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Abstract
Polyploidy, the possession of more than two sets of chromosomes, is a major biological process affecting 
plant evolution and diversification. In the Cactaceae, genome doubling has also been associated with re-
productive isolation, changes in breeding systems, colonization ability, and speciation. Pachycereus pringlei 
(S. Watson, 1885) Britton & Rose, 1909, is a columnar cactus that has long drawn the attention of 
ecologists, geneticists, and systematists due to its wide distribution range and remarkable assortment of 
breeding systems in the Mexican Sonoran Desert and the Baja California Peninsula (BCP). However, 
several important evolutionary questions, such as the distribution of chromosome numbers and whether 
the diploid condition is dominant over a potential polyploid condition driving the evolution and diversity 
in floral morphology and breeding systems in this cactus, are still unclear. In this study, we determined 
chromosome numbers in 11 localities encompassing virtually the entire geographic range of distribution 
of P. pringlei. Our data revealed the first diploid (2n = 22) count in this species restricted to the herm-
aphroditic populations of Catalana (ICA) and Cerralvo (ICE) Islands, whereas the tetraploid (2n = 44) 
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condition is consistently distributed throughout the BCP and mainland Sonora populations distinguished 
by a non-hermaphroditic breeding system. These results validate a wider distribution of polyploid relative 
to diploid individuals and a shift in breeding systems coupled with polyploidisation. Considering that 
the diploid base number and hermaphroditism are the proposed ancestral conditions in Cactaceae, we 
suggest that ICE and ICA populations represent the relicts of a southern diploid ancestor from which 
both polyploidy and unisexuality evolved in mainland BCP, facilitating the northward expansion of this 
species. This cytogeographic distribution in conjunction with differences in floral attributes suggests the 
distinction of the diploid populations as a new taxonomic entity. We suggest that chromosome doubling 
in conjunction with allopatric distribution, differences in neutral genetic variation, floral traits, and breed-
ing systems has driven the reproductive isolation, evolution, and diversification of this columnar cactus.
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Introduction

Polyploidy and hybridisation are major biological events in plant evolution and spe-
ciation (Grant 1981, Wendel and Doyle 2005), often leading to complex patterns of 
genetic diversity, reproductive isolation, and discrepancy in breeding systems (De Wet 
1971, Tate et al. 2005, Marques et al. 2014). Therefore, studies focusing on changes 
in chromosome numbers are instrumental to identify reproductive variability and dis-
tribution of different cytotypes at the intra- and inter-population levels and to make 
inferences about the origins of polyploids.

The Cactaceae, a family with approximately 1,430 species (Hunt et al. 2006), 
exhibits an extensive habitat radiation and reproductive versatility linked to striking 
specialized floral morphology (Cota-Sánchez and Croutch 2008, Almeida et al. 2013) 
and variation in chromosome numbers (Cota 1991, Baker et al. 2009a). As stated by 
Stebbins (1950, p. 369), “polyploidy ... is one of the quickest biological process pro-
ducing totally different and more vigorous and well-adapted genotypes.” In the same 
way, polyploidy, along with variation in breeding systems, has been considered an im-
portant factor directing the evolutionary history and disparity of the Cactaceae, often 
resulting in the formation of new species (Baker and Pinkava 1987, 1999, Baker 2002, 
2006). Remarkably, approximately 28% (154 out of 551 species) of cacti cytologi-
cally investigated have increased genome dosage, primarily in subfamily Opuntioideae 
(Rebman and Pinkava 2001). Genome doubling prompts the evolution of some sexual 
systems in the Cactaceae, i.e., gynodioecy and trioecy (Rebman and Pinkava 2001), 
and additional chromosome sets have been correlated with physiology and differences 
in morphological and geographic distribution. For example, polyploidy in cacti allows 
the adaptation to freezing temperatures (Cota-Sánchez 2002), taxonomic diversifica-
tion (Majure et al. 2012), the colonization of higher latitudes (Cota and Philbrick 
1994), wider geographical range (Barthlott and Taylor 1995, Cota-Sánchez and Bom-
fim-Patrício 2010), and acts as a predictor of responses to environment and evolution 
(Segura et al. 2007). However, for many taxa with wide ecological and geographic 
distribution the role and extent of polyploidy is still unknown because different ploidy 



Variation in chromosome number and breeding systems: implications for diversification... 63

levels come to light only after a cytological survey has been made across populations in 
an extensive geographic area.

Surveys of chromosome variation, both numerical and structural, have been suc-
cessfully applied in systematic studies of the Cactaceae (Pinkava et al. 1977, Pinkava 
and Parfitt 1982, Mazzola et al. 1988). Chromosomal structural rearrangements in 
the cactus family vary from translocations in Opuntia leptocaulis de Candolle, 1828 
(Pinkava et al. 1985) and inversions in O. curvospina Griffiths, 1916 (Pinkava et al. 
1973) to cryptic structural changes in Pyrrhocactus (A. Berger, 1929) Backeberg et 
F.M. Knuth, 1935 (Las Peñas et al. 2008) and stable nuclear content of DNA in 
species of Mammillaria Haworth, 1812 (Christian et al. 2006). Similarly, analyses 
of meiotic chromosome behavior and polyploidy have been effective in addressing 
taxonomic problems in several genera and the hybrid status of Opuntia × spinosi-
bacca M.S. Anthony, 1956 (Pinkava and Parfitt 1988). The natural history of cacti 
has also involved karyotypic studies to clarify species boundaries, the correlation of 
geographic range with ploidy levels and morphology, and phylogenetic relationships 
(Beard 1937, Grant and Grant 1979, Parfitt 1987, Cid and Palomino 1996, Das 
1999, Baker and Johnson 2000, Baker and Cloud-Hughes 2014, Stock et al. 2014, 
Wellard 2016). Yet, there are still numerous cacti for which cytological information 
remains unknown.

