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Abstract
A new subspecies of Leptidea sinapis from Northern Iran, discovered by means of DNA barcoding, is 
described as Leptidea sinapis tabarestana ssp. nov. The new subspecies is allopatric with respect to other 
populations of L. sinapis and is genetically distinct, appearing as a well-supported sister clade to all other 
populations in COI-based phylogenetic reconstructions. Details on karyotype, genitalia, ecology and 
behaviour for the new subspecies are given and a biogeographical speciation scenario is proposed.
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Introduction

The cryptic diversity within the Leptidea sinapis (Linnaeus, 1758) complex progres-
sively came to light in recent history (Réal 1988) with the discovery of differences 
in genitalic morphology (Lorković 1993) and allozyme markers (Martin et al. 2003) 
between L. sinapis and L. reali Reissinger, 1989. It is considered one of the first docu-
mented cases of cryptic species in Europe. Since then, numerous studies have revealed 
a plethora of new information on the mechanisms of speciation within this species 
complex (Mazel 2005; Bolshakov 2006; Friberg et al. 2008), including the presence 
of an additional widespread hidden taxon, L. juvernica Williams, 1946 (e.g. Dincă et 
al. 2011, 2013, 2021; Lukhtanov et al. 2011; Šíchová et al. 2015, 2016; Vodă et al. 
2015; Shtinkov et al. 2016; Talla et al. 2017, 2019a, b; Leal et al. 2018; Platania et al. 
2020; Yoshido et al. 2020; Näsvall et al. 2021). Despite the explosion of interest in this 
group, many regions of Eurasia where Leptidea species occur are still not well sampled 
or studied. The new subspecies described in this paper was discovered accidentally in 
the course of a genetic investigation in order to determine whether any of the popula-
tions of L. sinapis in Iran belong to the related cryptic species L. juvernica.

Materials and methods

Fourteen Iranian specimens from various disjunct populations in NW and N Iran were 
selected ex. coll. A. Naderi (Tehran) and W. ten Hagen (Germany) and their legs were 
submitted for DNA barcoding. Samples were processed in the Center for Biodiversity 
Genomics in Guelph, Ontario, Canada using standard protocols and LepF/LepR prim-
ers, supplemented by failure-tracking with mini-primers (mLepF and mLepR) (Hajib-
abaei et al. 2006). Eleven additional samples from Javaherdeh (VLU396-VLU405, 
RVcoll10C196) sequenced in 2012 were later added to the dataset. The majority of these 
sequences were full length barcodes (658 bp). An additional specimen from Javaherdeh 
included later in our analysis (MR ZF 449) was isolated using the Geneaid Blood and 
Tissue kit and sequenced in the Czech Republic using RON-HCO primers, and thus 
only partially overlaps (420 bp) with the standard barcode region. Thirty-six new barcode 
sequences were submitted to GenBank (Accessions OQ359842–OQ359877). In addi-
tion to the sequences pertaining to the new taxon, a selection of 80 other samples from 
previous studies (Lukhtanov et al. 2011; Dincă et al. 2013; Shtinkov et al. 2016) repre-
senting various haplotypes of L. sinapis and several other species of Leptidea was used to 
conduct the analyses in this study (Suppl. material 1). All records are publicly available 
in the BOLD dataset “DS-SINIRAN” (https://doi.org/10.5883/DS-SINIRAN).

