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Abstract
Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 
from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4) and Homo 
sapiens Linnaeus, 1758 (57). The karyotype of all the specimens of C. lectularius analysed contained 26 
autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed 
extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distin-
guished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. 
The females usually exhibited the number of chromosomes which was complementary to the number 
established in the males from the same sample. However, 11 polymorphic samples were revealed in which 
the karyotypes of females and males were not complementary each other. The complement with 2n = 
26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes 
with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found 
within the samples exhibiting particularly extensive variation between individuals, and such complements 
were not found within samples contaning a few or single specimen. The occurrence of chromosomal 
mosaics with the karyotype constitution varying between cells of single individual was observed in five 
specimens (4.3%) from five samples. We assume that polymorphism caused by fragmentation of the 
X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes 
and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. 
This effect should be apparently enhanced with the increasing number of the fragments and this may be 
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the reason for the observed distribution pattern of individual karyotypes in the studied samples and the 
rarity of individuals with extremely high chromosome numbers. The assumed lowering of the fitness of 
individuals carrying higher numbers of the X chromosome fragments could affect population dynamics 
of variable populations.
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introduction

The genus Cimex Linnaeus, 1758 is the best known taxon of the family Cimicidae 
(Heteroptera) which contains up to 110 described species of haematophagous ec-
toparasites exploiting mostly bats and birds as hosts (Usinger 1966, Péricart 1996, 
Henry 2009). The human bed bug Cimex lectularius Linnaeus, 1758, one of the two 
most important Cimex species parasiting on humans, is a temporal haematophagous 
ectoparasite usually found in human dwellings and bat roosts as well as on domestic 
and synanthropic vertebrates (Usinger 1966, Schuh and Slater 1995, Reinhardt and 
Siva-Jothy 2007). The bed bug was practically eradicated by a mass use of DDT in the 
1940s and 1950s but it has re-started new expansion in all developed countries of the 
Temperate Zone during the last ten years (Hwang et al. 2005, Romero et al. 2007). 
Due to its reemerging history as a human pest the species has been intensively studied 
(e.g. Reinhardt and Siva-Jothy 2007, Szalanski et al. 2008, Balvín et al. 2012).

Karyotypic variation within the family Cimicidae and the genus Cimex is believed 
to be frequently related to the sex chromosomes. The XY sex determination system was 
proposed as ancestral in 53 species of cimicids that have been studied cytogenetically 
so far, and the diploid number in male complements varies from 2n=10 to 47, with 
the modal number of 31 (Ueshima 1979, Kuznetsova et al. 2011). Systems including 
multiple sex chromosomes were revealed in various species. The X1X2Y constitution 
prevails but several species showed karyotypes with three, four or even more X chro-
mosomes (Ryckman and Ueshima 1964, Ueshima 1966, 1979, Manna 1984, Grozeva 
and Nokkala 2002, Poggio et al. 2009, Simov et al. 2006, Kuznetsova et al. 2011). 
Intraspecific variation in the number of sex chromosomes was also reported in two 
species of the genus Paracimex Kiritshenko, 1913 parasiting in birds (Ueshima 1968).

The bed bug, C. lectularius, shows combination of unusual cytogenetic charac-
teristics, partly common for all Heteroptera. The chromosomes are holokinetic, with 
completely achiasmatic male meiosis of collochore type and inverted meiosis of the sex 
chromosomes. A particularly remarkable feature is numerical variation in the num-
ber of the sex chromosomes. The standard karyotype of the bed bug contains 26 au-
tosomes and a varying number of supernumerary chromosomes which is supposed 
to originate after fragmentation of the X chromosome (e.g. Ueshima 1966, Grozeva 
et al. 2010). Variation in the chromosome number in the bed bug karyotype was 
first reported by Darlington (1939) and Slack (1939) from Great Britain. Darlington 
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(1939) distinguished in natural populations 13 karyotypes containing two up to 14 X 
chromosomes. Most of the specimens examined possessed complements with higher 
chromosomal number. Slack (1939) revealed the presence of 13 karyotypes with the 
number of the X chromosomes varying between three and 15. Ueshima (1966, 1967) 
studied nine samples of bed bugs collected in various continents and he was able to 
recognize five karyotypes with the number of the X chromosomes varying from two 
to nine. Grozeva et al. (2010, 2011) examined small samples of bed bugs originating 
from Russia (St Petersburg) and Bulgaria (Sofia) and recorded the standard karyotype 
only (2n=26+X1X2Y).

The related species C. pipistrelli Jenyns, 1839 is known as an obligate parasite of 
bats which may share its hosts with C. lectularius. The karyotype of C. pipistrelli is 
similar to the standard complement of C. lectularius but contains a higher number of 
autosomes (2n=28+X1X2Y; Ueshima 1966). No variation in the chromosome number 
has been recorded in this species.

The recent expansion is a reason why cytogenetic analysis of this species starts to 
be more important in respect of recent findings indicating that karyotypic divergences 
could have evolved faster than DNA sequences (e.g. Britton-Davidian et al. 2007, 
Horn et al. 2012). This is another piece of evidence that initial evolution at the genom-
ic, karyotypic and organismal level can proceed rather independently, as is apparently 
the case of the bed bug. The intraspecific karyotypic variation may be associated with 
segregation irregularities resulting in possible lowering of the fitness. Research of this 
variation can thus provide more understanding of reproductive biology and popula-
tion dynamics of the bed bug.

This study reports cytogenetic findings in C. lectularius and C. pipistrelli based 
on large samples of studied individuals from the Czech Republic and other Euro-
pean countries. We aim to investigate karyotypic variation reported previously in the 
bedbug and to obtain data revealing possible temporal and geographic pattern of this 
variation. Another goal of this study is to contribute to better understanding of the 
mechanisms underlying this variability.

Material and methods

The studied specimens of C. lectularius and C. pipistrelli were collected from bat roosts 
and human dwellings in 2010–2012 (Fig. 1) . The karyotype was determined in 116 
specimens of C. lectularius from 61 localities within 10 European countries and in 
five specimens of C. pipistrelli from two localities in Slovakia. The live individuals of 
synantropic bed bugs from humans were mostly collected by pest exterminators in 
flats, hotels and hostels. The studied samples originated from individual collecting 
sites which were localized with varying levels of precision, particularly in the synath-
ropic habitats (flat, house, town, city) depending on information available from the 
collectors. Individual sites within a single city are differentiated by numerals (e.g., 
Prague 1, Prague 2). Bugs identified as C. lectularius were also collected at four sites 
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Figure 1. Geographical distribution of the sites studied. A Samples of Cimex lectularius and C. pipistrelli 
from Europe B Samples of Cimex lectularius from Czech Republic. ● C. lectularius, human habitats, 
▲ C. lectularius, bat roosts, □ C. pipistrelli. Numbers refer to karyotypes 1–12 described in Results.
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of bat roosts in the Czech Republic and Slovakia. The complete list of the collecting 
sites is shown in Table 1.

The chromosome preparations were made from gonads or midgut using the spread-
ing technique described by Traut (1976) modified after Šťáhlavský and Král (2004). 
Briefly, the tissues were dissected and hypotonised in 0.075 M KCl solution for 25 
minutes and then fixed in glacial acetic acid:methanol (1:3) for 15–25 minutes. The 
fixed material was suspended in a drop of 60% acetic acid on a microscope slide and 
the slide was placed on a warm histological plate (temperature 40–45°C). The drop was 
than moved on the slide until it evaporated. The chromosome preparations were stained 
in a 5% Giemsa solution in Sörensen phosphate buffer (pH = 6.8) for 30 minutes. The 
chromosome slides were examined with the use of the Olympus Provis AX 70 micro-
scope and selected cells and stages of division were documented by the digital imag-
ing system Olympus DP 72 and software QuickPHOTO CAMERA 2.3. The diploid 
chromosome complements of males were described by the formula 2n=26+X1-nY where 
n stands for the additional X chromosomes. The corresponding karyotypes of females 
were characterized by the formula 2n=26+2X1-n.

After withdrawing of tissues for cytogenetic methods, the material was preserved 
in 96% ethanol and used in parallel molecular studies. Their results have approved the 
original specimens determination according to morphological characters (Balvín et al. 
2012, 2013). The material is deposited in collections of the Department of Zoology, 
Charles University in Prague.

Results

The karyotype of all the specimens of C. lectularius analysed contained 26 autosomes 
and a varying number of the sex chromosomes. The relative length of chromosomes in 
the complement was successively diminishing from 5.3 to 1.7%. No distinct size groups 
of chromosomes could be differentiated; however, the largest and the smallest autoso-
mal pair could be usually recognized according to their size. The original sex chromo-
somes X1X2Y were medium-sized whereas their supposed fragments occurring in the 
karyotypes with higher chromosome numbers were the smallest elements of the set.

In the samples of C. lectularius studied, 12 distinct karyotypes were differentiated 
(Table 2). These karyotypes were distinguished according to the varying diploid chro-
mosome number (2n=29–37, 40, 42, 47 in the male complement) and the varying 
number of the X chromosomes (2–20).

The identical karyotype was found in all the specimens studied in 46 monomor-
phic samples, whereas karyotype differences were recorded between individuals in 15 
polymorphic samples. We should note, however, that about half of the studied samples 
(26) consisted of a single specimen only. The results recorded in individual collecting 
sites are summarized in Table 1.

The most common karyotype 1 was characterized by the standard complements 
with two X chromosomes; 2n=29 in males (2n=26+X1X2Y) and 2n=30 in females 
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table 1. The list of the collecting sites and a summary of primary results. A = Austria, CH = Switzerland, 
CZ = Czech Republic, F = France, GB = Great Britain, I = Italy, N = Norway, PL = Poland, S = Sweden, 
SK = Slovakia. Specimens: left column males, right column females. Designation of the type of karyotype 
in the last column is the same as in the text and Table 2.

Sample Code Country Locality Specimens Karyotype
Cimex pipistrelli   ♂ ♀
190 SK Hontianske Nemce 1 2 see text
191 SK Ľubovec 2 see text

Cimex lectularius
Host: Myotis myotis (Borkhausen, 1797), Myotis emarginatus (E. Geoffroy, 1806)

417 CZ Bílá Lhota 1 1
418 CZ Moravičany 1 1
421 SK Krásnohorské Podhradie 2 1
423 SK Hosťovce 2 1 1

Cimex lectularius
Host: Homo sapiens      

609 CZ Bruntál 1 1
610 CZ Plzeň (1) 2 1 1
612 CZ Chomutov – Dřínovská 1 1 1
613 CZ Liberec (1) – Krejčího 2 1 3, 6
614 CZ Liberec (2)- Krejčího 3 7, 11, 12
615 CZ Jirkov - Na Borku 1 1 1
617 CZ Štědrákova Lhota 1 1 1,2
618 CZ Stráž pod Ralskem 1 1
619 CZ Bohumín – Studentská 3 2,3
621 CZ Plzeň (2) – Na Vinicích 2 1
623 CZ Šumperk 1 1 1
624 CZ Plzeň (3) – Na Slovanech 1 1 1
625 CZ Plzeň (4) – Na Slovanech 2 1 1
629 CZ České Budějovice (1) – Puklicova 1 3
632 CZ Janov 1 2 2, 4, 5, 6
633 CZ Jaroměřice nad Rokytnou 1 2
634 CZ Plzeň (5) 1 2
640 CZ Plzeň (6) – Na Slovanech 2 1
642 CZ Praha (1) 2 2
643 CZ Praha (2) 1 3
644 CZ České Budějovice (2) 2 1
645 CZ České Budějovice (3) - Okružní 1 3
647 CZ Praha (3) 1 2
648 CZ Praha (4) 3 2
657 CZ Plzeň (7) 2 1, 4
658 CZ Humpolec 2 1 3
659 CZ Praha (5) – Křížíkova 1 2
661 CZ Česká Lípa – Svárovská 3 1 1, 5, 6
662 CZ České Budějovice (4) – Netolická 1 1 2, 4-6
665 CZ Chvalšiny 2 4
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(2n=26+X1X1X2X2) (Fig. 2a, b). This complement was found in 51 specimens (33 males 
and 18 females) and in 31 monomorphic and four polymorphic samples. Seven mono-
morphous samples of this karyotype included females only. The monomorphic sam-
ples from synanthropic habitats were collected in the Czech Republic, Great Britain, 
Italy, Norway, Poland, Slovakia and Switzerland. This karyotype was further recorded 
in some individuals from the polymorphic samples collected in the Czech Republic and 
Italy and in the all samples of C. lectularius collected in bat roosts (Fig. 1).

Karyotype 2 included complements with three X chromosomes; 2n=30 in males 
(2n=26+X1-3Y) and 2n=32 in females (2n=26+2X1-3) (Fig. 2c, d). This chromosome con-
stitution was recognized in 24 specimens (15 males and 9 females) from 15 samples. 
The karyotype was recorded in both the monomorphic and polymorphic samples. The 
monomorphic samples from synanthropic habitats in the Czech Republic and Poland 
included males only, the sample from Italy included males and females, and other sam-
ples from the Czech Republic and France included females only. This karyotype was 
further found in polymorphic samples from the Czech Republic, Italy and Poland.

Sample Code Country Locality Specimens Karyotype
667 CZ Týn nad Vltavou – Hlinecká 1 1
668 CZ České Budějovice (5) – J. Bendy 1 1
669 CZ Strakonice – Bezděkovská 1 1
670 CZ České Budějovice (6) – M. Chlajna 2 1
671 CZ Žďár nad Sázavou 1 1
707 SK Banská Bystrica 2 1
708 SK Trnava 5 1 3, 6, 7, 8, 9, 10
719 GB Brighton 1 1
720 A Melk 1 2 6, 9
732 CH Luzern 1 1
737 CH - 1 1
745 CH Fribourg – Rue de l´Hôpital 1 1 1
750 I Mestre 1 2 2
751 I Venezia (1) 1 1
752 I Venezia (2) 2 1 1, 2
753 I Venezia (3) 1 1, 4
789 N Ottestad 1 1
795 S Borlänge (1) 2 5
796 S Borlänge (2) 1 1 5, 9
798 S Stockholm – Vårber 1 2 3, 4
817 F Aire/Adour 2 2
831 PL Świnoujscie 1 1
838 PL Gdansk (1) 1 2
840 PL Gdansk (2) 2 1 2, 3
843 PL Wroclav – Grabiszynska 1 1
844 PL Białystok (1) 1 1
845 PL Białystok (2) 1   1
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table 2. The distribution of samples studied in individual karyotypes characterized in the text. A = Austria, 
CH = Switzerland, CZ = Czech Republic, F = France, GB = Great Britain, I = Italy, N = Norway, PL = Po-
land, S = Sweden, SK = Slovakia. Single female possessing the odd number of chromosomes is not included.

