. myersi (4 males and 10 females) were collected in their type-
locality in Braço (14°40'52"S/39°14'39"W) and Almada (14°39'35"S/39°13'24"W) 
Rivers, both belonging to the Almada River basin in the state of Bahia, northeastern 
Brazil (Fig. 1). Voucher specimens of L. myersi were deposited under the code MBML 
6400 in the fish collection of the Biology Museum Prof. Mello Leitão.

Metaphase chromosomes were obtained from anterior kidney cells as described by 
Netto et al. (2007), without mitotic stimulation. Chromosome spreads were stained 
with 5% Giemsa in phosphate buffer for karyotyping. Heterochromatin segments 
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were visualized by C-banding (Sumner 1972) and active nucleolar organizer regions 
(Ag-NORs) were detected by silver nitrate staining (Howell and Black 1980). The 
GC- and AT-rich sites were identified by chromomycin A3 (CMA3) and 4,6-diamidi-
no-2-phenylindole (DAPI), respectively (Schmid 1980).

The fluorescence in situ hybridization (FISH) was performed to map simulta-
neously 18S and 5S rDNA on chromosomes of L. myersi according to Pinkel et al. 
(1986), with slight modifications and high stringency hybridization conditions (77%). 
The 18S rDNA probe was obtained from DNA of the red-eyed tetra Moenkhausia 
sanctafilomenae Steindachner, 1907 as described by Hatanaka and Galetti (2004), 

Table 1. Cytogenetic data in Triportheidae (species marked with “*” show synteny of 18S and 5S rNA).

Species 2n Sex system 18S rDNA 5S rDNA Reference
Lignobrycon myersi 52 ZZ/ZW 1 pair/W 2-4 pairs present study
Triportheus albus 52 ZZ/ZW 1 pair/W 1 pair Diniz et al. (2009); Marquioni et al. (2013)
T. angulatus* 52 ZZ/ZW 2 pairs/Z/W 1 pair Marquioni et al. (2013)
T. auritus* 52 ZZ/ZW 2 pairs/W 5 pairs Marquioni et al. (2013)
T. culter 52 ZZ/ZW 1 pair/W - Falcão (1988)

T. guentheri 52 ZZ/ZW 1 pair/W 1 pair Diniz et al. (2009); Bertollo and Cavallaro 
(1992)

T. nematurus* 52 ZZ/ZW 1 pair/W 1 pair Diniz et al. (2008a); Marquioni et al. (2013)
T. signatus* 52 ZZ/ZW 1 pair/W 1 pair Diniz et al. (2009); Marquioni et al. (2013)
T. trifurcatus* 52 ZZ/ZW 2 pairs/W 1 pair Marquioni et al. (2013)
T. venezuelensis 52 ZZ/ZW 1 pair/Z - Nirchio et al. (2007)

Figure 1. Map of Brazil (a), highlighting the state of Bahia (b) and collection site of Lignobrycon myersi 
in the Almada river basin (c).
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labeled with biotin-16-dUTP via nick translation using the BioNick Labeling Sys-
tem kit (Invitrogen) and signals were detected using avidin-fluorescein isothiocyanate 
(FITC) conjugate (Sigma). The 5S rDNA probe was obtained from DNA of the head-
stander Leporinus elongatus Valenciennes, 1850 (Martins and Galetti 1999), labeled 
with digoxigenin-11-dUTP via nick translation using Dig-Nick Translation Mix kit 
(Roche), and detected with anti-digoxigenin-rhodamine antibodies (Roche). Chromo-
somes were counterstained using DAPI (0.2 mg/mL) in Vectashield Mounting Me-
dium (Vector) and slides were stored in a dark chamber up to analysis.

Metaphases were photographed using an Olympus BX-51 epifluorescence micro-
scope equipped with digital camera and the software Image-Pro Plus® v. 6.2. The chromo-
somes were classified according to their morphology as proposed by Levan et al. (1964). 
The chromosomal pairs were arranged in karyotypes by decreasing size of chromosomes, 
as usually presented in cytogenetic reports of Triportheus (e.g. Diniz et al. 2008a).

Results

Both males and females of L. myersi shared a modal diploid number of 2n = 52. The 
chromosomal pairs of males were homomorphic (Fig. 2a), being composed of 28 
metacentric (pairs 1, 2, 10, 12, 15, 18–26), 18 submetacentric (pairs 3, 4, 6–9, 11, 
14, 16) and six subtelocentric (pairs 5, 13, 17) chromosomes. In turn, females were 
differentiated by the presence of a single metacentric chromosome equivalent to pair 
1, besides a small submetacentric chromosome, absent in males (Fig. 2c). Therefore, L. 
myersi is characterized by the occurrence of differentiated sex chromosomes of ZZ/ZW 
type, being the Z chromosomes equivalent to the first and largest chromosomal pair.

The heterochromatin segments were distributed in small amounts over pericentro-
meric and terminal regions of some chromosomal pairs (Fig. 2b). The small submeta-
centric W chromosome was mostly heterochromatic with euchromatin restricted to 
terminal region of short arms (Fig. 2d).