A Maximum Likelihood (ML) tree was generated with PHYML online (Guindon 
and Gascuel 2003) using the AIC criterion and 100 bootstrap replicates. The best-fit 
model selected by PHYML for the combined dataset (GTR + Γ + I) was further cor-
roborated by IQ-TREE (Nguyen et al. 2015), and parameters from this model were 
used to conduct a Bayesian analysis in MRBAYES 3.2.6 (Ronquist et al. 2012). The 
MCMC analysis was allowed to run for 10,000,000 generations until stationary was 

http://www.ncbi.nlm.nih.gov/nuccore/OQ359842
http://www.ncbi.nlm.nih.gov/nuccore/OQ359877
https://doi.org/10.5883/DS-SINIRAN
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reached. Convergence of parameters after the exclusion of the burnin phase was tested 
using TRACER 1.7.1 (Rambaut et al. 2018). Trees were edited using FIGTREE 1.4.4 
(Rambaut 2018). Genetic distances were calculated using the Maximum Composite 
Likelihood model in MEGA 11.0.8 (Tamura et al. 2021). A haplotype diagram only 
including L. sinapis, L. juvernica and L. reali was constructed in TCS 1.21 (Clement 
et al. 2000), with a 95% confidence limit for parsimony. Shorter barcode fragments or 
those with ambiguous bases were excluded from haplotype analyses.

Male genitalia were examined following maceration in 10% potassium hydroxide 
(KOH) for 15 minutes at 95 °C, dissection and cleaning under a stereomicroscope and 
storage in tubes with glycerol. Male genitalia were photographed in a thin layer of 30% 
ethanol (without being pressed under a cover slip), using a Carl Zeiss Stemi 2000-C 
stereomicroscope equipped with a CMEX PRO-5 DC.5000p digital camera (RV) or a 
Leica DFC450 digital camera (ZFF). Care was taken to arrange the measured structures 
parallel to the focal plane of the stereomicroscope in order to minimize the measure-
ment error. Measurements were performed based on digital photographs using the Ax-
ioVision software (Carl Zeiss MicroImaging GmbH). Eight specimens were analysed 
and the dataset was combined with data from Dincă et al. (2011) (135 specimens). 
We measured three elements of the male genitalia: phallus length (PL), saccus length 
(SL) and vinculum width (VW), known to be the most informative for differentiat-
ing Leptidea species (e.g. Dincă et al. 2011; Shtinkov et al. 2016) (Suppl. material 2). 
Bivariate scatterplots were generated using VW as a size variable (Shtinkov et al. 2016).

Chromosome preparations were made for ten adult males representing the popula-
tion from Javaherdeh (field codes VLU396-VLU405) and were processed as previously 
described (Vershinina and Lukhtanov 2010). Briefly, gonads were removed from the 
abdomen and placed into freshly prepared fixative (3:1; 96% ethanol and glacial acetic 
acid) directly after capturing the butterfly in the field. Testes were stored in the fixa-
tive for 3–36 months at +4 °C. Then the gonads were stained in 2% acetic orcein for 
30–60 days at +18–20 °C. Metaphase II (MII) and mitotic plates were examined us-
ing the original two-phase method of chromosome analysis (Lukhtanov et al. 2020a). 
Abbreviation “ca” (circa) means that the count was made with approximation due to 
overlapping of some chromosomes or due to difficulties in distinguishing between 
chromosome bivalents and trivalents. Images were edited in open source software 
GIMP 2.10.32 (The GIMP Development Team 2019) and Inkscape X11 (Inkscape 
Project 2020). Map was created using Simplemappr (Shorthouse 2010).

Results

None of the barcoded Iranian specimens belonged to L. juvernica. Specimens from 
the Iranian province of East Azerbaijan (Arasbaran) showed several haplotypes iden-
tical to those of the common and widespread Eurasian L. sinapis; however, samples 
collected across the Alborz mountains from Talesh to NE Iran represented a unique 
and well-supported COI clade that appeared as sister to a weakly-supported clade con-
taining all other L. sinapis (Figs 1, 2). A comparison of average uncorrected pairwise 
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distances between this new lineage and other Leptidea species showed that it is indeed 
genetically closer to L. sinapis (average: 0.74%; range: 0.42%–1.76%) and further 
from all the other Leptidea (Table 1).