Karyotype 2n Sex 
chromosomes

No. of 
samples %

No. of 
specimens % Country

1 29 2XY 35 57.4 51 44.0 CZ, GB, CH, I, N, PL, SK
2 30 3XY 15 24.6 24 20.7 CZ, F, I, PL
3 31 4XY 9 14.8 13 11.2 CZ, S, SK
4 32 5XY 4 6.6 5 4.3 CZ, S
5 33 6XY 3 4.9 5 4.3 CZ, S
6 34 7XY 3 4.9 3 2.5 A, CZ, SK
7 35 8XY 2 3.3 2 1.7 CZ, SK
8 36 9XY 1 1.6 1 0.9 SK
9 37 10XY 3 4.9 3 2.5 A, S, SK
10 40 13XY 1 1.6 1 0.9 SK
11 42 15XY 1 1.6 1 0.9 CZ
12 47 20XY 1 1.6 1 0.9 CZ

mosaic - - 5 8.2 5 4.3 A, CZ, I, SK

Karyotype 3 included complements with four X chromosomes; 2n=31 in males 
(2n=26+X1-4Y) and 2n=34 in females (2n=26+2X1-4) (Fig. 2e, f). This complement 
was found in 13 specimens (8 males and 5 females) from nine samples. The karyo-
type was recorded in monomorphic samples from the synathropic habitats collec-
ted in the Czech Republic and in polymorphic samples from the Czech Republic, 
Slovakia and Sweden.

Karyotype 4 included complements with five X chromosomes; 2n=32 in males 
(2n=26+X1-5Y) and 2n=36 in females (2n=26+2X1-5) (Fig. 2g, h). It was found in five 
specimens (2 males and 3 females) from four samples. This complement was recorded 
in a monomorphic sample from the Czech Republic and in polymorphic samples from 
the Czech Republic and Sweden.

Karyotype 5 included complements with six X chromosomes; 2n=33 in males 
(2n=26+X1-6Y) and 2n=38 in females (2n=26+2X1-6) (Fig. 2i, j) and it was found in five 
specimens (4 males and 1 female) from three samples. This complement was identi-
fied in a single monomorphic sample including two males collected in Sweden and in 
polymorphic samples from the Czech Republic and Sweden.

Karyotype 6 included complements with seven X chromosomes; 2n=34 in males 
(2n=26+X1-7Y) and 2n=40 in females (2n=26+2X1-7) (Fig. 2k, l) and it was found in 
three specimens (1 male and 2 females) from three polymorphic samples collected in 
Austria and the Czech Republic.

Karyotype 7 included a complement with eight X chromosomes and 2n=35 in 
males (2n=26+X1-8Y) (Fig. 2m) and it was found in two male specimens collected in 
polymorphic samples from two sites in the Czech Republic and Slovakia, respectively.
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Karyotype 8 included a complement with nine X chromosomes and 2n=36 in males 
(2n=26+X1-9Y) (Fig. 2n) and it was recorded in a single male collected in the Slovakia.

Karyotype 9 included a complement with ten X chromosomes and 2n=37 in males 
(2n=26+X1-10Y) (Fig. 2o) and it was recorded in three males collected in the Austria, 
Slovakia and Sweden.

Karyotype 10 included a complement with 13 X chromosomes and 2n=40 in 
males (2n=26+X1-13Y) (Fig. 2p). This karyotype was identified in a single male col-
lected in Slovakia.

Figure 2. Examples of chromosomes of C. lectularius from various stages of cell division stained with 
Giemsa. A Metaphase II ♂, 2n=29 B Mitotic metaphase ♀, 2n=30 C Metaphase II ♂, 2n=30 D Mitotic 
prometaphase ♀, 2n=32 E Metaphase II ♂, 2n=31 F Mitotic metaphase ♀, 2n=34 G Mitotic metaphase 
♂, 2n=32 H Mitotic metaphase ♀, 2n=36 i Mitotic prometaphase ♂, 2n=33 J Mitotic metaphase ♀, 
2n=38 K Metaphase II ♂, 2n=34 L Mitotic metaphase ♀, 2n=40 M Metaphase I ♂, 2n=35 N Mitotic 
metaphase ♂, 2n=36 O Mitotic prometaphase ♂, 2n=37 P Mitotic metaphase ♂, 2n=40. Arrows indicate 
sex chromosomes. Bar = 5 μm.
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Karyotype 11 included a complement with 15 X chromosomes and 2n=42 in 
males (2n=26+X1-15Y) (Fig. 3a). This karyotype was identified in a single male collected 
in the Czech Republic.

Karyotype 12 included complements with 20 X chromosomes and 2n=47 in males 
(2n=26+X1-20Y) (Fig. 3b). This complement was identified in a single male from the 
Czech Republic.

The females exhibited the number of chromosomes which was usually comple-
mentary to the number established in the males from the same sample. However, 11 
polymorphic samples were revealed in which the karyotypes of females and males 
were not complementary one another. Two females showing karyotypes with odd 
numbers of X chromosomes (7 and 17; 2n=33 and 43, respectively) were recorded 
(Fig. 3c, d).

The occurrence of chromosomal mosaics with the karyotype constitution vary-
ing between cells of single individual was observed in five specimens (2 males and 3 
females) from five samples. A female from Slovakia (Trnava) had two karyotypically 
different cell types. The complement with 14 X chromosome fragments (2n=40) was 
found in mesenteron cells, whereas 17 X chromosome fragments (2n=43) were ob-
served in germinal cells from ovarium. In other individuals showing mosaic, variation 
was recorded between germinal cells derived from gonads only. In a single female 
from Austria (Melk), the karyotypes with 12 and 14 X chromosome fragments were 
recorded (2n=38 and 40, respectively). A male from Janov in the Czech Republic 
showed cells with six or seven X fragments (2n=33 and 34, respectively). A similar mo-
saic constitution was recorded in a female from České Budějovice (4) (2n=36 and 40, 

Figure 3. Examples of chromosomes of C. lectularius (A–D) and C. pipistrelli (E-G) from various stages 
of cell division stained with Giemsa. A Mitotic metaphase ♂, 2n=42 B Metaphase II ♂, 2n=47 C Mitotic 
metaphase ♀, 2n=33 D Mitotic metaphase ♀, 2n=43 E Mitotic metaphase ♂, 2n=31 F Mitotic meta-
phase ♀, 2n=32 G Mitotic metaphase ♀, 2n=36. For more details see text. Bar = 5 μm.
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respectively). Mosaicism with two and five X chromosome fragments was also revealed 
in a male from Italy (Venezia 3) (2n=29 and 32, respectively).

The karyotypes with higher chromosome numbers as well as individuals with chro-
mosomal mosaic were usually found within the samples exhibiting particularly exten-
sive variation between individuals. A sample from Liberec contained two males with 
karyotypes 2n=26+X1-4Y and a single female with 2n=26+2X1-14. The other sample 
from Liberec, collected in another flat in the same house, included three males with 
distinctly different karyotypes (2=26+X1-8Y, 2n=26+X1-15Y, 2n=26+X1-20Y). The Trna-
va sample contained five males with different karyotypes (2n=26+X1-4Y, 2n=26+X1-8Y, 
2n=26+X1-9Y, 2n=26+X1-10Y, 2n=26+X1-13Y) and a female showing a mosaic karyotype 
with different chromosomal numbers observed in both examined tissues. The Melk 
sample included a male with 2n=26+X1-10Y, and two females, one with 2n=26+2X1-7 
and another with a mosaic karyotype constitution 2n=26+2X1-12/14.

The karyotype of C. pipistrelli included 28 autosomes and the sex chromosome triva-
lent X1X2Y (males 2n=28+X1-2Y=31, females 2n=28+2X1-2=32; Fig. 3e, f). This comple-
ment was found in four specimens examined. The complement of a female from Slovakia 
(Hontianske Nemce) contained eight X chromosomes (2n=28+2X1-4=36; Fig. 3g).

Discussion

Our data confirm considerable variation in the karyotype of the bed bug and further 
extend its range (Table 3). The distribution of the karyotypes in various Czech and 
European localities appeared random, and did not show any consistent geographic pat-
tern. Therefore, no reliable information concerning the historical or current dispersal 
of bed bugs can be derived.

We have obtained certain findings that are at variance with the previously pub-
lished results. The distribution pattern of incidence of the X chromosome frag-
ments reported by Darlington (1939) is different from that revealed in our study. 
Darlington (1939) recorded mostly individuals with higher chromosome numbers 
and the numbers of the X chromosomes higher then six prevailed in his samples 
(23 specimens out of the 25 examined ones). In our study, individuals with lower 
numbers clearly prevailed. In the samples examined, 89 out of the 116 specimens 
studied had less then five X chromosomes in their complements and the karyotype 
containing only two X chromosomes was recorded in approximately a half of the 
specimens studied. This pattern is fairly congruent with data obtained by Slack 
(1939), Ueshima (1966, 1967) and Grozeva et al. (2010, 2011). We have not re-
corded some of the karyotypes reported by Darlington (1939) and Slack (1939) in 
the studied European samples. This absence is apparently related to random sam-
pling. On the other hand, our study has revealed the highest known chromosome 
number in the male bedbug karyotype with 47 chromosomes (2n=26+X1-20Y). This 
represents the highest X chromosome number recorded within Cimicidae, Heter-
optera and probably also Insecta.
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The results obtained in C. pipistrelli confirm the previously published data 
(Ueshima 1966) in respect of the standard karyotype but the finding in a single fe-
male indicate that variation in the number of the X chromosomes may rarely occur 
also in this species.

There are various possible explanations of the origin of extensive variation in the 
chromosome number in the karyotypes of bed bugs. The elements responsible for 
numerical variation in bed bugs could belong to a specific chromosomal type known 
in other heteropterans. In 14 families of this order, a special pair of chromosomes oc-
curs called the m-chromosomes (e.g. Ueshima 1979). The size of these chromosomes 
is distinctly smaller than that of other chromosomes, and their meiotic behaviour is 
unusual. The origin and significance of these elements remain unknown (Ueshima 
1979, Ituarte and Papeschi 2004, Rebagliati et al. 2005, Papeschi and Bressa 2006, 
Kuznetsova et al. 2011). It is quite improbable that the supernumerary chromosomes 
producing the numerical variation between karyotypes of bed bugs are related to the 
m-chromosomes. The small supernumerary elements in the bed bug complement are 
rarely negatively heteropycnotic and they enter the reductional division as late as in the 
metaphase II, similarly as typical sex chromosomes. There is no evidence of the pres-
ence of the m-chromosomes in karyotypes of bed bugs.

B chromosomes were reported in species from various bug families including 
Cimicidae (Ueshima 1966, Grozeva and Nokkala 2001, Pérez et al. 2004, Panzera et 
al. 2010). The characteristic of the B chromosomes is different compared to the super-
numerary elements from the bed bug complements. These additional chromosomal 

table 3. A synopsis of known karyotypes in C. lectularius. References: 1 - Darlington 1939, 2 - Slack 
1939, 3 - Ueshima 1966, 4 - Grozeva et al. 2010, 5 - Grozeva et al. 2011. BG = Bulgaria, ET = Egypt, J = 
Japan, MEX = Mexico, RUS = Russia, USA = United States of America. See Tables 1 and 2 for explana-
tion of other countries abbreviations. The samples reported in this study in bold.

Karyotype X, Y 2n Country References
1 2XY 29 CH, CZ, BG, F, GB, I, J, MEX, N, PL, RUS, SK, USA 1, 3, 4, 5, this study
2 3XY 30 CZ, F, GB, I, PL 1, 2, this study
3 4XY 31 CZ, GB, S, SK 1, 2, this study
4 5XY 32 CZ, GB, I, PL, S 1, 2, this study
5 6XY 33 CZ, ET, GB, PL, S, USA 1, 2, 3, this study
6 7XY 34 A, CZ, GB, PL, SK, USA 1, 2, 3, this study
7 8XY 35 CZ, GB, SK, USA 1, 2, 3, this study
8 9XY 36 GB, SK, USA 1, 2, 3, this study
9 10XY 37 A, GB, S, SK 1, 2, this study
10 11XY 38 GB 1, 2
11 12XY 39 GB 1, 2
12 13XY 40 GB, SK 1, 2, this study
13 14XY 41 GB 1, 2
14 15XY 42 CZ, GB 2, this study
15 20XY 47 CZ this study
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fragments are not distributed randomly, they are mainly isochromatic and they do not 
show any signs of heterochromatinization.

Therefore, the most plausible explanation of the origin of the supernumerary ele-
ments in the bed bug complements remains fragmentation of the X chromosome. This 
mechanism produces a complicated system of multiple sex chromosomes and it was 
proposed already in previously published papers (see Ueshima 1966, 1979 for review). 
This explanation was supported by the observed behaviour of the fragments in meiosis 
and also by comparisons with other related species of the genus Cimex. Similar systems 
have been commonly found in some other heteropteran species but the extent of vari-
ation is usually limited (Papeschi and Bressa 2006). In the bed bug, the supposedly 
original fragmentation of the X chromosome into two segments (X1X2) has already be-
come widely fixed in the extant populations. However, it is not sure that the assumed 
original fission resulted always in the formation of the same fragments. Similarly, the 
nature of subsequent fissions producing successively other fragments is not clear and 
may vary. The karyotypes of females with higher numbers of the X chromosome frag-
ments could be heterozygous with varying constitution of fragments derived from par-
ents. This possible variation cannot be evidenced with the use of classical cytogenetic 
techniques and molecular approach should be employed in clarifying this question.

The causes of the origin and maintenance of extensive fragmentation of the X 
chromosome of bed bugs remain unclear. Populations of bedbugs have been exposed 
to various insecticides all over the world for decades (Romero et al. 2007, Weeks et 
al. 2010). Potential mutagenetic effects of these toxic substances might have increased 
the rate of chromosomal rearrangements in bed bugs. The increased incidence of the X 
chromosome fragments in synanthropic populations seems to support this explanation 
as well as the absence of the multiple X chromosome fragments found in populations 
parasiting bats. However, variation resulting from this mechanism was recorded in the 
related species C. pipistrelli which does not occur in man and, rarely, also in other spe-
cies of the family Cimicidae (genus Paracimex) not related to humans (Ueshima 1968).

