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Abstract
The Tetraodontiformes are the most derived group of teleostean fish. Among other apomorphies, they are 
characterized by a high degree of fusions or significant bone loss in the head and body. In the early phyloge-
netic proposals presented for this order, the families Balistidae and Monacanthidae have been unanimously 
considered to be closely related. Although they have moderate species diversity, they are scarcely known in 
cytogenetic aspect and chromosomal pattern comparisons between these groups have yet to be established. 
The species Cantherhines macrocerus (Hollard,1853), C. pullus (Ranzani, 1842) (Monacanthidae) and Meli-
chthys niger (Bloch, 1786) (Balistidae) were cytogenetically analyzed using conventional (Ag-impregnation, 
C-banding, CMA3- and DAPI-fluorescence) and molecular (FISH with an 18S rDNA probe) cytogenetic 
protocols. The karyotypes of all three species were very similar possessing diploid chromosome numbers 2n = 
40 and composed exclusively of acrocentric chromosomes. Single NOR-bearing pair as well as positive het-
erochromatic blocks at pericentromeric regions were identified in the karyotypes of the three species studied. 
NOR-bearing sites were positively labeled after Ag-impregnation, C-banding, CMA3-fluorescence and FISH 
with an 18S rDNA probe but were negative after DAPI-fluorescence. Such remarkable shared conspicuous 
chromosomal characters corroborate either close phylogenetic relationship of these families, previously es-
tablished by morphological and molecular data, or rather conservative nature of karyotype differentiation 
processes. The later hypothesis, however, appears less probable due to centric or in tandem fusions documented 
for another Balistoidea species.
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Introduction

The order Tetraodontiformes, which stands out among marine fish for its marked di-
versity, is composed of approximately 430 species distributed in nine families (Nelson 
2006). This group is the most recent branch of Neoteleostean radiation, representing a 
post-Perciformes lineage (Elmerot et al. 2002) and although it is generally recognized 
as a monophyletic group, the relationships between its families and genera have yet to 
be defined (Holcroft 2004).

Among the Tetraodontiformes, the superfamily Balistoidea (leatherjackets) in-
cludes the families Balistidae (triggerfish) and Monacanthidae (filefish), with a fos-
sil record that dates back to the Early Eocene and probably to the Late Cretaceous 
(Frickhinger 1995, Santini and Tyler 2003). Based on morphological similarities (e.g., 
osteological and myological characters), molecular studies using RAG1 gene sequences 
and DNA content data (Winterbottom 1974, Brainerd et al. 2001, Holcroft 2004, 
2005), and more recently analysis of complete mitochondrial genomes (mitogenome) 
(Yamanoue et al. 2008), members of families Balistidae and Monacanthidae are con-
sidered monophyletic sister groups.

To date nearly 60 species of Tetraodontiformes have been cytogenetically studied 
(Sá-Gabriel and Molina 2005). Cytogenetic analyses have been carried out in 15 Bal-
istidae species, most from the Pacific region, and only few from the Western Atlantic. A 
total of ten Monacanthidae species are karyotyped, being one from the Brazilian coast.

In this work, we revise cytogenetic data for Melichthys niger (Bloch, 1786) (Bal-
istidae) and describe the karyotype and other chromosomal characteristics for Can-
therhines macrocerus (Hollard, 1853) and C. pullus (Ranzani, 1842) (Monacanthidae), 
to compare the chromosomal patterns of the families Balistidae and Monacanthidae, 
estimating their divergence level.

Material and methods

We analyzed 42 specimens of Melichthys niger and 14 of Cantherhines macrocerus, col-
lected in the Saint Peter and Saint Paul’s Archipelago (00º55’15” N, 029º20’60” W), 
1010 km from the Brazilian northeastern coast and about 1.824 km) from the African 
coast, and two specimens of Cantherhines pullus collected in the coastal region of Sal-
vador (12º 58’S, 38º 31’W), Bahia state, northeastern Brazil (Fig. 1).