The genitalia of the eight specimens analysed belonging to the above-men-
tioned COI lineage showed broad overlap with other specimens of L. sinapis and 
a certain degree of variability, despite their fairly restricted geographic origin (Fig. 
3). Based on the three characters measured (PL, SL, VW), the male genitalia also 
indicated a close similarity to L. sinapis, with respect to which we did not notice 
any significant differences.

Figure 1. Bayesian phylogeny of Leptidea COI barcodes. Node support values (Bayesian Posterior Probe-
bilities / ML bootstrap) are shown only for supported nodes. All sequences are 658 bp in length unless 
indicated otherwise.

L. sinapis 
tabarestana ssp. n.

L. sinapis s. str.



Leptidea sinapis tabarestana ssp. nov. 117

Figure 2. TCS haplotype network for L. sinapis, L. reali and L. juvernica.

Table 1. Average uncorrected p-distances (in % of the COI barcoding region) and standard deviation 
between Leptidea taxa.

L. duponcheli L. lactea L. morsei L. amurensis L. juvernica L. reali L. s. sinapis L. s. tabarestana

L. duponcheli (n=5) 0.27 ± 0.13
L. lactea (n=3) 5.80 ± 0.13 0.00 ± 0.00
L. morsei (n=4) 5.94 ± 0.26 2.33 ± 0.26 0.71 ± 0.44
L. amurensis (n=7) 7.40 ± 0.14 4.23 ± 0.09 3.75 ± 0.13 0.26 ± 0.16
L. juvernica (n=15) 6.29 ± 0.20 2.51 ± 0.16 3.39 ± 0.24 3.97 ± 0.15 0.30 ± 0.13
L. reali (n=7) 5.35 ± 0.16 2.33 ± 0.13 2.96 ± 0.25 3.79 ± 0.15 1.75 ± 0.16 0.21 ± 0.07
L. s. sinapis (n=44) 5.72 ± 0.18 2.71 ± 0.18 3.05 ± 0.21 3.74 ± 0.21 1.97 ± 0.21 0.92 ± 0.15 0.24 ± 0.11
L. s. tabarestana (n=21) 5.69 ± 0.18 2.76 ± 0.16 2.78 ± 0.25 4.02 ± 0.13 2.00 ± 0.17 0.96 ± 0.19 0.74 ± 0.20 0.02 ± 0.05

Considering the allopatric distribution of the new taxon with respect to L. sinapis, 
its similar genitalia, and the fact that the new taxon appears to be genetically closer and 
phylogenetically sister to the rest of L. sinapis specimens, here we describe it as a new 
subspecies of L. sinapis:

Leptidea sinapis ssp. tabarestana Nazari, Lukhtanov et Naderi, ssp. nov. 
https://zoobank.org/BED12A6B-C1D3-4897-8D40-A955333D6C7C
Fig. 4a–i

Type material. Holotype. ♂ [white label] “330d= Mazandaran- E Kojour-/Kodir – 
1000 m – 2.Jul.[20]10- / leg. A.R. Naderi”; [red label] “Holotype/ Leptidea sinapis tab-
arestana / Nazari, Lukhtanov & Naderi 2023”. BOLD Sample ID: ARPI-330d-001; 

https://zoobank.org/BED12A6B-C1D3-4897-8D40-A955333D6C7C
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Deposited in coll. National Natural History Museum & Genetic Resources of Depart-
ment of Environment, Tehran, Iran.