We found an extraordinarily wide extent of karyotype variation between speci-
mens in a few population samples only. We assume that this extreme variation might 
result from random mixing of individuals of different origin at a single site. Mat-
ing between geographically unrelated individuals can easily be imagined in a parasite 
such as the bed bug transmitted by migrating people. However, it is difficult to ex-
plain why these highly variable samples usually included specimens with an extreme 
karyotype constitution and the highest numbers of the X chromosome fragments. It 
is obvious that mating of parents with different karyotypes can produce great variety 
of recombinant complements in offspring, particularly in females. Variation in the 
number of chromosome fragments may be associated with abnormalities occurring in 
chromosome segregation during the cell division. The regular course of meiosis in the 
bed bug may be influenced by the holokinetic nature of chromosomes, completely 
achiasmatic male meiosis and inverted meiosis of the sex chromosomes. Slack (1939) 
and Ueshima (1964, 1966, 1967) recorded varying chromosome numbers among 
germ cells of single individual. We found similar mosaics in five specimens examined. 
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The irregular meiotic division or meiotic drive may enhance segregational variation in 
the chromosome number in progeny as well as mitotic segregation disturbances may 
contribute to the origin of mosaics in somatic cells. Mating of individuals of different 
origin and possibly different genetic constitution may initiate and increase the oc-
currence of segregation problems. We can assume that non-disjunction can produce 
unbalanced aneuploid gametes and result in lowered fitness of individuals carrying 
higher numbers of the X chromosome fragments. This effect should be apparently 
enhanced with the increasing number of the fragments and this may be the reason 
for the observed distribution pattern of individual karyotypes in the studied samples 
and the rarity of individuals with extremely high chromosome numbers. On the other 
hand, meiotic drive could cause preferential transmission of certain karyotype vari-
ants to the offspring. Ueshima (1966) investigated experimentally the transmission 
of different parental karyotypes to hybrids but did not report any evidence of ane-
uploidy or meiotic drive. We have not found any indication of such abnormalities of 
the cell division also in our study.

We can only speculate about relationships between the system of transmission of 
the fragmented sex chromosomes and the unusual features of reproductive biology of 
bed bugs. The assumed lowering of the fitness of individuals carrying higher numbers 
of the X chromosome fragments could potentially affect population dynamics of vari-
able populations. It is apparent that more intensive cytogenetic screening combined 
with data on molecular variation in DNA sequences might shed light to this question.
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introduction

Achillea is one of the most recent genera of the Asteraceae family which exists through-
out the world (Rechinger 1963). More than 100 species have been identified in this 
genus. Many of those who used these plants reported properties such as anti-inflamma-
tory, anti-rheumatic, antiseptic, antispasmodic, analgesic, astringent, carminative, dia-
phoretic, digestive, expectorant, hypotensive, stomachic and etc. (Balbir et al. 2012). 
These plants are native to Europe and Western Asia but are also found in Australia, 
New Zealand, and North America (Rechinger 1963).

Achillea millefolium has a high genetic and phenotypic variation in Iran (Farajpour 
et al. 2012, Ebrahimi et al. 2012). The basic chromosome number is often reported 
in different species of Achillea is x = 9; however, the diversity in chromosome num-
bers and ploidy levels are frequently occurring in the genus (Ebrahim et al. 2012). 
Polyploid taxa have originated in many clades including 4x, 6x and 8x species, and 
as a result, several Achillea species show high morphological variability (Sheidai et al. 
2009). Biste (1987) explained worthy diversity in leaf width, height, shoot number, 
and stomata length in different populations of the same species.

In most of the chemotypes in Achillea sp, camphor, borneol (Rohloff et al. 2000 
and Mockute and Judzentiene 2003) and 1.8-Cineole (Saeidnia et al. 2004; Bargham-
adi et al. 2009 and Azizi et al. 2010) have been detected. Among a number of data that 
can be obtained by chromosome studies: karyotype structure, karyotype asymmetry, 
chromosome banding, FISH, GISH and chromosome painting (Stace 2000, Levin 
2002, Graphodatsky et al. 2011, Guerra 2012), the most popular, cheap and widely 
used approaches is that concerning karyotype asymmetry (Peruzzi and Eroğlu 2013).

Achillea millefolium has been cytologically analyzed extensively in different regions 
of the world (Felfoldy 1947, Mizianty and Frey 1973, Pireh and Tyrl 1980, Lavrenko 
et al. 1991, Guo et al. 2012, Bala and Gupta 2013). Three cytological studies have 
been reported in Iran and showed the following ploidy levels: tetraploid 2n = 4x = 36, 
hexaploid 2n = 6x = 54 and octoploid 2n = 8x = 72 (Farsi et al. 2000, Ebrahim et al. 
2012, Sheidai et al. 2009). The aims of this study were (1) to determine the chromo-
some numbers of four A. millefolium accessions and (2) to find any relationship be-
tween the karyotype characteristics and asymmetrical index with ploidy levels.

Material and methods

The aerial parts of the four Achillea millefolium accessions were collected from three 
provinces in north, west and south of Iran (Table 1). Voucher samples were deposited 
at the herbarium of Research Institute of Forests and Rangeland (RIFR) of Tehran, 
Iran. Seeds were germinated on moist filter paper in Petri dishes. Actively growing 
root tips, 1 to 2 cm length were cut from the germinating seeds and pretreated with 
8-hydroxyquinoline (0.002M) for 2 to 4 hours and fixed in Farmer (1:3, glacial acetic 
acid : ethanol 95%) for 24 hours at 4° C. Thereafter, the root tips were hydrolyzed in 
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1 N NaOH at 60° C for 5-10 minutes, stained for 45 minutes in esterase stain at 30° 

C, and squashed in 45% glacial acetic acid. Finally, the chromosome images were ob-
tained with photomicroscope.

Karyotypec characteristics such as differences of range relative length (DRL), mean 
chromosome length (MCL), and mean arm ratio (MAR) were calculated using MI-
CROMEASURE (Version 3.3) Software (Reeves 2001). Stebbin’s classification was 
calculated (Stebbins 1971). Cluster analysis was performed to differentiate the acces-
sions according to the Ward’s method SPSS software for Windows 20.0 (SPSS Inc., 
Chicago, IL, USA).

Results and discussion

Karyological data

Am1 and Am2 accessions were diploids (2n = 2x = 18) whereas the two other acces-
sions (Am3 and Am4) showed tetraploid (2n = 4x = 36) level (Figure 1). According to 
previous studies, Farsi et al. (2009) and Khaniki (1995), reported 2n = 4x = 36 chro-
mosomes, while Sheidai et al. (2009) and Ebrahim et al. (2012) reported hexaploid 
and octoploid cytotypes. In our findings, we have observed a new ploidy level (2n = 2x 
= 18) for two Iranian accessions of A. millefolium (Am3, Am4) that were collected in 
northern parts of Iran.

Karyotypic analysis indicated asymmetrical pattern in the four accessions of A. 
millefolium (Table 2). Mitotic metaphases and karyograms of the four accessions are 
shown in Figure 1. The highest TCL value was found in Am3 (60.9 μm) and the low-
est was found in Am2 (24.5 μm) (Table 3). The lowest and the highest DRL values 
were found in Am3 and Am2 accessions, respectively (Table 3). High DRL value leads 
to more changes in the construction of chromosomes. DRL values in the two diploid 
accessions were higher than the tetraploid ones; it can be a relationship between ploidy 
level and DRL value. The tetraploid accessions had the most symmetric karyotypes.

Other parameters that indicate karyotype asymmetry are total form percentage (TF %; 
Huziwara 1962) and symmetrical index (S% or S/L%; Battaglia 1955) (Table 2). Group 
one (Am1 and Am2) had the highest mean value for the symmetrical index (S%=57.5) 
than the group two (S%= 50) (Table 2). It can be inferred that the group one, as diploids, 

table 1. Accessions of Achillea millefolium studied.

Accessions no. Location Latitude Longitude Elevation (m.a.s.l.)
Am1 Iran, Ardabil, Ardabil 38°15'N 48°17'E 1332
Am2 Iran, Ardabil, Meshkin-Shahr 37°58'N 48°58'E 1723
Am3† Iran, Ilam, Ilam 34°27'N 46°25'E 1387
Am4 Iran, Fars, Estahban 53°04'N 29°12'E 1767

†some of the characteristics of this accession were reported by Farajpour et al. (2012) in table 1 (Am30)
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are the earlier evolutionary form. The average value of the total form percentage (TF%) 
in the group one and two were 40.85 and 41.15, respectively. The TF% index has fre-
quently been used to explain karyotype asymmetry (Mercado-Ruaro and Delgado-Salinas 
1998, Ruas et al. 2000). In terms of the Stebbins’ system, the karyotype of Am1 and Am2 
grouped in 2A class, and it can be ancient evolutionary origin of A. millefolium species.

Cluster Analysis

Cluster analysis was done based on karyotypic characteristics (TCL, MCL, MAR and 
DRL) and karyotype asymmetry (TF% and S%) (Figure 2) and agrees with Ebrahim 

table 3. Total chromosome length (TCL), mean chromosome length (MCL), mean arm ratio (MAR), 
difference of range relative length (DRL), chromosome length range (CLR), Symmetry Classes of Steb-
bins (SC) of four Achillea millefolium accessions.

Accession TCL( µm) MCL (µm) (±SD) MAR( µm) DRL (µm) CLR (µm) SC
Am1 26.4 2.93(±0.13) 0.71 4.92 2.4-3.7 2A
Am2 24.5 2.72(±0.17) 0.69 6.9 1.8-3.5 2A
Am3 60.8 3.37(±0.09) 0.68 2.2 2.6-4.1 1A
Am4 41 2.27(±0.11) 0.73 4.49 1.1-2.9 1B

Figure1. A–B Mitotic metaphases (A) and karyograms (B) of fourAchillea millefolium accessions (Am1-
Am4). Bars = 5μm.

table 2. Karyotype features of four Achillea millefolium accessions.

Accession 2n Ploidy level TF% S% Karyotype formulae
Am1 18 2x 40.9 64 1M+8m
Am2 18 2x 40.8 51 1M+6m+2sm
Am3 36 4x 40.5 63 16M+2sm
Am4 36 4x 41.8 37 17M+1sm

Mean ofgroup1 - - 40.85 57.5 -
Mean ofgroup2 - - 41.15 50 -

‡ TF%=total form percentage (sum of short arm lengths of individual/total haploid length of the comple-
ment chromosomes), S% -symmetry index (shorter chromosome length / longer chromosome length), 
karyotype formula (m, median region; sm, submedian region; M, median point).
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et al. (2012). The results of cluster analyses divided the four accessions in two groups 
(Figure 2); based on ploidy levels. The first group included diploid accessions (Am1 
and Am2), while the second group comprised tetraploid accessions (Am3 and Am4). 
In the dendrogram, distance between diploid accessions is lower than tetraploid ac-
cessions that confirm the result of Stebbins’ system that both of diploid accessions 
grouped in 2A class.

Conclusion

The results of the present study illustrated a new ploidy level (2n = 2x = 18) in Iranian 
Achillea millefolium accessions. Cluster analysis indicated that accessions can be classi-
fied based on ploidy levels.
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Abstract
The family Rhamphichthyidae includes three genera: Rhamphichthys Müller et Troschel, 1846, Gymnor-
hamphichthys M. M. Ellis, 1912 and Iracema Triques, 1996. From this family, only the species Rhamph-
ichthys hanni Meinken, 1937 has had its karyotype described. Here, we describe the karyotypes of two 
additional Rhamphichthys species: R. marmoratus Castelnau, 1855 from the Reserva de Desenvolvimento 
Sustentável Mamirauá, Amazonas state and R. prope rostratus Linnaeus, 1766 from Pará state, both in Bra-
zil. Our karyotypic analyses demonstrated that the diploid number is conserved for the genus (2n = 50), 
but the karyotypic formulas (KFs) differed between R. marmoratus (44m/sm+6a) and R. prope rostratus 
(42m/sm+8a). In both species, the constitutive heterochromatin (CH) was located in the centromeric re-
gion of most chromosomes. Large heterochromatic blocks were found on the long arms of pairs 4 and 14 in 
R. marmoratus and on chromosomes 3, 4 and 19 in R. prope rostratus, which also has a heteromorphism in 
chromosome pair 1. The CH was DAPI positive, indicating that it is rich in AT base pairs. The Nucleolus 
Organizer Region (NOR) showed staining at a single location in both species: the long arm of pair 1 in 
R. marmoratus and the long arm of pair 12 in R. prope rostratus, where it showed a size heteromorphism. 
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CMA3 staining coincided with that of Ag-NOR, indicating that the ribosomal genes contain interspaced 
GC-rich sequences. FISH with an 18S rDNA probe confirmed that there is only one NOR site in each 
species. These results can be used as potential cytogenetic markers for fish populations, and comparative 
analysis of the karyotypes of Hypopygus Hoedman, 1962, Rhamphichthys and Steatogenys Boulenger, 1898 
suggests that the first two genera diverged later that the third.

Keywords
Gymnotiformes, Rhamphichthyidae, Cytogenetics, FISH

introduction

The family Rhamphichthyidae comprises three genera: Rhamphichthys Müller et Tro-
schel, 1846, with eight described species, Gymnorhamphichthys Ellis, 1912, with six 
species, and Iracema Triques, 1996, with only one species (Ferraris 2003, Lundberg 
2005, Triques 2005, Carvalho et al. 2011) (Table 1). These numbers are likely to be an 
underestimate, since the number of species described in Gymnotiformes has increased 
over the last 15 years (Albert and Crampton 2005).

The species of Rhamphichthys have a long and narrow body, a long tubular snout, 
no teeth in the jaw, and an anal fin with more than 300 rays. They are slow swimmers 
and spend most of their time at the bottoms of rivers (Mago-Leccia 1994, Ferraris 
2003, Triques 2005). Among the Gymnotiformes, Rhamphichthys has the largest di-
versity and abundance in the Amazon basin, and the species Rhamphichthys rostratus 
Linnaeus, 1766 has the largest geographic distribution when compared with the other 
species of this genus (Ferraris 2003). All Rhamphichthys species generate electrical puls-
es that are used to communicate and identify mating partners and other species. This 
trait allows them to be nocturnal and live in rivers with dark waters (Kawasaki et al. 
1996, Crampton 1998, Nanjappa et al. 2000, Gouvêa et al. 2002).

The phylogeny of the Gymnotiformes proposed by Albert (2001) was based on 
morphophysiological, behavioral and DNA sequence analyses by Alves-Gomes et al. 
(1995). In it, the families Rhamphichthyidae and Hypopomidae form a monophy-
letic group (Rhamphichthyoidea) that is separated from the clade that includes the 
families Sternopygidae and Apteronotidae. Among the Rhamphichthyoidea, the tribe 
Steatogenini (Steatogenys Boulenger, 1898, Hypopygus Hoedman, 1962 and Stegosteno-
pos Triques, 1997) is accepted as monophyletic (Albert and Campos-da-Paz 1998, 
Crampton et al. 2007), but there is some debate as to whether this tribe belongs to 
the Rhamphichthyidae (Alves-Gomes et al. 1995) or the Hypopomidae (Albert 2001).

