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Abstract
The weakness of physical barriers in the marine environment and the dispersal potential of fish populations 
have been invoked as explanations of the apparent karyotype stasis of marine Percomorpha, but several 
taxa remain poorly studied cytogenetically. To increase the chromosomal data in this fish group, we ana-
lyzed cytogenetically three widespread Atlantic species from distinct families: Chaetodipterus faber Brous-
sonet, 1782 (Ephippidae), Lutjanus synagris Linnaeus, 1758 (Lutjanidae) and Rypticus randalli Courtenay, 
1967 (Serranidae). The three species shared a karyotype composed of 2n=48 acrocentric chromosomes, 
single nucleolus organizer regions (NORs) and reduced amounts of centromeric heterochromatin. A sin-
gle NOR-bearing pair was identified in all species by physical mapping of 18S rDNA while non-syntenic 
5S rRNA genes were located at centromeric region of a single pair. The similar karyotypic macrostructure 
observed in unrelated groups of Percomorpharia reinforces the conservative karyoevolution of marine 
teleosteans. Nonetheless, the species could be differentiated based on the pair bearing ribosomal cistrons, 
revealing the importance of microstructural analyses in species with symmetric and stable karyotypes.
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Introduction

Perciformes have long been regarded as the largest order of vertebrates with nearly 10.000 
species, 1540 genera, and 160 families, most of them inhabiting the marine environment 
(Nelson 2006, Helfman et al. 2009). Recently, robust molecular studies resolved their 
phylogenetic uncertainties by placing this and other Percomorpha representatives into 11 
orders within a new supraordinal group called Percomorpharia, even though Perciformes 
remained as the most species-rich order (Betancur et al. 2013). Nonetheless, in spite of their 
ecological and evolutionary relevance, the marine representatives from this large fish group 
remain poorly studied from a cytogenetic viewpoint (Galetti et al. 2006) when compared 
to typical freshwater families (Balen et al. 2013, Cardoso et al. 2013, Gouveia et al. 2013).

In general, chromosomal studies in marine Percomorpharia reveal stable karyotypes 
composed of 2n=48 and a predominance of acrocentric pairs. Indeed, the presence of 24 
acrocentric pairs is shared by several species from distinct families of Perciformes (Affon-
so et al. 2001, Accioly and Molina 2007, 2008, Cipriano et al. 2008, Motta Neto et al. 
2011a, 2011b, 2012, Molina et al. 2012, Molina et al. 2013, Costa et al. 2016). This pat-
tern raises some intriguing questions: (1) how could such a morphologically diversified 
group evolve without significant chromosomal changes (Brum 1996, Galetti et al. 2000, 
Molina 2007)? (2) What are the advantages (if any) of maintaining stable karyotypes?

One of the hypotheses invoked to explain the conserved karyoevolution of this fish 
group refers to their biological traits, such as the absence or fragility of physical barriers 
in oceans that favor the connectivity among populations, wide range of most species 
and chromosomal or genomic peculiarities (Molina 2007). In fact, freshwater families 
of Percomorpha, like Cichlidae, are characterized by higher karyotype variation than 
marine groups, corroborating the role of allopatric evolution in the process of chromo-
some differentiation (Brum and Galetti 1997, Feldberg et al. 2003).

On the other hand, most families of marine Percomorpharia have been divided 
into two groups based on the rate of karyotype changes, comprising families of high 
karyotype stability or with moderate rates of karyoevolution (Molina et al. 2014). 
Nonetheless, several species and families lack basic cytogenetic information and re-
fined analyses of chromosomal microstructure are particularly rare in marine fish, thus 
restraining evolutionary inferences and the extent of their conservative karyoevolution.

To test the corollary that the high dispersal and gene flow associated with the 
weakness of geographic barriers accounts for the chromosomal stasis in marine Perco-
morpharia groups, we analyzed cytogenetically three widespread Atlantic species from 
distinct families: Chaetodipterus faber (Ephippidae), Lutjanus synagris (Lutjanidae) and 
Rypticus randalli (Serranidae). Besides inferring their karyoevolutionary pathways, we 
provided the first cytogenetic report in C. faber and R. randalli.
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Methods

The specimens of Chaetodipterus faber (N=7, 1♀, 6 unidentified sex), Lutjanus synagris 
(N=8, 4♀, 4 unidentified sex), and Rypticus randalli (N=10, 3♂, 2♀, 5 unidentified 
sex) were collected by gillnets and snorkeling in Camamu Bay and Boipeba Island, 
located on the coast of Bahia, northeastern Brazil, South Atlantic. The vouchers were 
deposited in the Laboratory of Genetics of Aquatic Organisms (LAGOA) from Uni-
versidade Estadual do Sudoeste da Bahia, in Jequié, Bahia.