Paratypes. Gilan: 1♂ Damash, 1200m, 26.III.2021, leg. et coll. A.R. Naderi 
(ARPI-524b-001, AR# 254); 1♀ Khoshkab, rd. Siyahkal-Deylaman, 02.VII.1990, leg. 
et coll. Harandi. Ardabil/Gilan: 2♂♂ 1♀ Paß Ardabil-Astara (Paßhöhe, W Tunnel), 
1600m, 10.V.2010, W. ten Hagen. Tehran: 1♀ Laloon, 2000–2200 m, 30.VIII.2013, 
leg. et coll. A.R. Naderi (ARPI-408-001, AR# 186). Mazandaran: 1♂ Chalus road, 
Yush road, 40 km from Pole Zangooleh, 2400 m, 4.VII.1997, leg. & coll. A.R. Naderi 
(AR# 58); 2♂♂ Galanderoud, 1000 m, 13.VII.07, leg. & coll. A.R. Naderi; 1♂ Si-
ahkal, 03.VII.1990, leg. et coll. Harandi; 1♂ Pol-e Zanguleh – Baladeh Rd, W of Mi-
nak, 36.2254°N, 51.58409°E, 15.V.2016, leg. & coll. Z. F. Fric, Biology Centre CAS, 
Institute of Entomology (IECA) (MR ZF 449); 10♂♂ Javaherdeh (Jirkooh), 36.866, 
50.506, 24.VII.2011, leg. V. Lukhtanov & N. Shapoval, in Institut de Biologia Evo-
lutiva (CSIC-UPF), Butterfly Diversity and Evolution Lab (VLU396-VLU405); 
43♂♂, 12♀♀ ibid, in coll. Zoological Institute of Russian Academy of Sciences; 

Figure 3. Bivariate scatterplot based on male genitalia morphometry (phallus length, PL; saccus length, 
SL), using vinculum width (VW) as a size variable. L. s. tabarestana ssp. nov. overlaps broadly with 
L. s. sinapis s. str., however it is distinct from L. juvernica and L. reali. Inset: Male genitalia of L. sinapis 
tabarestana ssp. nov. (specimen MR ZF 449), showing the variables measured.
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1♂, Javaherdeh (Samamus Mt.), 14.VIII.2010, leg. V.V. Tshikolovets, in Institut 
de Biologia Evolutiva (CSIC-UPF), Butterfly Diversity and Evolution Lab (RV-
coll10C196); 1♂ Samamus Mt., 15 km S Ramsar, 1350 m, 8.VIII.2003, leg. W. ten 
Hagen; 1♂ Samamus Mt., S Rudbar, N Javaherdeh, 1500 m, 21.VI.2006, leg. W. ten 
Hagen; 1♂ Samamus Mt., 2800 m, 29.V.2009, leg. et coll. Harandi. Golestan: 1♂ 
Golestan Forest, 800–1000 m, 13.V.2001, leg. & coll. A.R. Naderi (112j, AR# 185).

Figure 4. Adults a–i L. sinapis ssp. tabarestana j–o L. sinapis ssp. sinapis a–c holotype Mazandaran: 
Kojur (♂ ARPI-330d-001) d Golestan: Golestan forest (♂ ARPI-112j-001) e Gilan: Damash (♂ ARPI-
524b-001) f Tehran: Laloon (♀ ARPI-408-001) g Mazandaran: Javaherdeh (♂ MR ZF 449) h, i Ardabil/
Gilan: Talesh (♂♀ DNAwthLeptidea001–2) j, k Iran: E. Azerbaijan prov.: Kaleybar (♂ DNAwthLep-
tidea006, ♀-004) l, m Iran: E. Azerbaijan prov.: Arasbaran (♀ ARPI-479a [not barcoded], ♂ ARPI-
456d-001) n, o Russia: Daghestan Republic (♂♀ DNAwthLeptidea010-11). Scale bar: 20 mm.
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Description. Male (Fig. 4a, b, d, e, g, h). Length of forewing 16–21 mm; ground 
colour pure white. First generation forewing upperside with a rectangular grey-black 
apical patch, veins v3 and v4 under this patch often covered with dark scales near the 
outer margin; forewing discal cell covered in grey scales that extend faintly along the costa 
towards the apex; a small dark patch near the base at the Inner margin. Hindwing upper-
side veins near the base of the wing covered with dark scales, otherwise without any other 
markings; the dark scales of the underneath show through. Forewing underside ground 
colour white with light yellowish-greenish tint at the apex, along the costa and at the dis-
cal cell except for a yellowish discoidal spot not covered in grey scales; all veins except v2 
covered with dark scales at the outer half of the wing. Hindwing underside ground colour 
greenish-yellow covered in sparse grey scales; discal cell and space s5 lighter and covered in 
fewer dark scales; a faint postdiscal band broken into two sections: a costal S- shaped part 
and a lower postdiscal section in the form of a slightly curved streak. Second generation 
similar but grey scales on the underside highly reduced, sometimes completely absent.