Relatively few cytogenetic studies have been performed in Gymnotiformes. Ac-
cording to Oliveira et al. (2009), only 48 species of this order have had their karyo-
types described. The genera Gymnotus Linnaeus, 1758 and Eigenmannia Jordan et 
Evermann, 1896 have the most available information on their karyotypic diversity 
(Almeida-Toledo et al. 2001, 2002, Lacerda and Maistro 2007, Milhomem et al. 
2007, 2008, Silva et al. 2009, Nagamachi et al. 2010).
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In Rhamphichthyoidea, the available chromosome information comes from only 
six species (Table 2): Hypopomus artedi Kaup, 1856 with diploid number (2n) = 38, 
Fundamental Number (FN) = 70 and Karyotypic Formula (KF) = 32m/sm+6st/a; Hy-
popygus lepturus Hoedman, 1962 with 2n = 50, FN = 86 and KF = 36m/sm+10st+4a; 
Brachyhypopomus brevirostris Steindachner, 1868, with 2n = 36, FN = 42 and KF = 
6m/sm+30st/a (Almeida-Toledo et al. 2000); B. pinnicaudatus Hopkins, 1991, with 
2n = 41 in males and 42 in females (X1X2Y sex system) and FN = 42, with all acrocen-
tric chromosomes except the Y (Almeida-Toledo 1978); Steatogenys elegans Steindach-
ner, 1880, with 2n = 50 (ZZ/ZW sex system), FN = 62 and KF = 12m/sm+38st/a; 
S. duidae La Monte, 1929, with 2n = 50, FN = 100 and KF=50m/sm (Cardoso et al. 
2011); and Rhamphichthys hahni Meinken, 1937, with 2n = 50, FN = 94 and FK = 
44m/sm+6st/a (Mendes et al. 2012).

In the present work, we studied the karyotypes of two species of Rhamphichthys 
from the Amazon region in an effort to better define the boundaries between the spe-
cies, and compared our findings with those from the single previously described species 
of Rhamphichthys to better understand the phylogenetic relationships in this genus.

Material and methods

Fishes were collected using a bioamplification device that detects electric fields and 
translate them into sounds (Crampton et al. 2007). We analyzed 13 animals (seven 
males and six females) of Rhamphichthys marmoratus Castelnau, 1855, collected from 

table 1. Species of Rhamphichthyidae (According to Ferraris 2003 and Albert and Crampton 2005).

Species Locality
Gymnorhamphichthys hypostomus Ellis, 1912 São Joaquim, Bolivia
G. rondoni Miranda Ribeiro, 1920 17 de Fevereiro River, Amazonas, Brazil
G. petiti Géry et Vu-Tân-Tuê, 1964 Bananal Island, Araguaia River, Brazil
G. rosamariae Schwassmann, 1989 Negro River, Amazonas, Brazil
G. bogardusi Lundberg, 2005 Orinoco River, Delta Amacuro State
G. britskii Carvalho et al., 2011 Paraná- Paraguay System
Iracema caiana Triques, 1996 Jauaperi Beach, Negro River, Amazonas, Brazil
Rhamphichthys apurensis Fernández-Yépez, 1968 Bucaral River, a tributary of Apure River, Venezuela
Rh. atlanticus Triques, 1999 Viana Lake, Amazonas, Brazil

Rh. drepanium Triques, 1999 Janauari Lake, confluence of the Negro and Solimões 
Rivers, Amazonas, Brazil

Rh. hahni Meinken, 1937 Paraná River basin, next to Corrientes, Argentina
Rh. lineatus Castelnau, 1855 Ucayali River basin, Peru

Rh. longior Triques, 1999 Paru Lake, confluence of the Trombetas River, 
Para, Brazil

Rh. marmoratus Castelnau, 1855 Araguaia River, Brazil; Ucayali River, Peru
Rh. rostratus Linnaeus, 1766 South America
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rivers in the Reserva de Desenvolvimento Sustentável Mamirauá (Mamirauá  Sus-
tainable Development Reserve, RSDM), Amazonas state, Brazil (03°07'32.5"S / 
064°46'47.3"W). The sample was deposited in the museum of the RSDM (IDSMIc-
tio000735 and IDSMIctio000750). The two individuals of Rhamphichthys prope ros-
tratus Linnaeus, 1766, one male and one female, came from the Parú River, Pará state, 
Brazil (01°31'13.39"S / 52°38'49.00"W). This sample was deposited in the Museu 
Paraense Emílio Goeldi (MPEG 18347). Figure 1 shows the collection sites.

Metaphase chromosomes were obtained according to the method described by Ber-
tollo et al. (1978) and analyzed by Giemsa staining, C-banding (Sumner 1972), Ag-
NOR staining (Howell and Black 1980), CMA3 banding (Schweizer 1980) and DAPI 

table 2. A review of the cytogenetic information in Rhamphichthyoidea from Cardoso et al. (2011) with 
modifications.

Family / Species 2n KF Sex 
system CB NOR References

Hipopomidae

Hypopomus artedi 
Kaup, 1856 38 32m-sm / 

6st-a Absent - -
Almeida-Toledo 

(1978) in Oliveira 
et al. (2009)

Brachyhypopomus 
brevirostris 

Steindachner, 1868
36 6m-sm / 

30st-a Absent - -
Almeida-Toledo 

(1978) in Oliveira 
et al. (2009)

B. pinnicaudatus 
(Hopkins, 1991)

41♂ / 
42♀

1m/41a♂ / 
42a♀ X1X2Y

Centromeric region of 
most chromosomes Multiple Almeida-Toledo et 

al. (2000)

Hypopygus lepturus 
Hoedeman, 1962 50 36m-sm / 

14st-a Absent - -
Almeida-Toledo, 

(1978) in Oliveira 
et al. (2009)

Steatogenys elegans 
(Steindachner, 1880) 50 12m-sm/ 

38st-a ZZ/ZW

Centromeric region of 
all chromosomes and 

interstitial
(1q and 2 blocks in Wq)

Single Cardoso et al. 
(2011)

Steatogenys duidae (La 
Monte, 1929) 50 50 m-sm Absent

Centromeric and 
pericentromeric region 
of all chromosomes and 
interstitial (2q , 3q, 5q 

and 7q)

Single Cardoso et al. 
(2011)

Rhamphichthyidae

Rhamphichthys hahni 
(Meinken, 1937) 50 44m-sm / 6a Absent

Centromeric region of 
most chromosomes and 
blocks of CH in three 
chromosomes (SM)

Single Mendes et al. 
(2012)

R. marmoratus 
Castelnau, 1855 50 44m-sm / 

6st-a Absent

Centromeric region of 
most chromosomes and 
interstitial blocks (4q 

and 14p)

Single Present work

R. prope rostratus 
(Linnaeus, 1766) 50 42m-sm 

/ 8a Absent

Centromeric region of 
most chromosomes and 

interstitial blocks (3q, 4q 
and 19p)

Single Present work
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Figure 1. A map with the location of the Rhamphichthys species with cytogenetic descriptions. R. marmoratus 
and R. rostratus were analyzed in the present work.

banding (Pieczarka et al. 2006). Fluorescent In Situ Hybridization (FISH) was per-
formed using 18S rDNA probes from Prochilodus argenteus Spix et Agassiz, 1829 (Ha-
tanaka and Galetti Jr 2004). Microscopic images were obtained using a Zeiss Axiophot 
2 microscope and a Zeiss Axiocam Mrm controlled by the Zeiss Axiovision software. 
Metaphase organization was performed following the method of Levan et al. (1964).

Results

Rhamphichthys marmoratus

All samples of R. marmoratus (Fig. 2) had 2n = 50 and a karyotypic formula (KF) con-
sisting of 44 metacentric/submetacentric (m/sm) and 6 acrocentric chromosomes (Fig. 
2a), with no evidence of any sex-determination chromosome system. Ag-NOR staining 
showed that the NOR is located in the interstitial region of the long arm of pair 1, in 
a secondary constriction (Fig. 2b, box). Constitutive heterochromatin (CH) was found 
in the centromeric regions of all chromosomes (Fig. 2c). Pair 4 was notable for a large 
heterochromatic block running from the proximal region across most of the long arm, 
while pair 14 had a CH block covering most of its short arm. CH was also found in the 
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Figure 2. a R. marmoratus b Giemsa stained karyotype with the NOR bearer pair into the box c C-banded 
sequenced karyotype (m/ms- metacentric/submetacentric, a- acrocentric). Scale bar: a) 1 cm, b) and c) 10 μm.

distal region of the long arm of pair 1 (Fig. 2c). DAPI fluorochrome banding coincided 
with positive C-banding in all centromeres, and was especially strong in pairs 4 (Fig. 3a). 
The CMA3 fluorochrome banding localized to the same region as the NOR, suggesting 
that this region is GC-rich (Fig. 3b). FISH with 18S rDNA probes confirmed that the 
NOR is located in the interstitial region of the long arm of pair 1 (Fig. 3c).
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Rhamphichthys prope rostratus

R. prope rostratus (Fig. 4a) had 2n = 50 and a KF of 42m/sm+8a, with no evidence of 
a sex-determination system (Fig. 4b). Ag-NOR staining was noted in the interstitial 
region of the long arm of pair 12 (Fig. 4b, box). CH was found in the pericentromeric 

Figure 3. a R. prope rostratus b Giemsa stained karyotype with the NOR bearer pair into the box c C-banded 
sequenced karyotype; (m/ms- metacentric/submetacentric, a- acrocentric). Scale bar: a) 1 cm, b) and c) 10 μm.
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regions of most chromosomes, and large CH blocks were found in the proximal re-
gions of the long arm of pairs 3, 4 and 9. Pair 1 had a heteromorphism in both males 
and females, probably because of a heterochromatin block, as did pair 12 (Fig. 4c). 
DAPI banding was positive in the CH regions, suggesting that these regions are AT-
rich (Fig. 5a). CMA3 banding showed size differences between the homologs, suggest-
ing the presence of a size difference in this GC-rich region (Fig. 5b). Finally, FISH 
against the 18S rDNA hybridized to the same region that was positive for Ag-NOR 
staining (Fig. 5c).

Discussion

Both Rhamphichthys marmoratus and Rhamphichthys prope rostratus had 2n = 50, but 
differed in their KFs, with R. marmoratus having 44m/sm+6a and R. prope rostratus 
having 42m/sm+8a. Previously, Rhamphichthys hanni was described as having 2n = 50, 
but 20m+24sm+6a (Mendes et al. 2012). These differences can be explained by chro-
mosome rearrangements that have altered the chromosome morphology but not the 
diploid number (e.g., pericentric inversions). These rearrangements can be sufficient to 
act as a post-mating reproductive barrier (King 1993). A more refined analysis, such as 
the use of chromosome painting, will be necessary for the precise determination of the 
rearrangements that differentiate the karyotypes of these three species. In a similar situ-

Figure 5. R. rostratus - a DAPI staining, arrows designate pairs 3 and 4 with large CH blocks b CMA3 
staining, arrows designate NOR pair c FISH with rDNA probe. Scale bar: 10 μm.

Figure 4. R. marmoratus - a DAPI staining. Arrows: pair 4 with a large CH block b CMA3 staining, ar-
rows designate NOR pair c FISH with rDNA probe. Scale bar: 10 μm.
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ation in Gymnotiformes, Nagamachi et al. (2010) demonstrated that two cytotypes of 
Gymnotus carapo Linnaeus, 1758 (2n = 42 and 2n = 40) differed not just by the fusion 
event suggested by the conventional analysis, but also by many rearrangements.

The CH in R. prope rostratus and R. marmoratus is AT-rich (i.e., DAPI banding-
positive), which is consistent with other species of Gymnotiformes (Milhomem et al. 
2007, 2008, Silva et al. 2008, Silva et al. 2009). The CH blocks found in pairs 4 and 12 
of R. marmoratus and in pairs 3, 4 and 9 of R. prope rostratus can be used as cytogenetic 
markers for these species, as suggested for other Neotropical fish species (Almeida-
Toledo 1998, Silva et al. 2008). Mendes et al. (2012) found only three submetacentric 
pairs with heterochromatin blocks in Rhamphichthys hanni. This is an important trait 
and can be used along with other characteristics to differentiate populations of these 
species, since there is some debate regarding their interspecific boundaries.

The NOR was found on a secondary constriction and stained positive with CMA3 
as previously observed on other species (Pendás et al. 1993, Fernandes et al. 2005, 
Milhomem et al. 2007, Silva et al. 2008, De Souza et al. 2009). Each of the species 
studied herein had a single NOR, but R. prope rostratus had a size heteromorphism in 
this region. The 18S rDNA probe hybridized to a similar-sized segment in both ho-
mologs, suggesting that the size difference is not likely to be the result of an in-tandem 
duplication of the ribosomal genes (Martins-Santos and Tavares 1996), as described 
in Eigenmannia sp.1 by Almeida-Toledo et al. (1996). Instead, the heteromorphism 
found by CMA3 banding can be explained by a variation in the amount of GC-rich 
sequences interspersed among the ribosomal genes in this region. In R. hanni (Mendes 
et al. 2012), the results of the Ag-NOR staining and 18S rDNA probe hybridization 
were very similar to our findings in R. rostratus.

The phylogeny proposed by Albert (2001) places the families Rhamphichthyidae 
and Hypopomidae into a monophyletic group (Rhamphichthyoidea) that is only dis-
tantly related to the clade that joins the families Sternopygidae and Apteronotidae. The 
monophyly of Rhamphichthyoidea was supported by the synapomorphic characteris-
tics described by Triques (2005).

However Alves-Gomes et al. (1995) suggested that Hypopomidae is not monophy-
letic, in that the genera Hypopygus and Steatogenys are more closely related to Rhamph-
ichthyidae. The cytogenetic data described herein, as well as the recent work of Car-
doso et al. (2011), seem to support the latter phylogenetic arrangement, since all the 
Rhamphichthys karyotypes described to date have 2n = 50. Among the Hypopomidae, 
Hypopygus and Steatogenys have 2n = 50, but all of the other genera have lower diploid 
numbers (2n = 26 to 42, Table 2). However, while the Rhamphichthys have karyotypes 
with KFs similar to those of Hypopygus and Steatogenys (42-44 bi-armed and 6- 8 mo-
no-armed chromosomes) the KFs diverge considerably into Steatogenys, ranging from 
all bi-armed chromosomes (Steatogenys duidae) to mostly mono-armed chromosomes 
(Steatogenys elegans). Conversely, the karyotype of Hypopygus has a KF similar to those 
of Rhamphichthys. These differences seem to indicate that the genera Hypopygus and 
Steatogenys split from Rhamphichthys at an earlier date than the Rhamphichthys species 
split from one another, which is consistent with the phylogeny of Alves-Gomes et al. 
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(1995). The chromosome similarity between Hypopygus and Rhamphichthys suggests 
that these genera separated more recently than Steatogenys, or that chromosome evolu-
tion proceeded more quickly in the latter genus, with a buildup of autoapomorphies.