After collection, the specimens were mitotically stimulated by inoculation of fun-
gal antigens and kept in fish tanks for 24 to 72 h (Lee and Elder 1980). After eutha-
nasia in iced water (Blessing et al. 2010), the anterior kidney was removed and used to 
obtain mitotic chromosomes (Netto et al. 2007, Blanco et al. 2012). These procedures 
were approved by the Committee of Animal Ethics (CEUA/UESB) from Universidade 
Estadual do Sudoeste da Bahia (71/2014).

The heterochromatin regions were visualized by C-banding (Sumner 1972) while ac-
tive nucleolus organizer regions (NORs) were detected by silver nitrate staining (Howell 
and Black 1980). The sequences of 18S and 5S rRNA genes were mapped simultaneous-
ly onto chromosomes by double fluorescence in situ hybridization (FISH) with a strin-
gency of 77% (Pinkel et al. 1986). The 18S and 5S ribosomal sequences were obtained 
via polymerase chain reaction (PCR) using samples of genomic DNA of Moenkhausia 
sanctaefilomenae and labeled with16-dUTP–biotin and digoxigenin-11-dUTP (Roche®), 
respectively. The signal detection was accomplished by using fluorescein isothiocyanate-
avidin conjugate (Sigma-Aldrich®) for 18S and anti-digoxigenin-Rhodamine (Roche®) 
for 5S rDNA. The chromosomes were counterstained using 4'6-diamidino-2-phenylin-
dole (DAPI) at 0.2 mg/mL in Vectashield Mounting Medium (Vector®).

The metaphase spreads were photographed using an epifluorescence microscope 
Olympus BX-51 equipped with the software ImagePro-Plus v. 6.2. (Media Cybernet-
ics).The chromosomes were classified according to their arm ratio (Levan et al. 1964) 
and organized into pairs by decreasing size order in karyotypes.

Results

The species C. faber, L. synagris, and R. randalli share a modal diploid number of 2n = 
48, composed exclusively of acrocentric chromosomes (Figure 1). The heterochromatin 
distribution is reduced, being located at centromeric or pericentromeric regions of most 
chromosomes in the three species (Figure 1A, B, C). Particularly, C. faber showed con-
spicuous heterochromatic blocks in pair 3, being coincident with NORs (Figure 1A, box).

Single NORs were invariably detected, but located at distinct pairs according to each 
species (Figure 1A, 1B, 1C, Box). The NORs in C. faber were located at interstitial position 
on long arms of pair 3 (Figure 1A, box). On the other hand, the NOR-bearing pair corre-
sponds to the 23rd pair in L. synagris, with marks at interstitial region close to centromeres, 
in agreement with secondary constrictions revealed by Giemsa-staining (Figure 1B, box). 
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Figure 1. Karyotypes of Chaetodipterus faber (A), Lutjanus synagris (B), and Rypticus randalli (C) with 
2n=48 acrocentric chromosomes after conventional Giemsa-staining (top), C-banding (center) and dou-
ble FISH with 18S (green signals) and 5S (magenta signals) rDNA probes (bottom). In boxes, the pairs 
bearing nucleolus organizer regions after silver nitrate staining (Ag-NORs).

In R. randalli, the NORs were detected at pericentromeric region of pair 20, being charac-
terized by size heteromorphism between homologous (Figure 1C, box).

The 18S rDNA sites were located at interstitial positions on the long arms of pairs 
3, 20, and 23 in C. faber, R. randalli, and L. synagris, respectively. Size differences in the 
18S rDNA clusters between homologs were observed in C. faber and R. randalli, as also 
revealed by silver nitrate staining (Figure 1A, 1B, 1C). The 5S rDNA sequences were 
mapped at pericentromeric region on long arms of all studied species, corresponding 
to the pairs 15 in C. faber, 21 in L. synagris and 14 in R. randalli (Figure 1A, 1B, 1C).

Discussion

The three species studied in the present work shared a karyotype composed of 24 pairs 
of acrocentric chromosomes, regarded as a plesiomorphic feature for Perciformes sensu 
Nelson 2006 (Brum 1996, Galetti et al. 2006, Molina 2007, Arai 2011) in spite of the 
derived position of some representatives in phylogenetic studies. Indeed, according to 
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the recent classification of bony fish, C. faber (Ephippidae) would belong to a distinct 
order (Ephippiformes) while Lutjanidae has been placed apart from other Perciformes 
families (e.g. Serranidae) within Percomorpharia (Betancur et al. 2013). Indeed, this 
symplesiomorphic karyotype has been commonly reported in serranids (groupers and 
allies) (Molina et al. 2002), just like herein described for R. randalli.

Likewise, lutjanids (snappers) from the Brazilian coast invariably present 2n=48 
acrocentric chromosomes (Rocha and Molina 2008), as corroborated by our data in L. 
synagris. However, cytogenetic studies in Caribbean populations of L. synagris revealed 
an additional karyomorph with 2n=47 (1 metacentric and 46 acrocentric chromo-
somes), characterizing a polymorphic condition (Nirchio et al. 2008).