Female (Fig. 4f, i). Length of forewing 19–23 mm; similar to male but bigger, 
forewing apex more rounded; apical dark patch highly reduced, sometimes absent.

Male genitalia (Fig. 3 inset). Based on the eight dissections examined, the male 
genitalia appear similar to that of the nominotypical sinapis. The three elements of 
the male genitalia (phallus length, saccus length and vinculum width) measured for 
L. s. tabarestana ssp. nov. (PL: 1.47±0.07, SL: 0.60±0.06, VW: 0.71±0.04, n=8) were 
comparable to those of the nominotypical L. sinapis (PL: 1.60±0.08, SL: 0.63±0.04, 
VW: 0.79±0.05, n=48) (Suppl. material 2).

Diagnosis. Morphologically inseparable from the nominotypical L. sinapis, how-
ever the new taxon is distinguishable from it only by COI barcodes. Unlike ssp. sinapis, 
which in Iran (East Azerbaijan province) is strictly limited to humid and damp forests 
or clearings, the new subspecies is found primarily in semi-humid or even semi-dry 
mountainous habitats.

Etymology. The subspecies name is a reference to “Tabarestan”, the medieval 
name for the mountainous regions south of the Caspian coast in northern Iran and 
roughly corresponding to the modern-day province of Mazandaran, the type locality 
of L. s. tabarestana ssp. nov.

DNA barcode analysis. The COI barcodes of L. s. tabarestana ssp. nov. fall within the 
Barcode Identification Number (BIN) of L. sinapis (BOLD:AAA6298), however they form 
a unique and distinct cluster that is on average 0.74% (range: 0.42%–1.76%) distant from 
all other L. sinapis (Fig. 1). Uncorrected p-distances are smaller than those between L. sinapis 
and L. reali (0.92%) or between L. sinapis and L. juvernica (1.97%) (Table 1). Since the 
topology of ML and Bayesian trees were similar, only the Bayesian tree is shown with ML 
bootstrap values plotted on the supported nodes. In both trees, the L. s. tabarestana ssp. nov. 
clade appeared as sister to all other L. sinapis samples with strong support (Fig. 1).

Karyotype. Of the 10 specimens studied, only two samples demonstrated meta-
phase plates suitable for counting the number of chromosomes. Such a low proportion 
of adult males with dividing cells is a common phenomenon in the genus Leptidea 
and has been noted previously (Lukhtanov et al. 2011). In the sample VLU396, in 
mitotic cells, the diploid number of chromosomes was determined to be approximately 

http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAA6298


Leptidea sinapis tabarestana ssp. nov. 121

2n=ca 58. An exact diploid number could not be determined due to numerous over-
laps or contacts of chromosomes (Fig. 5).

The MI metaphase cells were not found in the studied individuals; however, MII 
metaphase plates were found in the sample VLU405. The MII plates demonstrated 
clear traces of the phenomenon for which we previously used the term inverted meiosis 
(Lukhtanov et al. 2018; 2020a, b). In this type of meiosis, heterozygosity for chro-
mosomal fusions/fissions leads to the very specific chromosomal structures at the MII 
stage, when heterozygotes retain a configuration similar to that of trivalents. Such 
trivalent-like structures were observed at the MII stage in the sample U405 (shown 
in green in Fig. 5d). The number of such trivalent-like structures reached 7, while the 
total number of chromosome entities was n = 29. If these elements are interpreted as 
trivalents, then the diploid number can be estimated as 2n = 65. If these elements are 
bivalents, then the diploid chromosome number is 2n = 58. Thus, the preliminary 
haploid number of chromosomes can be estimated as n = 29–33.