The available cytogenetic information on Gymnotiformes may be sparse (of eight 
species of this genus, only three have had their karyotypes analyzed), but the existing 
data show an important variability in this group. More cytogenetic investigations on 
the family Rhamphichthyidae are warranted, as they will help us better understand the 
chromosomal evolution of these fishes for use in other fields of science, and assist us in 
defining the boundaries of the Rhamphichthys species.
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introduction

The common shrew, Sorex araneus Linnaeus, 1758, displays exceptional variability of 
karyotype derived from intraspecific chromosome rearrangements of the Robertsonian 
type. Metacentric pairs of S. araneus are formed by fusion of originally acrocentric 
chromosomes at their centromeres in different combinations of arms. As a result, the 
chromosomes number (2n) varies from 20 to 33, the odd number is due to the pres-
ence of karyotype of the Robertsonian heterozygote with one metacentric and two 
acrocentrics, instead of two homozygous metacentrics or four acrocentrics. At the same 
time the fundamental number of chromosome arms (FN) remains unchanged and is 
equal to 40. As far as this process takes place within populations, we could talk about 
Robertsonian polymorphism which occurs in the vast range of S. araneus species.

After the pioneer analysis in Western Europe in the 1950s and 1960s, the studies 
of Robertsonian polymorphism in S. araneus populations started in Russia, widening 
the area of cytogenetic investigations to include European and Asian parts of the for-
mer USSR (Orlov 1974). The observed variations in chromosome arm lengths led to 
conclusion that Robertsonian fusions might involve different arms in different popu-
lations, which resulted in widely varying non-homologous metacentrics (Orlov and 
Kozlovsky 1969, Ford and Hamerton 1970, Hausser et al. 1985).

Introduction of new methods of chromosome identification (Q-, R- and G-band-
ing) improved the karyotype definition and increased the interest in the common shrew 
chromosome evolution. The International Sorex araneus Cytogenetics Committee, 
ISACC was founded at Oxford University in 1987 and until recently international 
meetings were held every 3 years. The results of its activity were summarized in 2007 by 
Searle et al. Based on chromosome specific G-banding patterns, Searle et al. (1991) es-
tablished the standard nomenclature for chromosomes of S. araneus. Later rules for dif-
ferentiation of the intrapopulation variants (polymorphism) from the interpopulation 
ones (polytypy) as well as from individual karyotype forms were developed (Hausser et 
al. 1994). Chromosome identification made it possible to describe the chromosomal 
races of S. araneus (Halkka et al. 1974, 1987). Results of karyological studies over the 
full species range were successively summarized first by Zima et al. (1996) and then by 
Wójcik et al. (2003). In Russia G-banded chromosomes of the common shrew were 
first described for a Siberian (Novosibirsk) population by Král and Radjabli in 1974. 
Results of further studies of high resolution G-banding and chromosome painting of 
race Novosibirsk represented the species in the international “Atlas of Mammalian 
Chromosomes” (2006) and in comprehensive comparative studies of Sorex (Biltueva et 
al. 2011).This race was also used for DAPI karyotyping of the common shrew (Minina 
et al. 2007).

Currently, no less than 72 chromosomal races are recognized in total (White et al. 
2010). The number of Russian chromosomal races has already reached 25 (Orlov et al. 
1996, 2007, Bulatova et al. 2000, Shchipanov et al. 2009, Pavlova 2010). Only four 
of these races are common for Russia and some neighboring areas. They include the 
following: 1) the Neroosa race which spreads over the southern regions of Russia and 
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Ukraine; 2) the West Dvina race which can be found in Russia – Belarus neighboring 
regions; 3) the Goldap race which inhabits the Baltic coast area of Poland and Kalinin-
grad region of western Russia; 4) the Ilomantsi race which occurs in the bordering are-
as of north-western Russia (Karelia) and Finland (Orlov et al. 1996, 2007, Bulatova et 
al. 2000, Shchipanov et al. 2009, Borisov et al. 2009a). As anticipated, regular studies 
of distribution of different races resulted in discoveries of interracial zones of contact 
in Russia (Shchipanov et al. 2009, Orlov et al. 2012, Pavlova 2013, Shchipanov and 
Pavlova 2013) and neighboring territories (Borisov et al. 2010, 2013). Due to ISACC 
activity, research that involves detection of the hybrid zones, as well as discovery and 
description of the chromosome races continues on a regular basis.

The first case of S. araneus interracial hybridization in Russia was presented by 
Aniskin and Lukianova (1989) for Tomsk and Novosibirsk races in Western Siberia. 
This hybrid zone is characterized by the high number of the chromosome arm combi-
nations and remains one of the most complex and best studied S. araneus hybrid zones 
(Searle and Wójcik 1998, Polyakov et al. 2011). The hybrids here form a complex 
meiotic configuration, a long chain of 9 monobrachially homologous acrocentrics and 
metacentrics. Presumably, chromosome incompatibility proved by meiosis data may 
induce infertility in hybrids which, in turn, could contribute to promotion of the selec-
tion for assortative mating (Searle and Wójcik 1998). Given that racial karyotypes of S. 
araneus as a rule differ by 1–5 variable metacentrics, the hybrids should produce rings 
or chains of different numbers and length in meiosis. Thus, the simplest heterozygotes 
form the chain of three, CIII, or ring of four, RIV. The most complex heterozygote was 
registered in Moscow and Seliger races hybrids in European Russia, and represents the 
chain of eleven, CXI (Bulatova et al. 2007). As far as the meiotic complications may 
lead to reduced hybrid reproductive fitness, the incompatibility is to be considered as 
the first stage in reproductive isolation. There are indications that the Robertsonian 
rearrangements do not interrupt the existent gene flow in hybrid zones and could not 
promote speciation in S. araneus. Instead, races might be merely remnants of past al-
lopatric differentiation followed by the loss of secondary contact (Horn et al. 2012, 
Polly et al. 2013), presenting in particular astonishing racial ‘patchwork’.

As has been shown in a variety of recent studies, the number and diversity of 
the chromosome rearrangements along with the relative variety of hybrid zone types 
represent a great opportunity both for understanding of the aftereffects and possible 
connections of chromosome mutations with the morphological, ecological and genetic 
differentiation in wild populations of common shrews (see Bibliographic list). It seems 
quite appropriate to recall the forecast made the British cytogeneticists CE Ford and 
JL Hamerton in 1970 (p. 235): “… shrews displayed multiple patterns of chromosome 
variation predicting the problems essential for the interpretation of species evolution. 
Information about hybrid meiosis would be of outstanding value and studies of preg-
nant females and their embryos from polymorphic populations could give important 
information about the breeding system and relative fertility. At a more modest level 
there remain many parts of Europe from which simple identification of the karyo-
type in samples from the local population could at least help to fill in the still rather 
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fragmentary distribution map of Races A and B and might reveal further unsuspected 
chromosome variation”. Till now only the second part of this task has been mostly ac-
complished, while our knowledge of the influence of chromosome rearrangements on 
cells, specimen and species is still too fragmentary.

The first tribute to the bibliography on the S. araneus cytogenetic model was paid by 
Prof. Jan Zima at the 8th ISACC meeting (2008). To support his idea, we compiled the 
bibliographical list which includes majority if not all of currently available papers devoted 
to interracial hybrid zones of S. araneus in Russia. The Bibliographic list presented here 
includes 43 full papers published in national and international scientific editions within 
the last 40 years. As it shown by the published data, hybrid karyotypes and true hybrid 
zones were reported for at least 14 out of 25 chromosome races (which are indexed be-
low) of the common shrew that inhabit Russia. This index includes the names of the races 
and their standard abbreviations, karyotypic diagnosis and F1 hybrids meiotic formula 
followed by the reference number of the relevant papers from our Bibliographic list.

Bibliographic list *

*Papers from the Bibliographic list referred to in the Introduction and not included in 
the final References are marked with asterisks.
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Kirillov (Kr)
gm, hi, kq, no, pr
- Manturovo (F1: gm/mn/no/go, hi, kq, pr; RIV): 22, 43
- Petchora (F1: gm/gi/hi/hn/no/mo, kq, pr; RVI): 39, 43

Manturovo (Ma)
go, hi, kq, mn, pr
- Kirillov (F1: gm/mn/no/go, hi, kq, pr; RIV): 22, 43
- Petchora (F1: gi/hi/hn/mn/mo/go, kq, pr; RVI): 43
- Sok (F1: go, kq, hi/ip/pr/mr/mn/hn; RVI): 43 
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Moscow (Mo)
gm, hi, kr, no, pq
- Neroosa (F1: gm/go/no/mn, hi, kr, pq; RIV): 17, 24
- Seliger (F1: g/gm/mq/pq/pr/kr/ik/hi/hn/no/o; CXI): 1, 6, 8, 10, 15, 21, 23, 25, 26, 

27, 29, 40, 41, 42
- West Dvina (F1: gm, hi/ip/pq/qr/kr/hk, no; RVI): 6, 18, 20, 21, 23, 40

Neroosa (Ne)
go, hi, kr, mn, pq
- Moscow (F1: gm/go/no/mn, hi, kr, pq; RIV): 17, 24

Novosibirsk (No)
go, hn, ik, mp, qr
- Tomsk (F1: o/go/gk/ik/hi/hn/mn/mp/p, qr; CIX): 1, 11, 15, 16, 28, 29, 30, 31, 32, 

34, 35, 36, 38
- Serov (F1: go, hn, ik/ip/mp/km, qr; RIV): 28, 33

Petchora (Pt)
gi, hn, kq, mo, pr
- Kirillov (F1: gi/hi/hn/no/mo/gm, kq, pr; RVI): 39, 43
- Serov (F1: gi/go/mo/km/kq/qr/pr/ip, hn; RVIII): 43
- Sok (F1: gi/go/mo/mr/pr/ip, hn, kq; RVI): 43

Seliger (Sl)
g, hn, ik, mq, o, pr
- Moscow (F1: g/gm/mq/pq/pr/kr/ik/hi/hn/no/o; CXI): 2, 6, 8, 10, 15, 21, 23, 25, 

26, 27, 29, 40, 41, 42
- West Dvina (F1: g/gm/mq/qr/pr/ip/ik/hk/hn/no/o; CXI): 20

Serov (Se)
go, hn, ip, km, qr
- Novosibirsk (F1: go, hn, ik/ip/mp/km, qr; RIV): 28, 33
- Petchora (F1: gi/go/mo/km/kq/qr/pr/ip, hn; RVIII): 43
- Sok (F1: go, hn, ip, km/mr/qr/kq; RIV): 43
- Yuryuzan (F1: go, hn, ip, km/mq/qr/kr; RIV): 40, 43

Sok (So)
go, hn, ip, kq, mr
- Manturovo (F1: go, kq, hi/ip/pr/mr/mn/hn; RVI): 43
- Petchora (F1: gi/go/mo/mr/pr/ip, hn, kq; RVI): 43
- Serov (F1: go, hn, ip, km/mr/qr/kq; RIV): 43
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Strelka (Sr)
go, hi, k, m, n, p, q, r
- Tomsk (F1: k/gk/go/o, hi, q/r, m, n, p; CIV): 28, 37

Tomsk (To)
gk, hi, mn, o, p, qr
- Novosibirsk (F1: o/go/gk/ik/hi/hn/mn/mp/p, qr; CIX): 1, 11, 15, 16, 28, 29, 30, 

31, 32, 34, 35, 36, 38
- Strelka (F1: k/gk/go/o, hi, q/r, m, n, p; CIV): 28, 37

West Dvina (Wd)
gm, hk, ip, no, qr
- Moscow (F1: gm, hi/ip/pq/qr/kr/hk, no; RVI): 6, 19, 20, 21, 23, 40
- Seliger (F1: g/gm/mq/qr/pr/ip/ik/hk/hn/no/o; CXI): 20

Yuryuzan (Yu)
go, hn, ip, kr, mq
- Serov (F1: go, hn, ip, km/mq/qr/kr; RIV): 40, 43

Figure 1. Schematic view of geographic distribution (slash) of hybrid zones between chromosome races 
of Sorex araneus in Russia. Standard abbreviations are used for the racial names (see Index).
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Abstract
In this work 13 populations of the leafhopper species Alebra albostriella (Fallén, 1826) (6 populations) and 
A. wahlbergi (Boheman, 1845) (7 populations) (Cicadellidae: Typhlocybinae) from Greece were studied 
cytogenetically. We examined chromosomal complements and meiosis in 41 males of A. albostriella sam-
pled from Castanea sativa, Fagus sylvatica and Quercus cerris and in 21 males of A. wahlbergi sampled from 
C. sativa, Acer opalus and Ulmus sp. The species were shown to share 2n = 22 + X(0) and male meiosis of 
the chiasmate preductional type typical for Auchenorrhyncha. In all populations of A. albostriella and in 
all but two populations of A. wahlbergi B chromosomes and/or different meiotic abnormalities including 
the end-to-end non-homologous chromosomal associations, translocation chains, univalents, anaphasic 
laggards besides aberrant sperms were encountered. This study represents the first chromosomal record for 
the genus Alebra and one of the few population-cytogenetic studies in the Auchenorrhyncha.
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introduction

The leafhopper genus Alebra Fieber, 1872 (Cicadellidae: Typhlocybinae) comprises 
a complex of phytophagous species with several degrees of association to deciduous 
trees and shrubs. This Holarctic genus is represented in Europe by six valid species 
and several host associated populations of unknown taxonomic status. The taxonomy 
of Alebra is difficult due to the very slight morphological differences in male genital 
structures, a significant degree of intraspecific color pattern variation and the common 
occurrence of two or more species on the same food plant (Drosopoulos and Loukas 
1988, Aguin-Pombo 2002). In the family Cicadellidae 387 species in 263 genera have 
been studied in respect to karyotype (Kuznetsova and Aguin-Pombo in press) but until 
now the genus Alebra remained totally untouched by chromosomal investigation.

Chromosomal polymorphisms in natural populations may play a significant role in 
speciation (White 1978, King 1993, Kawakami et al. 2011). This can easily be proven 
in cases in which chromosome rearrangements are easily detected as in some dipterans 
having giant polytene chromosomes in salivary glands. Quite the opposite situation 
is found in the Auchenorrhyncha with their rather small holokinetic chromosomes. 
Due to the absence of localized centromeres, the identification of rearrangements in 
holokinetic chromosomes is either difficult (e.g. translocations and deletions) or even 
completely impossible (duplications and inversions) if routine chromosome staining is 
applied. Despite the fact that approximately 820 auchenorrhynchan species have so far 
been karyotyped, all the data obtained concern almost exclusively chromosome num-
bers and gross karyotype morphology, and only few records of chromosomal polymor-
phisms have been published (for review see Kuznetsova and Aguin-Pombo in press).