The specimens were subjected to mitotic stimulation as proposed by Molina 
(2001) for a period of 24-48 hours. Mitotic chromosomes were obtained following the 
protocol developed by Gold et al. (1990). Cell suspensions obtained from fragments of 
the anterior portion of specimens’ kidney were spread onto slides with a film of water 
heated at 60oC. The active nucleolus organizer regions (NOR) were identified by silver 
nitrate staining as described by Howell and Black (1980), while the heterochromatic 
regions were visualized by C-banding (Sumner 1972). The FISH technique (accord-
ing to Pinkel et al. 1986) was performed using an 18S rDNA probe from Prochilodus 
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argenteus, Agassiz, 1829 (Hatanaka and Galetti 2004), labeled with biotin-14-dATP by 
nick translation according to the manufacturer’s instructions (BioNick Labeling Sys-
tem; Invitrogen, Carlsbad, CA, U.S.A.). The hybridization signal was detected by the 
streptavidin-fluorescein isothiocyanate conjugate. Sequential staining with AT- specific 
4’-6-diamidino-2-phenylindole (DAPI) and GC-specific Chromomycin A3 (CMA3) 
fluorochromes was performed as described by Schweizer (1980). The metaphases were 
photographed by a DP70 digital image capture system coupled to an Olympus BX50 
epifluorescence microscope. About thirty metaphases of each specimen were analyzed 
to determine the modal number of mitotic chromosomes and the karyotype. The chro-
mosomes were classified according to centromere position and organized into decreas-
ing size order, as proposed by Levan et al. (1964).

Results

The specimens of Melichthys niger showed 2n=40 chromosomes and a karyotype con-
sisting of 20 pairs of acrocentric (a) chromosomes (NF=40) (Fig. 2a). The presence 
of a conspicuous secondary constriction was observed in the interstitial position on 
the long arm of the chromosome pair No. 2, corresponding to the nucleolus organ-
izer regions (NORs), identified by Ag-NOR sites and by in situ hybridization with an 
18S rDNA ribosomal probes (Fig. 2, upper boxes). The heterochromatic blocks were 
reduced in size and dispersed in the pericentromeric regions in most of the chromo-

Figure 1. Map showing the geographic collection points of the species Melichthys niger, Cantherhines 
macrocerus and C. pullus. SPSPA – Saint Peter and Saint Paul’s Archipelago; BA – Bahia state.



Lorena Corina Bezerra de Lima et al. /  Comparative Cytogenetics 5(1): 61–69 (2011)64

Figure 2. Karyotypes of Melichthys niger (a, b), Cantherhines macrocerus (c, d) and Cantherhines pullus 
(e, f), arranged from Giemsa stained (a, c, e) and C-banded chromosomes (b, d, f). In the center high-
lighted are the NOR-bearing pairs of analyzed species (2nd, 7th and 5th, respectively) after Ag-NOR stain-
ing, in situ hybridization with an 18S rDNA probe, CMA3 and DAPI fluorescence. Bar = 5µm.

some pairs (Fig. 2b). The NORs were heterochromatic and CMA3 positive and DAPI 
negative (Fig. 2, upper boxes).

The specimens of Cantherhines macrocerus (Monacanthidae) had 2n=40 chromo-
somes and karyotype composed of a acrocentric chromosomes (Fig. 2c). Ag-NOR 
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sites were located in the pair No. 7 in interstitial region, near the centromere (Figure 
2, middle box). C-banding revealed heterochromatic blocks distributed in the peri-
centromeric region in most of the chromosome pairs (Figure 2d) and more intensively 
stained on the secondary constriction of the NOR-bearing pair. In this species, experi-
ments using FISH probes and fluorochrome staining were unsuccessful.

The specimens of C. pullus showed 2n=40 chromosomes and karyotype composed 
entirely of acrocentric chromosomes (Fig. 2e). The NORs were identified at the peri-
centromeric position of pair No. 5, as revealed by Ag-NOR-staining and FISH with an 
18S rDNA probes (Fig. 2, lower box). The heterochromatic regions were distributed in 
centrometric and pericentromeric positions in most of the chromosomes. The NORs 
sites were heterochromatic (Fig. 2f ), and CMA positive and DAPI negative (Fig. 2, low-
er box). None of the karyotypes displayed sex-related chromosome heteromorphism.

Discussion

Six out of the ten karyotyped species in the family Monacanthidae have diploid num-
bers ranging from 2n = 33/34 to 36 chromosomes. Such low 2n numbers have been a 
noticeable characteristic for Monacanthidae species. The present data for C. macrocerus 
and C. pullus increase the range of the highest 2n for representatives of this family. Sur-
veys involving a larger number of genera may confirm a possible basal karyotype with 
40 chromosomes for this family, showing on average lower diploid values than those of 
the Balistidae. Based on chromosomal number, C. macrocerus and C. pullus would be 
placed in the family Balistidae.

The karyotype of the individuals of C. macrocerus from the Saint Peter and Saint 
Paul’s Archipelago was similar to those described for specimens from the coast of 
Rio de Janeiro (Pauls 1993), even though these populations were 2000 km apart. It 
is not clear whether the common karyotype found in C. macrocerus populations is 
maintained due to gene flow by the transport of their pelagic larvae by ocean cur-
rents, as has been commonly identified for a number of reef species (Rocha 2003, 
Feitoza et al. 2005), or if they were isolated too recently to accumulate observable 
chromosomal differences.