The karyotypic results in C. faber represent the first cytogenetic data in the order 
Ephippiformes (Betancur et al. 2013), which constrains inferences about chromosom-
al evolution in this group. Nonetheless, the karyotype macrostructure of this species 
follows the common trend observed in most Percomorpharia groups (e.g. Haemulidae, 
Scianidae, Lutjanidae and Serranidae) (Nirchio et al. 2014).

Besides the role of dispersal and formation of large populations (Molina 2007), some 
authors have inferred that speciation driven mainly by ecological features rather than by 
genetic isolation per se could result in a high number of species with similar karyotypes, 
as proposed for Haemulidae and Lutjanidae (Rocha and Molina 2008, Motta Neto et 
al. 2012). Moreover, intrinsic genome features could favor a conserved karyoevolution 
in these marine fish families. In common, most of studied species with basal karyotypes 
are poor in heterochromatin content and other repetitive sequences, which have been 
associated with the dynamics and rates of chromosomal changes (Molina 2007, Costa et 
al. 2013). However, detailed studies of karyotype microstructure are scarce for most ma-
rine fish species. Thus, microstructural chromosomal changes not affecting the number 
and morphology of chromosomes could remain undetected, misleading to the apparent 
chromosomal stability in Perciformes and allies (Nirchio et al. 2014). Therefore, chro-
mosomal studies including banding methods and mapping of specific DNA sequences, 
as carried out in the present study, are particularly important to infer the karyotype struc-
ture of Percomorpharia and the evolutionary forces that could determine interspecific 
variation in spite of the conservativeness of karyotype macrostructure.

The nucleolus organizer regions (NORs) are considered a highly informative cy-
togenetic marker in teleosteans (Gornung 2008). The presence of single NORs at peri-
centromeric region is considered the plesiomorphic condition for several families in 
Percomorpharia, particularly those characterized by species with 2n=48a (Affonso et 
al. 2001, Motta Neto et al. 2011b, Molina et al. 2013), as also supported by the pre-
sent results of 18S rDNA FISH and silver nitrate staining. In the case of L. synagris, the 
pattern of distribution of ribosomal genes was similar to that previously described for 
other populations in Brazil (Costa et al. 2016). Similarly, NOR size heteromorphism 
between homologous chromosomes in other fish species bearing single 18S rDNA 
clusters (Foresti et al. 1981) is widespread, as also detected in this report. Usually, this 
polymorphism is related to spontaneous duplications/deletions or unequal crossover 
between homologous (Affonso et al. 2002).
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On the other hand, the NOR-bearing pair seems to differ according to each species 
in some families, like Lutjanidae (Costa et al. 2016) and Serranidae (Molina et al. 2002). 
Accordingly, in spite of sharing the same karyotype macrostructure and the number of 
18S rDNA sites, the three species herein studied could be distinguished by the NOR-
bearing pair (3 in C. faber, 23 in L. synagris, and 20 in R. randalli). Even though the 
precise establishment of pairs is hindered by the subtle size differences of acrocentric 
chromosomes, thereby being susceptible to some degree of subjectivity, the NOR-
bearing pairs in the species clearly belong to distinctive categories according to size, 
ranging from large (C. faber) to small (L. synagris) pairs.

The identification of 5S rRNA genes was also informative to the karyotypic analy-
ses of studied species. As commonly reported in marine fish, particularly Perciformes 
(Motta Neto et al. 2011a, Martins et al. 2011, Molina et al. 2013), the 5S rDNA 
clusters were non-syntenic to NORs and located close to centromeres, revealing their 
independent evolution in relation to 18S rDNA. Apparently, this trend is widespread 
in Percomorpharia once it was identified in distinct orders according to the recent 
phylogenetic tree of teleosteans (Betancur et al. 2013). As observed for 18S rDNA, 
the pairs carrying 5S rDNA clusters also differed among each species suggesting they 
represent species-specific markers, even though the pairs were more similar in size (15 
in C. faber, 21 in L. synagris, and 14 in R. randalli).

In conclusion, the present results highlight the extensive karyotype macrostructure 
stasis in marine Percomorpha, since several cytogenetic features were shared by three spe-
cies from distinct families and groups within Percomorpharia, corroborating the hypoth-
esis of conserved karyotype macrostructure in widespread marine species. However, the 
evolutionary dynamics of ribosomal genes seem to play a major role in the cytotaxonomy 
of marine fish, as pointed out in typical marine families with basal karyotypes like Lutja-
nidae (Costa et al. 2016). Therefore, the mapping of distinct classes of repetitive DNA is 
highly recommended to provide a reliable scenario about the chromosomal evolution of 
groups with apparent stable karyotypes, as Perciformes and their allies.
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