In the present work, cytogenetic analysis of Alebra albostriella (Fallén, 1826) and 
A. wahlbergi (Boheman, 1845) was performed using routine chromosome staining. A 
study of 13 Greek populations of these species inhabiting different deciduous trees was 
undertaken to reveal whether the populations of these species display any polymor-
phism for chromosomal complements and meiotic patterns.

Materials and methods

Altogether, 41 males from 6 populations of A. albostriella and 21 males from 7 popula-
tions of A. wahlbergi inhabiting 5 different species of deciduous trees in Greece have 
been collected from 1989 to 1992 on plant foliage with a sweeping net. The locality 
names, altitude, data of collection and food plants are listed in Table 1, and the places of 
collection are also mapped on Fig. 1. For chromosome studies, adult males were fixed in 
Carnoy solution (3:1 ethanol and glacial acetic acid) and stored at -10°C. Chromosomal 
analysis was performed using conventional squashing procedure. Testes were dissected 
out, stained with 2% acetic orcein and squashed in a drop of 45% acetic acid under an 
18-mm square coverslip. From 1 to 14 individuals in each population were examined. 
Chromosome preparations were analyzed under a Leica DM 4000B microscope (Leica 
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Microsystems Wetzlar GmbH, Germany) with a 100× objective. Images were taken 
with a Leica DFC 350 FX camera using Leica Application Suite 2.8.1 software with an 
Image Overlay module. The data obtained are presented in Tables 2–4.

Results

A. albostriella

Standard karyotype and meiosis

In males, the majority of cells showed 23 chromosomes at mitotic metaphases (Fig. 2a) 
and 12 units at meiotic metaphases I (MI) (Fig. 2b, c). The karyotype is asymmetric 
with two size groups of chromosomes. In mitosis six larger chromosomes and oth-
er chromosomes constituting a decreasing series in size were present. Chromosomes 
had no primary constrictions, i.e. centromeres and the sex chromosome could not 
be identified. At MI, 11 autosomal bivalents, including three larger, and a univalent 
X-chromosome were encountered (n=11 + X). Male karyotype formula of the species 
is thus as follows: 2n=22 + X(0). The univalent X-chromosome was similar in size to 
one of the larger half-bivalents within the group of smaller chromosomes and its loca-
tion at MI was random. Bivalents mainly had a single terminal/subterminal or, rarer, 

table 1. Studied material.

Species Population 
code Locality

Altitude 
above sea 

level
Food plant Data of 

collection
Number of 

studied males

A.
 a

lb
os

tri
ell

a

ASE* Steni-Euboea Il. 440 m Castanea sativa 8–9.07.1990 10

AKA Kastanitsa-Arkadia 850 m C. sativa 25.06.1990
10.08.1989

2
3

AACM Anilio-Chania-Magnisia 990 m C. sativa 23.07.1990 5
AAPA Agios Petros-Arkadia 990 m C. sativa 15–16.7.1990 4
AANE Agios Nicolaos-Eurytania 1000 m C. sativa 01.08.1991 2

AATPF** Agia Triada-Prespes-Florina 1200 m
Fagus sylvatica 14–21.08.1990 14
Quercus cerris 20.08.1990 1

A.
 w

ah
lb

er
gi

WEDE Evinos Delta-
Etoloakarnania 20 m Ulmus sp. 25.06.1991 5

WSE Steni-Euboea Il. 440 m C. sativa 8–9.07.1990 2
WKE Kerasovo-Etoloakarnania 520 m Acer opalus 14.06.1992 4
WKA Kastanitsa-Arkadia 850 m C. sativa 25.06.1990 1

WANE Agios Nicolaos-Eurytania 1020 m C. sativa 01.08.1991 3
WCPF Caries-Prespes-Florina 1100 m A. opalus 19.08.1990 1
WATPF Agia Triada-Prespes-Florina 1200 m A. opalus 14–21.08.1990 5

*Here and elsewhere we use abbreviations to refer to different populations of a species.
** Specimens of A. albostriella from the AATPF locality represent two different populations one occurring 
on Fagus sylvatica and the other on Quercus cerris (see Aguin-Pombo 2002 for details).
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interstitial chiasma, however in few nuclei up to four rings were present indicative of 
two terminal/subterminal chiasmata being formed in the larger bivalents (Fig. 2d, e). 
At anaphase I (AI), all the autosomes segregated to opposite poles and the X moved 
to one pole without dividing. The reductional division resulted thus in two daughter 
metaphase II (MII) cells with 11A+X and 11A, respectively (Fig. 2f ).

B-chromosomes

In 4 out of 20 males analyzed in the populations ASE, AACM, AANE (sampled from 
Castanea sativa) and AATPF (sampled from Fagus sylvatica) one or two small B-chro-

Figure 1. Map showing the collection localities of Alebra albostriella and A. wahlbergi in Greece.
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Figure 2. Karyotype and male meiosis in Alebra albostriella: a Mitotic metaphase showing 23 chromosomes 
b MI showing 11 bivalents and univalent X c karyogram prepared from MI (b) d diakinesis showing bivalents 
with one terminal/subterminal chiasma and a bivalent with two subterminal chiasmata e diakinesis showing 
bivalents with one terminal/subterminal chiasma, a bivalent with interstitial chiasma and 4 ring bivalents each 
with two terminal/subterminal chiasmata f two daughter AI with n=11 and n=12, respectively g diakinesis 
showing one B chromosome h diakinesis showing two B chromosomes i diakinesis with end-to-end associa-
tion of two bivalents and X j diakinesis with end-to-end association of three bivalents and X k MI with one 
medium-sized bivalent as univalents (arrowed) l macrospermatids of different size (arrowed) among normal 
spermatids m AI with lagging chromosomes. Bar = 50 μm in l and 10 μm in other figures.

mosomes (additional to the standard complement) were found (Table 2). In the poly-
morphic populations, three males (1-AACM, 1-AANE and 1-AATPF) showed a single 
B-chromosome with the frequency of about 1% per specimen while male 10-ASE had 
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table 2. B-chromosomes, meiotic abnormalities and macrospermatids in A. albostriella.

Populations 
(N=6) Food plants Males No 

(N=41)
Number of 

B-chromosomes
Meiotic abnormalities and 

macrospermatids

ASE Castanea 
sativa

1 0 univalents

2 0
end-to-end non-homologous associations

anaphasic laggards
macrospermatids 

3 0 end-to-end non-homologous associations
macrospermatids

4 0 end-to-end non-homologous associations
macrospermatids

5 0 anaphasic laggards
macrospermatids

6 0 macrospermatids
7 0 macrospermatids
8 0 macrospermatids
9 0 -
10 2 -

AKA C. sativa

1 0 univalents
2 0 -
3 0 -
4 0 -
5 0 -

AACM C. sativa

1 1 anaphasic laggards 
macrospermatids

2 0 macrospermatids
3 0 macrospermatids
4 0 macrospermatids
5 0 -

AAPA C. sativa

1 0 macrospermatids
2 0 -
3 0 -
4 0 -

AANE C. sativa

1 1
end-to-end non-homologous associations

univalents
anaphasic laggards

2 0
end-to-end non-homologous associations

anaphasic laggards
macrospermatids

AATPF F. sylvatica

1 1 macrospermatids

2 0 univalents
macrospermatids

3 0 end-to-end non-homologous associations
4 0 macrospermatids
5 0 macrospermatids
6 0 macrospermatids
7 0 macrospermatids
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a pair of B-chromosomes in about 80% of MI (Table 4). B-chromosomes were different 
in size in different males while always appreciably smaller than the X-univalent and neg-
atively heteropycnotic at late prophase and MI (Fig. 2g, h). At MI, B-chromosome(s) 
showed random distribution relative to autosomal bivalents and X-chromosome. In the 
case of two B-chromosomes, they did not show any connection to each other (Fig. 2h).

Meiotic abnormalities

Different kinds of meiotic abnormalities were encountered in 12 males (29% of the 
total number of males) sampled from all the 6 populations (Table 2). In males 2, 3 
and 4 of ASE (from C. sativa), in both studied males of AANE (from C. sativa), and 
in male 3 of AATPF (from F. sylvatica) two to four bivalents were occasionally associ-
ated by ends. The univalent X-chromosome was very often involved in these associa-
tions. Non-homologous telomeres did not touch intimately each other but unstained 
gaps were seen between the bivalents (Fig. 2i, j). In some males (Table 2), one or 
two middle-sized bivalents were seen as univalents in some cells at diakinesis and MI 
(Fig. 2k). In addition, populations ASE, AACM, AANE and AAPA (from C. sativa) 
and AATPF (from F. sylvatica) the majority of studied males (61%; N=25) showed 
macrospermatids coexisting with normal spermatids within a cyst. Macrospermatids 
were different in size being either approximately twice larger or much larger than the 
normal spermatids (Fig. 2l). Some males with aberrant spermatids displayed also one 
or other type of meiotic abnormalities, including lagging chromosomes at anaphases 
(Fig. 2m) (Table 2).

A. wahlbergi

Standard karyotype and male meiosis

In sampled males, 11 autosomal bivalents and the univalent X-chromosome were pre-
sent in cells at diakinesis and MI (Fig. 3a, b), male karyotype formula of this species 

Populations 
(N=6) Food plants Males No 

(N=41)
Number of 

B-chromosomes
Meiotic abnormalities and 

macrospermatids

8 0 macrospermatids
9 0 macrospermatids
10 0 macrospermatids
11 0 macrospermatids
12 0 macrospermatids
13 0 macrospermatids
14 0 -

Q. cerris 15 0 anaphasic laggards
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Figure 3. Karyotype and male meiosis in Alebra wahlbergi: a MI showing 11 bivalents and univalent 
X b diakinesis showing bivalents with one terminal/subterminal chiasma, a bivalent with interstitial chi-
asma and 2 ring bivalents each with two terminal/subterminal chiasmata c diplotene/diakinesis showing 
a bivalent with three (at least) chiasmata (arrowed) d MI with one B chromosome e MI with two B 
chromosomes f diakinesis with end-to-end association of three bivalents g diplotene/diakinesis showing 
translocation chain involving 4 bivalents h MI with one medium-sized bivalent as univalents (arrowed) 
i macrospermatid (arrowed) among normal spermatids. Bar = 50 μm in i and 10 μm in other figures.
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being thus 2n = 22 + X(0). Much as in A. albostriella, this karyotype was asymmetric 
with three larger bivalents and 8 smaller bivalents, the X-chromosome being similar 
in size to one of the larger half-bivalents in this second group. The chromosomes had 
no centromeres. The univalent X-chromosome was located randomly at diakinesis 
and MI. The bivalents mainly had a single terminal/subterminal or rarely interstitial 
chiasma, however, two chiasmata (rings on Fig. 3b) and occasionally three chiasmata 
(arrowed on Fig. 3c) could be formed in larger bivalents. In few cells at diakinesis and 
metaphase I four bivalents or (in male 1-WNE) even six bivalents with two chias-
mata each were observed (not shown). Both autosomes and X-chromosome separated 
reductionally during the first division and divided equationally during the second 
division of meiosis.

B-chromosomes

In 3 out of 9 males analysed in the populations WEDE (sampled from Ulmus sp.) 
and WKE (sampled from Acer opalus) one or two B-chromosomes were encountered 
(Table 3). The polymorphic male 3-WKE showed a single B-chromosome in about 1% 
of MI (Fig. 3d, Table 4). Males 1-WEDE and 1-WKE showed each a pair of Bs at MI 
with frequencies of approximately 60% and 80%, respectively (Fig. 3e, Table 4). In 
every case B-chromosomes were very small, negatively heteropycnotic and distributed 
randomly with reference to each other, to the bivalents and to the X-chromosome.

Meiotic abnormalities

Meiotic abnormalities were encountered in 11 males (52% of the total number of 
males) sampled from 5 out of 7 studied populations. Populations WKA and WCPF 
showed no meiotic disturbances however in our study they were represented by only 
one male each (Table 3). In males 2-WEDE, 2-WSE, 1- and 2-WANE the bivalents 
occasionally formed associations involving two or three bivalents connected by tel-
omere ends. Non-homologous telomeres did not touch intimately each other but 
unstained gaps were seen between the bivalents (Fig. 3f ). In addition, male 1-WANE 
had nuclei at diakinesis with X-chromosome, 7 bivalents and a translocation chain of 
four bivalents united by chiasmata (Fig. 3g). The chromosomal complement of these 
cells was in fact n = 7AA + 1(4AA) + X. Unfortunately, because of poor spreading 
of chromosomes in the slide no statistical analysis of the occurrence of transloca-
tion chains in this male was possible. Further still, we failed to detect the number 
of bivalents involved into certain translocation chains. In males 1- WEDE, 1-WSE, 
2-WKE and 3-WANE, one of the middle-sized bivalents was present as univalents at 
MI (Fig. 3h). In populations WEDE, WKE and WATPF, 4 out of 14 males showed 
macrospermatids which were of approximately twice the normal size and coexisted 
with normal spermatids within a cyst (Fig. 3i). Among males with macrospermatids, 
only that 2-WEDE displayed meiotic disturbances namely the end-to-end non-ho-
mologous associations of bivalents (Table 3).
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table 3. B-chromosomes, meiotic abnormalities and macrospermatids in A. wahlbergi.

Populations 
(N=7) Food plants Males No 

(N=21)
Number of 

B-chromosomes
Meiotic abnormalities 
and macrospermatids

WEDE Ulmus sp.

1 2 univalents

2 0 end-to-end non-homologous associations
macrospermatids

3 0 macrospermatids

4 0 -

5 0 -

WSE C. sativa
1 0 univalents

2 0 end-to-end non-homologous associations

WKE A. opalus

1 2 macrospermatids

2 0 univalents

3 1 -

4 0 -

WKA C. sativa 1 0 -

WANE C. sativa

1 0 end-to-end non-homologous associations
multiple translocation chains 

2 0 end-to-end non-homologous associations

3 0 univalents

WCPF A. opalus 1 0 -

WATPF A. opalus

1 0 macrospermatids

2 0 -

3 0 -

4 0 -

5 0 -

table 4. Frequency of B chromosomes in A. albostriella and A. wahlbergi.

Male
N=7

Number of B 
chromosomes per cell

Total number of 
MI studied

Number of MI with 
B chromosomes

Frequency of B 
chromosomes per 

individual, %

A. albostriella

1-AACM 1 460 3 0,65
1-AANE 1 370 4 1,08
10-ASE 2 98 82 83,7

1-AATPF 1 112 2 1,8
A. wahlbergi

1-WEDE 2 28 17 60,7
1-WKE 2 107 84 78,5
3-WKE 1 180 2 1,1



Karyotypes, B-chromosomes and meiotic abnormalities... 315

Discussion

Standard karyotypes and meiosis

A. albostriella and A. wahlbergi were found to have the same karyotype of 2n = 22 + X(0) 
encountered without variation in 30,6% of studied males (N=19) and with some vari-
ation due to polymorphism in the rest of males (N=43) . The species share likewise a 
similar gross morphology of karyotypes. Both karyotypes are asymmetric in terms of 
the heterogeneity of chromosome size: one size group includes three pairs of larger 
chromosomes and the other group includes 8 pairs of smaller chromosomes. Within 

Figure 4. Schematic representation of the possible formation of a multiple translocation chain of four 
bivalents in meiosis of 1-WANE male. A1A2, B1B2, C1C2 and D1D2 are autosomal bivalents consecu-
tively involved in translocation. Chiasmata in a translocation chain are shown by crosses.