In this study, the data obtained for Melichthys niger corroborate results described 
for the species earlier (Sá-Gabriel and Molina 2005). However, the use of a larger num-
ber of individuals of this species, observation of lower chromatid condensation and the 
use of complementary cytogenetic protocols, such as CMA3/DAPI fluorochromes and 
FISH with an 18S rDNA probes, allow more precise localization of the NOR-bearing 
pair to the 2nd largest pair of the karyotype.

The chromosomal characteristics observed in C. macrocerus, C. pullus and M. niger, 
like the presence of single NOR and the pericentromeric heterochromatin blocks as 
reported in other Tetraodontiformes (Grützner et al. 1999, Mandrioli 2000, Fischer et 
al. 2000), Perciformes (Caputo et al., 2001; Molina, 2007), Mugiliformes (Nirchio et 
al. 2009), Beryciformes (Bacurau and Molina 2004), corroborate the hypothesis that 
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these are ancestral characteristics for each of these clades and therefore not exclusive to 
the families Monacanthidae and Balistidae.

In the karyotypes of species under our study, as well as in other representatives of 
Balistidae and Monacanthidae (Sá-Gabriel and Molina 2004), extra-pericentromeric 
heterochromatic regions were present only when adjacent to or associated with the 
major ribosomal sites. Given that the constitutive heterochromatin blocks in fish chro-
mosomes are often associated with karyotype diversification (Mantovani et al. 2000; 
Molina and Bacurau 2006), it is possible that these regions present preferentially in 
peri-centromeric position in chromosomes of Balistoidea species and they are involved 
in the karyotypic differentiation of this group. The presence of heterochromatin as-
sociated with NORs in adjacent or interspersed regions (Pendás et al. 1993), as shown 
in the NOR-bearing pair in M. niger, may contribute to the occurrence of structural 
rearrangements involving NOR-bearing pairs (Vicari et al. 2003). Indeed, chromo-
some fusions have been commonly identified as the main mechanism of the karyo-
type diversification within this clade (Kitayama and Ojima 1984). Although a physical 
mapping of telomeric sequences is not yet available, the lower 2n in both Balistidae 
and Monacanthidae corroborate that centric and/or in tandem fusion events, followed 
by pericentric inversions, seem to have been important mechanisms in the karyotype 
differentiation of these post-Perciformes group.

Repetitive sequences and transposition elements are closely related to the hetero-
chromatic regions, and although account for less than 10% of the genome of the 
Tetraodontiformes studied (Brenner et al. 1993), they may be effective promoters of 
chromosomal breaks, deletions, inversions and amplifications (Lim and Simmons 
1994, Fischer et al. 2000). Knowledge regarding aspects of the Balistoidea genome is 
still limited, although it is known that, like Tetraodontidae, this clade is composed of 
species with compact genomes that evolved independently (Brainerd et al. 2001). The 
Tetraodontidae genome has been extensively studied (Crolius et al. 2000), revealing 
that the small amount of repetitive sequences is located in the centromeres and arms 
of a chromosomes. This physical disposition seems to be present in the chromosomes 
of Balistoidea and could help to explain why centromere and telomere regions would 
be prone to ocurrence of in tandem or centric fusions rearrangements. In addition to 
the aforementioned data, a large number of acrocentric chromosomes and FN near or 
slightly higher than the diploid chromosome values were observed. These character-
istics are not common in other families of the same order, such as the Tetraodontidae 
(Sá-Gabriel and Molina 2005), where pericentric inversions seem to have occurred 
more frequently.

Among the Perciformes, the presence of single interstitial NORs is common, rep-
resenting an ancestral condition (Affonso et al. 2001). Similarly, the presence of het-
erochromatin restricted to the centromeric regions is also a typical cytogenetic trait of 
this group (Molina and Galetti 2002). The location and frequency of NORs sites and 
heterochromatic regions in C. macrocerus, C. pullus and M. niger are consistent with 
the general pattern found in Perciformes species, demonstrating the apparent con-
servativeness of these characters.
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The set of cytogenetic characters already available in Monacanthidae and Balistidae 
species indicate a greater karyotypic similarities and common tendencies of karyotype 
evolution with other groups of the order Tetraodontiformes, corroborating previous 
analyses based on morphological and molecular data (Winterbottom 1974; Brainerd 
et al. 2001, Holcroft 2005; Yamanoue et al. 2008).
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