Previously, a chromosome cline was found in L. sinapis, within which the diploid 
chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in Sweden 
and in eastern Kazakhstan (Lukhtanov et al. 2011, 2018). Thus, the studied population 
from Mazandaran, Iran has an oriental variant of karyotype, that is, with a relatively 
low number of chromosomes. We were not able to study the karyotype from the Ira-
nian Talesh; however, the karyotype of the population from Yardimli in Republic of 
Azerbaijan’s Talysh region was studied previously (Lukhtanov 1992). The latter popula-
tion (Azerbaijani Talysh) demonstrated variation in the haploid chromosome number 
from n = 28 to n = 34 (Lukhtanov 1992), thus, similar to the Mazandaran population.

Distribution and ecology. So far, the presence of L. s. tabarestana ssp. nov. has 
been confirmed by DNA evidence only in northern Iran, in provinces of Ardabil, Gi-
lan, Mazandaran, Tehran and Golestan (Fig. 6). Specimens from the Talysh mountains 
in Republic of Azerbaijan, across the border from Iranian Talesh region, show the same 
karyotype and possibly belong to ssp. tabarestana, however this remains to be further 
confirmed by DNA sequencing. In Turkmenistan, even though reports of L. sinapis 
from the Kopet Dagh mountains are as of yet unconfirmed (Tshikolovets 1998), these 
also likely belong to ssp. tabarestana.

Figure 5. Karyotype of Leptidea sinapis tabarestana ssp. nov. a, b mitotic cell demonstrating ca 58 chro-
mosomes (sample VLU396) c, d MII plate demonstrating 29 entities, 22 entities were interpreted as 
bivalents (shown by blue dots on Fig. 5d) and 7 entities were interpreted as trivalents (shown by green 
dots on Fig. 4d). Scale bar: 10 μm.
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In the Iranian Talesh mountains, L. s. tabarestana ssp. nov. occurs approximately 
100 km from the closest population of the nominotypical L. sinapis in Arasbaran region. 
The habitat of ssp. tabarestana is in the Alborz forest belt, in humid meadows, forest 
river banks, forest clearings, and sometimes gardens at mountain steppes from 1000 to 
2000 m above sea level. Adults fly mostly in undisturbed or lightly-grazed habitats with 
lush of green vegetation (Fig. 7). The accompanying species include Ochlodes hyrcana 
(Christoph, 1893), Pieris napi mazandarana Eitschberger, 1987, Lasiommata adrasti-
odes (Bienert, [1870]), and Maniola jurtina (Linnaeus, 1758). It is normally found in 
two (or maybe three) generations, from April at lower altitudes to the end of September 
at higher altitudes. The early stages of L. s. tabarestana ssp. nov. are unknown, however 
adults are often seen near Lathyrus plants (AN, personal observation). Even though the 
larval host plant is likely among the herbaceous Fabaceae of the genera Lathyrus, Vicia, 
Lotus etc., it is as of yet unrecorded and thus it is unclear if ssp. tabarestana displays any 
host plant preferences different from the rest of populations of ssp. sinapis.