Valentina G. Kuznetsova et al.  /  Comparative Cytogenetics 7(4): 305–325 (2013)316

every group, chromosomes represent continuous gradation in size and therefore can 
not been reliably distinguished by conventional cytogenetic approaches. The X-chro-
mosome is close by size to one of the larger chromosomes within the smaller-sized 
group. Chromosomes are holokinetic as in other Hemiptera; that is, the centromeric 
activity is dispersed along the length of each chromosome rather than concentrated at 
one point (Schrader 1935).

In spite of holokinetic nature of chromosomes, there are only a few Cicadelli-
dae genera in which chromosome number has been sufficiently liable to change in 
the course of speciation whereas most genera have a stable number of chromosomes 
(Kuznetsova and Aguin-Pombo in press). As mentioned above, A. albostriella and A. 
wahlbergi are the first representatives of the leafhopper genus Alebra studied in respect 
to karyotype. The chromosome complement of 2n = 22 + X(0) found in these species 
is fairly common in the Cicadellidae (Kuznetsova and Aguin-Pombo in press) but has 
never been recorded for the subfamily Typhlocybinae in which approximately 90 spe-
cies in 35 genera are presently known cytologically (Kirillova 1987, Aguin-Pombo et 
al. 2006, Juan 2011). The only exception is probably a species referred to as Gen. nov. 
6 for which Juan (2011) recorded n=12 (suggesting thus 2n = 22 + X).

Cytological analysis of male meiosis in A. albostriella and A. wahlbergi revealed 
that it was of the typical auchenorrhynchan type where all the chromosomes undergo 
segregation at anaphase I and chromatids separate at anaphase II (Halkka 1959). The 
small bivalents invariably had only one terminal/subterminal or, rarely, interstitial chi-
asma. In the larger bivalents one-two chiasmata were formed; in separate diakinesis 
cells up to six ring bivalents with two terminal/subterminal chiasmata were present. 
Halkka (1964) was the first to show that only one-two chiasmata are typically formed 
in male meiosis in Auchenorrhyncha species. Quite recently, Nokkala et al. (2004) 
have proved that the low number of chiasmata (one-two in a bivalent from a cyto-
logical standpoint) is characteristic of holokinetic chromosomes as such. The authors 
showed that holokinetic bivalents with multiple chiasmata entered AI but were unable 
to complete it as a result of wrong separation of homologues. It is noteworthy however 
that in our material the largest bivalents showed occasionally three and even four chi-
asmata. Multiple (more than two) chiasmata have also been described in other groups 
with holokinetic chromosomes, including in the Auchenorrhyncha (e.g. Kuznetsova et 
al. 2009a, b, Maryańska-Nadachowska et al. 2012), however, the work by Nokkala et 
al. (2004) still remains the only one in which the further fate of cells with such biva-
lents in meiosis was traced in detail.

In the majority of auchenorrhynchans, at least in all hitherto studied planthop-
per species (Fulgoroidea), the univalent X-chromosome shows a clear tendency to be 
arranged at the periphery of MI plate presumably forming its own meiotic spindle 
(Halkka 1959, Kuznetsova et al. 1998, Maryańska-Nadachowska et al. 2006). In con-
trast to this, in both leafhopper species studied in the present work, the univalent X-
chromosome tended to locate randomly among the bivalents at MI.

Polymorphism for chromosomal rearrangements, B-chromosomes and meiotic ab-
normalities are not rare in nature and has been recorded for numerous species of plants 
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and animals, including insects (White 1973). This kind of information is however 
very scarce in the Auchenorrhyncha. In this group, among approximately 820 species 
studied cytogenetically, B-chromosomes and different chromosomal rearrangements 
have been reported in several species only (Kuznetsova and Aguin-Pombo in press). In 
light of this, it is somewhat unusual to find so extensive variation which occurs in A. 
albostriella and A. wahlbergi from Greece. A total of 62 individuals from 13 population 
samples belonging to both species were examined. The studied populations inhabited 
different food plants (F. sylvatica, C. sativa, Q. cerris, A. opalus) and different altitudes 
ranging from 20 m to 1200 m above sea level (Table 1). In all 6 populations of A. 
albostriella, 29 males (71%; N=41) showed meiotic abnormalities and of these 4 males 
displayed additionally B-chromosomes. In 5 populations of A. wahlbergi, 11 males 
(52%; N=21) showed meiotic abnormalities, and of these 2 males displayed also B-
chromosomes. In addition, one further male showed B-chromosomes while no meiotic 
abnormalities. The remaining two populations of A. wahlbergi, each with the only 
studied specimen, showed neither B-chromosomes nor meiotic abnormalities.

B-chromosomes

B-chromosomes are accessory genomic elements that are known to occur approximate-
ly in 15% of living species (Beukeboom 1994). In the Auchenorrhyncha, B-chromo-
somes were described in several species of planthoppers (Fulgoroidea) (Halkka 1959, 
Booij 1982, Kirillova and Kuznetsova 1990, den Bieman 1988) but have never been 
found to date in any species of leafhoppers (Cicadellidae). In leafhoppers A. albostriella 
and A. wahlbergi studied herein, B-chromosomes were found in low numbers (0-2) in 
4 males of the first species (in 4 populations) and in 3 males of the second species (in 2 
populations). In both species, B chromosomes were fairly small with the exception of 
male 1-AANE in which a single B-chromosome was about two times larger compared 
to Bs in other males (Fig. 2g). In every case however the Bs were much smaller than the 
univalent X-chromosome and conspicuous during meiotic prophase and metaphase I 
because of their negative heteropycnosis. When Bs were two in number, they did not 
pair and passed randomly through meiosis as univalents being still maintained in pop-
ulations. Also, B-chromosome(s) did not connect to the univalent X-chromosome at 
MI as it was observed by Kirillova and Kuznetsova (1990) in several planthopper spe-
cies from the family Delphacidae. The inter-population differences in B-chromosome 
distribution is believed to depend on different selective factors (Beukeboom 1994, 
Camacho 2004). It is interesting to note in this connection that in delphacid species 
Javesella pellucida (Fabricius, 1794) B-chromosomes were present only in populations 
inhabiting Northeast Siberia and Kamchatka whereas individuals sampled from differ-
ent populations in European Russia lacked B-chromosomes (Kirillova and Kuznetsova 
1990). In our study, the occurrence and frequency of B-chromosomes in males showed 
no relation with particular food plants on which populations inhabit. For example, A. 
albostriella males with Bs were collected both from C. sativa and F. sylvatica; A. wahl-
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bergi males with Bs were sampled both from Ulmus sp. and A. opalus. Similarly, no re-
lationship was established between the occurrence of Bs and the habitat altitude above 
sea level: in A. albostriella Bs were present in populations inhabiting at 440 m and 
higher altitudes, while in A. wahlbergi they were found at lower altitudes (20m–520m).

In studied populations, the frequency of B chromosomes was rather low. Thus, in 
A. wahlbergi they were present in 14% and in A. albostriella in only 10% of specimens 
studied. The frequency of individuals with 1B and 2Bs differed between the species. 
Thus, in four A. albostriella populations with B-chromosomes, 9,6% of males carried 
1B and 3,2% carried 2B, whereas in two A. wahlbergi populations with Bs, 11% of 
males had 1B and 22% had 2B. The data concerning the frequency of B chromosomes 
in natural populations of these species are too scarce to draw any firm conclusions. 
Noteworthy that the frequency of cells with B-chromosomes in 2B-males was mark-
edly higher compared with that in 1B-carriers: 60,7%-83,7% against 0,65%-1,8% 
(Table 4). This observation suggests the existence of an accumulation mechanism re-
sponsible for maintaining the 2Bs in studied populations. Interesting, no males with 
more than two Bs were found in studied specimens. One can suppose that in Alebra 
populations, 1 or 2 B-chromosomes are tolerable to B-carriers and that natural selection 
operates by eliminating individuals with more than two Bs. In contrast, in the aforesaid 
planthopper species J. pellucida, males with up to four B-chromosomes were found 
(Kirillova and Kuznetsova 1990). However, in this species males with larger number 
of Bs were less frequent: males with 1B predominated (89%), males with 2Bs and 3Bs 
occurred with equal frequency (56%) whereas males with 4Bs were rare (11%).

The question of the adaptive significance of B-chromosomes in natural popula-
tions has been argued over for decades (Camacho et al. 2000), with the final posi-
tion showing little if any substantial evidence to support such a role (Jones and Hou-
ben 2003). Among many others, the influence of B-chromosomes on recombination 
through the modulation of chiasma frequency and distribution in A-chromosomes has 
been recorded (e.g. in Orthoptera; Camacho et al. 1980, 2000). In A. albostriella and 
A. wahlbergi, intraindividual analysis demonstrated that chiasma frequency in a nu-
cleus was independent of the occurrence and number of B-chromosomes that it con-
tains. Similarly, there was no relationship between the occurrence of B-chromosomes 
and the occurrence, frequency and types of meiotic abnormalities in a male. As an 
example, B-chromosomes were absent in male 1-WNE which had bivalents with three 
chiasmata and in males 2, 3 and 4 of ASE with the highest percent of meiotic abnor-
malities (Tables 2 and 3). In some insects, B-carriers have shown a significant increase 
of the number of macrospermatids (Suja et al. 1986) however in our material such a 
correspondence was not observed.

Meiotic abnormalities

As noted above, information on chromosome rearrangements and meiotic distur-
bances in auchenorrhynchan species is very scarce. A number of meiotic abnormalities 
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including agmatoploidy (a result of fission of holokinetic chromosomes), aneuploidy, 
loose pairings of sex chromosomes and shrinkage of cytoplasm (changes in cytoplasmic 
volume) were described in three biotypes of the brown planthopper Nilaparvata lugens 
(Stål, 1854) from the family Delphacidae (Goh et al. 1992). A translocation poly-
morphism was encountered in the Australian leafhopper Alodeltocephalus draba Evans, 
1966 (Whitten and Taylor 1969). Some other examples are presented in a review of 
Kuznetsova and Aguin-Pombo (in press). In A. albostriella and A. wahlbergi, one or 
another of meiotic abnormalities were found such as univalents, bivalent chains result-
ing from end-to-end non-homologous achiasmate associations, multiple translocation 
chains, anaphasic laggards and macrospermatids.

End-to-end non-homologous associations

In males originating from different populations of A. albostriella and A. wahlbergi, 
end-to-end associations between bivalents were found at different stages of meiosis. 
The chains, involving up to four bivalents and occasionally (in A. albostriella) also the 
X-chromosome, were formed during prophase and were still intact at MI. In these 
cases, the persistent association was certainty non-chiasmate. Non-homologous tel-
omeres did not touch intimately each other but unstained gaps were present between 
bivalents. Since in both species chromosomes display distal heterochromatic blocks 
(our unpublished data), one can suggest that the formation of artificial bivalent chains 
(pseudomultiples) is caused by heterochromatin adhesion due to which non-homolo-
gous chromosomes easily attract to one another.

Terminal associations of non-homologous bivalents without chiasma formation 
have been described in many plants and animals (White 1973, John and King 1982, 
1985). These associations may involve from two up to all bivalents of a species. For 
instance, in the “holokinetic” moth species Sphinx ligustri (Linnaeus, 1758) (Lepi-
doptera, Sphingidae), all of the 28 bivalents were non-homologously attached to each 
other throughout prophase until prometaphase in females. Late in meiosis, the chains 
were broken down sequentially however short chains of two or three bivalents were still 
present at metaphase I. Like in the two Alebra species, in this moth non-homologous 
telomeres did not touch intimately each other but an unstained gap or some chromatin 
threads were seen between bivalents (Nokkala 1987).

Translocation chains

In male 1-WANE sampled from C. sativa, part of nuclei had chains of several bivalents, 
non-homologous chromosomes showing the apparent intimate contacts by terminal 
chiasmata (Fig. 3g). In this male, the occurrence of heterozygotes for translocations 
could account for the multivalent chains formation. Since this chromosome rearrange-
ment was observed only in some of meiotic cells, it must have happened after germi-
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nal cell development. Unfortunately, using only classical cytogenetic methods it was 
possible neither to affirm which chromosomes formed the chains nor to identify the 
orientation of separate chromosomes within a chain. Schematic representation of the 
possible formation of the chain-of-four caused by multiple translocations in meiotic 
cells is presented on Fig. 4.

In natural populations, chromosomal rearrangements arise as heterozygotes but 
their probability to establish is low (King 1993). Interchanges of small terminal seg-
ments of chromosomal pairs relatively frequently happen as spontaneous mutations 
(Hewitt 1979, Reed et al. 1992). Several studies have shown the chiasmate multivalent 
configurations, either rings or chains, in first meiosis as a result of heterozygosity for 
chromosomal fissions and fusions (e.g. in orthopterans; White 1973, John 1987, Bi-
dau and Mirol 1988, Mirol and Bidau 1994, Colombo 2013). These configurations 
can lead to irregular segregation and nondisjunction in meiosis, with a consequent re-
duction in reproductive potential (White 1973), although sometimes they have no ap-
parent negative influence on fertility (Mirol and Bidau 1994). Regarding insects with 
holokinetic chromosomes, the rearrangements can be even less deleterious since dif-
fuse kinetochore is spreading through the length of their chromatids and products of 
rearrangements are able to be transmitted to daughter cells at successive cell divisions. 
Heterozygous translocations have occasionally been recorded in natural populations 
of “holokinetic” insects such as aphids (Blackman and Takada 1975, 1977, Blackman 
et al. 1995), heteropterans (Papeschi 1994, Bressa et al. 1998, Pérez et al. 2004) and 
,psyllids (Grozeva and Maryańska-Nadachowska 1995, Nokkala et al. 2006). Within 
Auchenorrhyncha, a fascinating case of translocation polymorphism was described by 
Whitten and Taylor (1969) in populations of the Australian leafhopper species A. 
draba. In all of the 8 studied populations, males showed one of the following chromo-
some complements: 3AA (three bivalents) + X; 4AA + X; 2AA + 1AAA (trivalent) + X; 
1AA + 1AAAA (tetravalent) + X. A peculiar feature of this case is that the reduction 
in chromosome number has reached different stages in different localities. In one area 
(Lake Pedder), it was nearly or almost fixed (2 n= 7: 3AA + X), while in another area 
(Bruny Island) chromosome number decreased from north to south. Reduction of 
chromosome number following a latitudinal cline was caused by differences in the fre-
quency of chromosome translocations. A. draba was proposed to be under a process of 
speciation driven by the reorganization of karyotype which was initiated in some popu-
lations by the fixation of a particular chromosome fusion (Whitten and Taylor 1969).