The silver staining revealed a single NOR-bearing submetacentric pair (14th) with 
heteromorphic marks at terminal regions on long arms in both sexes (Fig. 2e, i). Simi-
larly, GC-rich sites (CMA3

+ and DAPI-) were coincident with Ag-NORs (Fig. 2f, j) 
and also characterized by size heteromorphism since fluorescent signals were occasion-
ally absent in one of the homologues (Fig. 2j).

The FISH with 18S rDNA probe confirmed the presence of NORs on pair 14 
as well as the size differences between clusters in homologous chromosomes (Fig. 2g, 
k), as verified by silver nitrate and CMA3 staining before. In addition, 18S rDNA se-
quences were also detected at interstitial region of the W chromosome (Fig. 2k).

The 5S rDNA cistrons were located at a terminal position on the long arms of a subtelo-
centric chromosomal pair (7th) in both sexes (Fig. 2h, l). Male specimens were further char-
acterized by an additional 5S rDNA signal on short arms of subtelocentric chromosomes 
from pair 15 (Fig. 2h). However, it is not possible to state if these additional sequences are 
male-specific because of the reduced sampling (four specimens) in FISH experiments.
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Discussion

In spite of advances in cytogenetic studies of tropical ichthyofauna over the last dec-
ades, chromosomal reports about native fish populations from hydrographic basins in 
northeastern South America are recent and scarce (Bitencourt et al. 2012, Almeida et 
al. 2013, Nascimento et al. 2014, Medrado et al. 2015).

The karyotypic macrostructure of L. myersi is similar to that reported in Triportheus 
in as much as both genera share 2n = 52 biarmed chromosomes and a differentiated 
ZZ/ZW sex chromosome system (Table 1). Even though ZZ/ZW sex chromosomes 
are relatively frequent in neotropical fishes, they have evolved independently in most 
lineages (Cioffi et al. 2012). Triportheus was regarded as the only exception in which the 
presence of heteromorphic sex chromosomes could be considered an apomorphic trait 
based on some peculiar features (Artoni et al. 2001, Artoni and Bertollo 2002, Diniz 
et al. 2009 among others), which are now also identified in L. myersi for the first time.

Namely, the Z chromosome of L. myersi corresponds to the largest metacentric 
chromosome of the karyotype, a feature also observed in Triportheus (Artoni et al. 
2001, Artoni and Bertollo 2002, Nirchio et al. 2007, Diniz et al. 2008a). Even though 
the W chromosome in Triportheus species is invariably smaller than the Z chromo-
some, a comparative analysis of the relative length of the W chromosome in relation to 
the Z chromosome (WRL) revealed three trends in this genus, as follows: (1) species 

Figure 2. Karyotypes of male (a, b) and female (c, d) Lignobrycon myersi after Giemsa staining (a, c) 
and C-banding (b, d), bearing ZZ (1st pair) and ZW sex chromosomes, respectively. On the right, the 
Ag-NOR bearing chromosomes (e, i), GC-rich region (CMA3

+/DAPI-) (f, j), 18S rDNA (g, k) and 5S 
rDNA (h, l) in males (e–h) and females (i–l).
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with WRL higher than 60%, (2) species with WRL ranging from 40 to 60%, and (3) 
species with WRL below 40% (Diniz et al. 2008a). Using the same parameters, the W 
chromosome of L. myersi is about 50% smaller than Z, being classified as a medium-
sized W chromosome as reported in T. nematurus Kner, 1858, T. prope. signatus, and 
T. guentheri Garman, 1890 (Falcão 1988, Sánchez and Jorge 1999, Artoni et al. 2001, 
Diniz et al. 2008a).

It should be pointed out that T. guentheri occurs in the São Francisco river basin 
(Reis et al. 2003). This basin shares a common evolutionary history with coastal rivers 
in Bahia, being isolated from each other by Espinhaço Range (Chaves et al. 2015). 
Therefore, the presence of a medium-sized W chromosome (see Diniz et al. 2008a, 
2008b) might be a basal feature in Triportheidae. The similarity in sex chromosome 
structure and adjacent geographic range suggest a close phylogenetic relationship be-
tween L. myersi and T. guentheri, which remains to be investigated.

Another trait that reinforces the conserved structure of sex chromosomes in Tri-
portheus is the presence of 18S rDNA on the W chromosomes of all species (Artoni 
and Bertollo 2002) but T. venezuelensis (Table 1). Moreover, the 18S rDNA on the Z 
chromosome of T. venezuelensis was not stained by silver nitrate suggesting that it is an 
inactive rDNA cistron (Nirchio et al. 2007).