Discussion

Reissinger (1989) recognized twelve subspecies of L. sinapis across its range, including 
reali and juvernica, both of which were later confirmed as separate species (Dincă et al. 
2011, 2013). Since then, this complex has taken a central stage in efforts to understand 
the mechanisms of cryptic speciation in butterflies, and thus the idea of the existence 
of subspecies within L. sinapis seems to have slowly faded away. Modern taxonomic 
treatments of the group (e.g., Bozano et al. 2016) regard all populations of L. sinapis 

Figure 6. Distribution of Leptidea sinapis in E Turkey, S Caucasus and N Iran. Black dots: barcoded 
L. s. sinapis; red dots: barcoded L. s. tabarestana ssp. nov.; blue dot: karyotyped sample from Yardamli in 
Republic of Azerbaijan’s Talysh region (most likely L. s. tabarestana ssp. nov.); white dots: non-barcoded 
material, data obtained from literature or personal collections.
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from Europe to NW Mongolia as a single entity, corresponding to the nominotypical 
subspecies. It occasionally flies in sympatry with closely related and extremely similar 
species of Leptidea across its range and can be separated from them only by DNA se-
quencing and analysis of karyotype or genitalia.

In a similar vein, in this study we found no single external morphological charac-
ter or combination of characters that could reliably separate L. s. tabarestana ssp. nov. 
from the nominotypical L. sinapis. Individual variation in morphology observed with-
in L. s. tabarestana ssp. nov. is not unexpected, as similar variation can also be seen in 
L. s. sinapis, as well as other species within the genus. In the Arasbaran mountains in NW 
Iran, where the nominotypical L. sinapis is found, individuals flying in colder slopes at high 
altitudes (1700–2000 m) tend to be smaller and darker, while those found in warmer forests 
at lower altitudes (1200–1400 m) are usually larger in size and have a lighter complexion.

Recent studies have estimated the age of the most recent common ancestor (MRCA) 
of L. sinapis at 1.5 mya, and for MRCA of sinapis+juvernica at 3 mya (Talla et al. 2017). 
The subsequent dispersal of L. sinapis eastward however appears to have occurred much 
later, either before or after the Last Glacial Maximum (LGM) (24,000 to 17,000 years 
ago) (Lukhtanov et al. 2011). During the Pleistocene, dense forests covered the entire 
northern Iran, from the northwest (Azerbaijan province) across the Alborz mountains 

Figure 7. Leptidea sinapis tabarestana ssp. nov. a adult b, c habitat in Iran, Mazandaran Prov., Javaherdeh 
(Jirkooh), 24.VII.2011. Photos: V. Lukhtanov.

a c

b
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and extending further into the northeast (Kopet Dagh); However, since the Last Glacial 
Maximum (LGM; 21 kya), the Alborz mountain range has been nearly entirely isolated 
from all other regions surrounding it. Subsequent decline in forest cover resulted in 
isolated refugia in parts of southern Caucasus as well as in northern Iran (Yousefi et al. 
2015; Asadi et al. 2018; Parvizi et al. 2018; Liu et al. 2019; Saberi-Pirooz et al. 2020). 
With the likely extinction of intervening populations, the range of many butterflies 
adapted to this habitat – including the ancestral L. sinapis – became fragmented, result-
ing in the geographic and genetic isolation of L. s. tabarestana ssp. nov.

Presence of Wolbachia endosymbionts affecting mtDNA in Leptidea has been not-
ed previously (e.g. Solovyev et al. 2015) and we cannot rule out that this may have 
had an effect on our results. Further studies are needed to confirm the presence of 
L. s. tabarestana ssp. nov. in the Republic of Azerbaijan and in Turkmenistan. Potential 
sympatric occurrence of the two entities in the intervening areas in NW Iran needs 
to be investigated. If the two are found to co-occur sympatrically and synchronically 
without geneflow, or other new information (e.g., karyotype, nuDNA, morphology 
etc.) comes to light that clearly signals the two taxa to be distinct at species level, the 
taxon tabarestana may be raised as bona species.
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Šíchová J, Voleníková A, Dincă V, Nguyen P, Vila R, Sahara K, Marec F (2015) Dynamic kary-
otype evolution and unique sex determination systems in Leptidea wood white butterflies. 
BMC Evolutionary Biology (2015) 15: 89. https://doi.org/10.1186/s12862-015-0375-4
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