Univalents

In separate males of A. albostriella and A. wahlbergi, univalents of one-two chromo-
some pairs were observed at MI. The univalency involved either one of the larger or 
one of the smaller pairs of autosomes or occasionally both of these pairs. Although 
synaptic abnormalities can be responsible for the induction of abnormal chromosome 
segregation, no abnormal spermatids were observed in males showing univalents at 
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metaphase I cells. This observation suggests a regular segregation of univalents in meio-
sis as it has been demonstrated by Nokkala (1986) for holokinetic univalents in the 
true bug species Rhabdomiris striatellus (Fabricius, 1794) (originally listed by Nokkala 
as Calocoris quadripunctatus (Vil.)) (Miridae, Hemiptera).

Aberrant spermatids

Macrospermatids were encountered in males of both species. Aberrant spermatids oc-
curred in small proportion in part of spermatocysts and were twice and sometimes 
several times as much as normal spermatids within the same cyst. In A. albostriella, ab-
normal spermatids were more abundant being found in four populations and in about 
37% of the specimens studied. Chromosomal abnormalities that affect gametogenesis 
are known to be one of the principle causal factors in nonbalanced gametes appear-
ance (White 1973). If the emergence of abnormal spermatids is a reflection of meiotic 
disturbances, one would expect a correspondence between the amount of macrosper-
matids and that of meiotic abnormalities in a male. Despite of this, there was a clear 
discrepancy between these two parameters. Macrospermatids instead of being abundant 
in males with numerous abnormalities were either occasional or absent and vice versa. 
For instance, in A. albostriella, out of 15 males displaying macrospermatids, 10 had no 
evident meiotic abnormalities at diakinesis and MI. Notice however that the fate of 
abnormal meiotic configurations was not traced in any of the individuals analyzed.

Conclusion

It is not known at this stage what are the primary causes of abnormal chromosome be-
havior in males of A. albostriella and A. wahlbergi from Greek populations i.e. whether 
these causes are male-specific meiotic mutants, some environmental mutagens or the 
result of hybridization events between coexisting species on the same tree. Also it is not 
known whether these meiotic abnormalities may play a role in the karyotype evolution 
and speciation of the genus Alebra. This genus seems to be prone to chromosomal rear-
rangements that makes it an interesting group for further studies. From the cytological 
viewpoint, a greater number of species and samples as well as more detailed analysis em-
ploying special techniques like chromosome bandings and fluorescent in situ hybridiza-
tion may help in determining the actual variety and frequency of chromosomal abnor-
malities and their contribution into the karyotype differentiation in the genus Alebra.

Acknowledgements

This study was supported (for VK and NG) by the RFBR (grant 11-04-00734) and 
programs of the Presidium of RAS “Gene Pools and Genetic Diversity” and “Origin of 



Valentina G. Kuznetsova et al.  /  Comparative Cytogenetics 7(4): 305–325 (2013)322

the Biosphere and Evolution of Geo-biological Systems”, and (for DA and VK) by the 
FCT research project “Origin of multiple parthenoforms of Empoasca leafhoppers in 
Madeira Island” (PTDC/BIA-BEC/103411/2008). We thank S. Nokkala for making 
a valuable contribution to the interactive discussion of the meiotic images and Mss N. 
Khabazova for technical assistance. We wish to thank Costas Krimbas for laboratory 
facilities and Sakis Drosopoulos for suggesting chromosome studies on Alebra. We are 
also grateful to Christos Gantzias for his help in fieldwork and to Planton Andritsakis 
and Lili Andritsakis for providing sampling facilities.

References

Aguin-Pombo D (2002) Genetic differentiation among host-associated Alebra leafhoppers 
(Hemiptera: Cicadellidae). Heredity 88: 415–422 doi: 10.1038/sj.hdy.6800050

Aguin-Pombo D, Kuznetsova V, Freitas N (2006) Multiple parthenoforms of Empoasca leaf-
hoppers from Madeira Island: where are these unisexual forms coming from? Journal of 
Heredity 97(2): 171–176. doi: 10.1093/jhered/esj021

Beukeboom LW (1994) Bewildering Bs: an impression of the 1-st B-chromosome Conference. 
Heredity 73: 323–336. doi: 10.1038/hdy.1994.140

Bidau CJ, Mirol PM (1988) Orientation and segregation of Robertsonian trivalents in Dichroplus 
pratensis (Acrididae). Genome 30(6): 947–55. doi: 10.1139/g88-151

Blackman RL, Takada H (1975) A naturally occurring chromosomal translocation in Myzus 
persicae (Sulzer). Journal of Entomology (Series A) 50: 147–156.

Blackman RL, Takada H (1977) The inheritance of natural chromosomal polymorphism in the 
aphid Myzus persicae (Sulzer). Genetica 47: 9–15. doi: 10.1007/BF00122434

Blackman RL, Spence JM, Field LM, Devonshire AL (1995) Chromosomal location of the 
amplified esterase genes conferring resistance to insecticides in Myzus persicae (Homoptera 
Aphididae). Heredity 75: 297–302. doi: 10.1038/hdy.1995.138

Booij CJH (1982) Biosystematics of the Muellerianella complex (Homoptera, Delphacidae), 
hybridization studies. Genetica 57: 161–170. doi: 10.1007/BF00056479

Bressa MJ, Papeschi AG, Mola LM, Larramendy ML (1998) Meiotic studies in Largos ru-
fipennis (Castelnau) (Largidae, Heteroptera). II. Reciprocal translocation heterozygosity. 
Caryologia 51(3–4): 253–264.

den Bieman CFM (1988) Hybridization studies in the planthopper genus Ribautodelphax 
(Homoptera, Delphacidae). Genetica 76: 15–26. doi: 10.1007/BF00126006

Camacho JPM (Ed.) (2004) B Chromosomes in the Eukaryote Genome. Karger, Basel, 269 pp.
Camacho JPM, Carballo AR, Cabrero J (1980) The B-chromosome system of the grasshop-

per Eyprepocnemis plorans sub. plorans (Charpentier). Chromosoma 80: 163–166. doi: 
10.1007/BF00286298

Camacho JPM, Sharbel TF, Beukeboon LW (2000) B-chromosome evolution. Philosophi-
cal Transactions of the Royal Society B: Biological Sciences 355: 163–178 doi: 10.1098/
rstb.2000.0556



Karyotypes, B-chromosomes and meiotic abnormalities... 323

Colombo PC (2013) Micro-evolution in grasshoppers mediated by polymorphic Robertsonian 
translocations. Journal of Insect Science 13: 43. http://www.insectscience.org/13.43, doi: 
10.1673/031.013.4301

Drosopoulos S, Loukas M (1988) Genetic differentiation between coexisting color-types of the 
Alebra albostriella group (Homoptera: Cicadellidae). Hereditas 79: 434–438.

Goh HG, Saxena RC, Barrion AA (1992) Chromosomal variation among brown planthopper, 
Nilaparvata lugens (Stal), biotypes in Korea. Korean Journal of Applied Entomology 31 
(4): 366–370.

Grozeva S, Maryańska-Nadachowska A (1995) Meiosis of two species of Cacopsylla with poly-
morphic sex-chromosomes in male (Homoptera, Psyllidae). Folia biologica (Kraków) 
43: 93–98.

Halkka O (1959) Chromosome studies on the Hemiptera, Homoptera, Auchenorrhyncha. An-
nales Academiae Scientiarum Fennicae, Series A. IV, Biologica 43: 1–71.

Halkka O (1964) Recombination in six homopterous families. Evolution 18: 81–88. doi: 
10.2307/2406421

Hewitt GM (1979) Grasshoppers and Crickets. Animal Cytogenetics. Vol. 3, Insecta 1, Or-
thoptera. Gebrüder Borntraeger, Berlin-Stuttgart, 170pp.

John B (1987) The orientation behaviour of multiple chromosome configurations in Acridid 
grasshoppers. Genome 29: 292–308. doi: 10.1139/g87-050

John B, King M (1982) Meiotic effects of supernumerary heterochromatin in Heteropternis 
obscurella. Chromosoma 85: 39–65. doi: 10.1007/BF00344593

John B, King M (1985) Pseudoterminalisation, terminalisation, and non-chiasmate modes of 
terminal association. Chromosoma 92: 89–99. doi: 10.1007/BF00328460

Jones N, Houben A (2003) B chromosomes in plants: escapees from the A chromosome ge-
nome? Trends Plant Science 8: 417–423. doi: 10.1016/S1360-1385(03)00187-0

Juan H (2011) Studies on the chromosomes of Chinese Typhlocybinae (Hemiptera: Cicadellidae). 
Thesis for Masters Degree. Northwest A & F University. 42 pp.

Kawakami T, Butlin RK, Cooper JB (2011) Chromosomal speciation revisited: Modes 
of Diversification in Australian morabine grasshoppers (Vandiemenella viatica species 
group). Insects 2: 49–61 doi: 10.3390/insects2010049

King M (1993) Species Evolution. The role of Chromosome Change. Cambridge University 
Press, Cambridge, 336 pp.

Kirillova VI (1987) Chromosome numbers of world Homoptera Auchenorrhyncha. II. Cicadel-
loidea. Entomological Review 67: 80–107.

Kirillova VI, Kuznetsova VG (1990) B-chromosomes of Javesella pellucida Fabr. and other Delpha-
cidae (Homoptera, Cicadinea). Tsitologia 32 (3): 282–290 [In Russian with English summary]

Kuznetsova VG, Maryańska-Nadachowska A, Yang Ch-Tu, O’Brien L (1998) Karyotypes, sex-
chromosome systems and testis structure in Fulgoroidea (Auchenorrhyncha, Homoptera, 
Insecta). Folia biologica (Kraków) 46(1–2): 23–40.

Kuznetsova VG, Maryańska-Nadachowska A, Emeljanov AF (2009a) A contribution to the 
karyosystematics of the planthopper families Dictyopharidae and Fulgoridae (Hemiptera: 
Auchenorrhyncha). European Journal of Entomology 106: 159–170.



Valentina G. Kuznetsova et al.  /  Comparative Cytogenetics 7(4): 305–325 (2013)324

Kuznetsova VG, Maryanska-Nadachowska A, Nokkala S (2009b) Karyotype characterization 
of planthopper species Hysteropterum albaceticum Dlabola, 1983 and Agalmatium bilobum 
(Fieber, 1877) (Homoptera: Auchenorrhyncha: Issidae) using AgNOR-, C- and DAPI/
CMA3 –banding techniques. Comparative Cytogenetics 3(2): 111–123. doi: 10.3897/
compcytogen.v3i2.18

Kuznetsova VG, Aguin-Pombo D (in press) Comparative Cytogenetics of Auchenorrhyncha: a 
Review. In: Badmin J, Webb M (Eds) Leafhoppers of the World and their relatives. USA.

Maryańska-Nadachowska A, Kuznetsova VG, Gnezdilov VM, Drosopoulos S (2006) Vari-
ability in the karyotypes, testes and ovaries of planthoppers of the families Issidae, Calis-
celidae, and Acanaloniidae (Hemiptera: Fulgoroidea). European Journal of Entomology 
103: 505–513. doi: 10.1673/031.012.5401

Maryańska-Nadachowska A, Kuznetsova VG, Lachowska D, Drosopoulos S (2012) Mediter-
ranean species of the spittlebug genus Philaenus: Modes of chromosome evolution. Journal 
of Insect Science 12: 54. http://insectscience.org/12.54

Mirol PM, Bidau CJ (1994) Non-random patterns of non-disjunctional orientation in triva-
lents of multiple Robertsonian heterozygotes of Dichroplus pratensis (Acrididae). Genetica 
92: 155–164. doi: 10.1007/BF00132534

Nokkala S (1986) The mechanisms behind the regular segregation of autosomal univalents 
in Calocoris quadripunctatus (Vil.) (Miridae, Hemiptera). Hereditas 105: 199–204. doi: 
10.1111/j.1601-5223.1986.tb00662.x

Nokkala S (1987) Cytological characteristics of chromosome behaviour during female meiosis 
in Sphinx ligustri L. (Sphingidae, Lepidoptera). Hereditas 106: 169–179. doi: 10.1111/
j.1601-5223.1987.tb00250.x

Nokkala S, Kuznetsova VG, Maryańska-Nadachowska A, Nokkala C (2004) Holocentric chro-
mosomes in meiosis. I. Restriction of the number of chiasmata of bivalents. Chromosome 
Research 12: 733–739. doi: 10.1023/B:CHRO.0000045797.74375.70

Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C (2006) Holocentric chro-
mosomes in meiosis. II. The modes of orientation and segregation of a trivalent. Chromosome 
Research 14: 559–565. doi: 10.1007/s10577-006-1053-6

Papeschi AG (1994) Chromosome rearrangements in Belostoma plebejum (Stal) (Belostomatidae, 
Heteroptera). Caryologia 47: 223–230.

Pérez R, Calleros L, Rose V, Lorca M, Panzera P (2004) Cytogenetic studies on Mepraia 
gajardoi (Heteroptera: Reduviidae). Chromosome behavior in a spontaneous transloca-
tion mutant. European Journal of Entomology 101: 211–218.

Reed KM, Sites JM, Greenbaurn IF (1992) Synapsis, recombination, and meiotic segregation 
in the mesquite lizard, Sceloporus grammicus, complex. Cytogenetics and Cell Genetics 
61: 40–45. doi: 10.1159/000133366

Schrader F (1935) Notes on the mitotic behavior of long chromosomes. Cytologia 6(4): 422–430. 
doi: 10.1508/cytologia.6.422

Suja JA, de la Vega CG, Rufas JS (1986) Meiotic stability of B chromosomes and production 
of macrospermatids in Aiolopus strepens (Orthoptera: Acrididae). Genome 29: 5–10. doi: 
10.1139/g87-002



Karyotypes, B-chromosomes and meiotic abnormalities... 325

White MJD (1973) Animal Cytology and Evolution. Cambridge University Press, London 
New York-Melbourne, 961 pp.

White MJD (1978) Modes of Speciation. Freeman, San Francisco, 455 pp.
Whitten MJ, Taylor WC (1969) Chromosomal polymorphism in an Australian leafhopper 

(Homoptera: Cicadellidae). Chromosoma 26: 1–6. doi: 10.1007/BF00319495



Valentina G. Kuznetsova et al.  /  Comparative Cytogenetics 7(4): 305–325 (2013)326