In turn, L. myersi was characterized by a single pair of Ag-NORs located at termi-
nal regions of pair 14. Single NORs are widespread in several fish taxa (Gornung et 
al. 2013), but rarely found in Characidae (e.g. Medrado et al. 2015), thereby provid-
ing additional support to the removal of L. myersi and Triportheus from this family 
(Oliveira et al. 2011). The location of NORs in autosomes allowed differentiating L. 
myersi and Triportheus species, since they are differentially located on long and short 
arms, respectively. However, this distinctive position of 18S rDNA cistrons might 
either be a result of actual chromosomal rearrangements (transpositions or inversions) 
or a technical artifact related to differences in condensation of chromosomes or biased 
measurements by each author.

On the other hand, the FISH with 18S rDNA probes showed that, similarly to oth-
er Triportheus species, L. myersi also bears NORs on the W chromosome, even though 
they were inactive in studied samples (i.e. undetected by silver nitrate staining) (Fig. 
2k). This result strengthens that the origin of differentiated sex chromosomes has taken 
place before the diversification in Triportheidae, instead of being restricted to the origin 
of Triportheus (Diniz et al. 2009). Putatively, during the evolutionary history of L. my-
ersi, the 18S rDNA sequences may have partially degenerated and thus inactivated (see 
Wilson and Makova 2009) while remaining functional in Triportheus, thus detectable 
by silver nitrate staining. To confirm this suggestion, a larger number of individuals 
should be cytogenetically analyzed for Ag-NORs at different periods, since this appar-
ent inactivation can either be a transitory cell state or a polymorphic condition.

Large amounts of heterochromatin are a common feature of W and Y chromo-
somes in animals (Wilson and Makova 2009, Livernois et al. 2012), being clearly 
observed in L. myersi and several species of Triportheus (e.g., Artoni and Bertollo 2002, 
Diniz et al. 2008a, 2008b, Cioffi et al. 2012). Thus, the heterochromatinization of 
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W chromosomes seems to be associated with degeneration followed by chromosomal 
reduction during evolution of sex chromosomes (Bertollo and Cavallaro 1992, Diniz 
et al. 2008b). Indeed, Z and W chromosomes of species in early stages of sex chromo-
some differentiation, such as ratite birds (ostrich, emu and allies), are similar in both 
size and content of heterochromatin/euchromatin (Livernois et al. 2012) even though 
the relationship between age and sex chromosome degeneration is currently under 
debate (Bachtrog et al. 2014).

In spite of sharing a similar C-banding pattern, the base composition of repeti-
tive DNA within heterochromatin segments of W chromosomes in Triportheus and 
L. myersi seems more variable. While the GC-rich heterochromatic regions (CMA3

+) 
in L. myersi were interspersed to Ag-NORs only, as reported in some species of Tri-
portheus (Artoni & Bertollo, 2002), conspicuous CMA3

+ signals were reported in both 
autosomal NORs and W chromosomes of other species like T. nematurus (Diniz et al. 
2008a). In fact, the GC-rich blocks in L. myersi were so reduced that no fluorescent 
signal was detected in homologues of some metaphase spreads (Fig. 2j).

The most divergent chromosomal trait observed in L. myersi and other triportheids 
refers to the distribution of 5S rDNA sites, thereby demonstrating the evolutionary 
dynamics of this class of ribosomal genes and their potential to cytotaxonomy (Affonso 
and Galetti 2005, Molina et al. 2012). Most Triportheus species analyzed so far share 
syntenic 18S and 5S rDNA cistrons (Table 1), regarded as an ancestral trait for this 
genus (Diniz et al. 2008a; Marquioni et al. 2013). The non-synteny of both rDNA 
classes in L. myersi (Fig. 2g-h, k-l) supports this inference, suggesting that transposition 
of 18S rDNA cistrons to adjacent position of 5S rDNA cistrons or vice-versa has taken 
place after the differentiation of Lignobrycon and Triportheus. Moreover, Triportheus 
species usually present 5S rDNA on short arms of a single sm pair (Marquioni et al. 
2013), while L. myersi was characterized by conspicuous signals on long arms of pair 7 
in both sexes and on short arms of a second pair in male samples.

Therefore, the location of 5S rDNA sites in L. myersi should represent an autopo-
morphic trait, even though the numerical polymorphism in 5S rDNA signals should 
be further investigated. On the other hand, the lack of synteny between 18S and 5S 
rRNA genes has been also reported in T. guentheri from São Francisco river basin, 
reinforcing the putative evolutionary relationship between this species and L. myersi, 
as abovementioned.

In conclusion, the cytogenetic results agree with morphological (Malabarba 1998) 
and molecular evidence (Oliveira et al. 2011) by revealing a series of synapomorphies 
between Lignobrycon myersi and Triportheus that reinforce their close evolutionary 
relationship. Moreover, present results suggest that ZZ/ZW sex chromosomes have 
evolved in the basal Triportheidae lineage, including other taxa than Triportheus. In 
this sense, further cytogenetic studies in other genera allocated in Triportheidae (Ago-
niates, Clupeacharax and Engraulisoma) by Oliveira et al. (2011) are strongly encour-
aged. Similarly, chromosomal analyses in other populations of L. myersi (e.g. Contas 
River) can be useful to evaluate interpopulation differences or the existence of cryptic 
forms that should be prioritized for conservation.
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