The columnar cactus Pachycereus pringlei (S. Watson, 1885) Britton & Rose, 1909, 
has been an excellent model plant for ecological and evolutionary studies because this 
species has an extensive distribution range in the Mexican portion of the Sonoran De-
sert (Turner et al. 1995, Drezner and Lazarus 2008). Unlike most cacti, this taxon ex-
hibits variation in genders and breeding systems (Fleming et al. 1998, Medel-Narváez 
2008, Gutiérrez-Flores et al. 2016, 2017). While the vegetative morphological vari-
ability in this species is seemingly conservative to the extent that the species can be 
easily recognized by these attributes, the existence of polymorphism in floral traits 
associated with breeding systems and geographic distribution of populations is highly 
diverse, suggesting reproductive isolation (Gutiérrez-Flores et al. 2017). Recent stud-
ies of neutral genetic variation (Gutiérrez-Flores 2015, Gutiérrez-Flores et al. 2016) 
identified five genetic populations of P. pringlei unexpectedly associated with different 
breeding systems, namely two hermaphrodite populations restricted to Catalana and 
Cerralvo Islands in the Gulf of California, a mainly dioecious assemblage in Cabo San 
Lucas (CBS) at the tip of the BCP, another trioecious cohort from CBS to northern 
BCP (~28°N), and a mostly gynodioecious population in northern BCP and the coast 
of Sonora in mainland Mexico.

The biogeographic distribution pattern of P. pringlei has been driven by long-
standing climatic fluctuations associated with differential colonization abilities of 
genders, geographic variation of selfing and outcrossing rates, and the effect of biotic 
and abiotic factors (Gutiérrez-Flores et al. 2016, 2017). As a result, the spatial seg-
regation of genders in P. pringlei has long been a magnet to ecologists, geneticists, 
and systematists (Fleming et al. 1994, 1998, Molina-Freaner et al. 2003, Gutiérrez-
Flores et al. 2016, 2017). Even so, several important evolutionary questions, such 
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as the distribution of chromosome numbers and whether the diploid condition is 
dominant over a polyploid condition influencing the evolution and diversity of this 
cactus, remain unclear.

Chromosome counts and allozyme data have revealed that Pachycereus pringlei is 
tetraploid (2n = 44), but these reports are supported by scanty evidence from north-
ern BCP at El Rosario (Pinkava et al. 1973) and another site in mainland Mexico in 
Bahía Kino (Murawski et al. 1994). Consequently, chromosome numbers in the vast 
area of distribution in the BCP remain unexplored. Moreover, to date there is no 
record indicating the existence of the family’s base chromosome number (n = 11) in 
this species. Since the characterization of the geographic distribution and potential 
variability of ploidy levels is useful to gain new insights into the natural history of 
this long-lived cactus in connection with the distribution of reproductive systems and 
genetic variation, in this paper we present a survey of chromosome numbers in new 
and different populations of P. pringlei throughout the BCP and mainland Mexico. 
We combine cytological data with information about breeding systems and floral and 
genetic diversity to discuss their relationships and role in the diversification and evo-
lution of this species. Explicitly, the goals of the study were 1) to expand knowledge 
about the geographic distribution and possible variation in chromosome numbers 
(diploid versus polyploid cytotypes) throughout the geographic range of P. pringlei 
and 2) to examine the correspondence of ploidy levels with genetic populations, floral 
attributes, and breeding systems. When appropriate, a discussion dealing with taxo-
nomic implications of variation in chromosome number with respect to morphologi-
cal traits is included.

Material and methods

The study species

Pachycereus pringlei, a cactus commonly known as Cardón, is circumscribed within 
the subfamily Cactoideae. The species dominates rocky slopes and alluvial plains in 
the deserts of the BCP, most islands of the Gulf of California, and coastal areas of 
mainland Sonora, Mexico (Turner et al. 1995, Gutiérrez-Flores et al. 2017). Old 
plants reach an average height of eight to nine m, have an impressive candelabra-like 
shape (Fig. 1A), and bear from a few to up to 30 large branches (Bravo-Hollis and 
Sánchez-Mejorada 1991). The flowering season is from late March to early June with 
a peak from late April to mid-May. The flowers are white to cream in color (Fig. 1B) 
with abundant nectar and pollen, open early in the evening, and are pollinated by the 
long-nosed bat Leptonycteris yerbabuenae Martínez & Villa-R., 1940 (Phyllostomi-
dae: Glossophaginae (Fig. 1C); however, the blossoms persist open for several hours 
the next morning allowing visits from diurnal pollinators, such as birds and insects, 
mainly bees (Fleming et al. 1996, 1998). The large, fleshy fruits with red pulp (Fig. 
1D) attract frugivorous animals, facilitating seed dispersal.
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Figure 1. Typical vegetative and floral morphology of the emblematic cactus Pachycereus pringlei. A Mature 
individual with candelabra-like structure in the Cataviña region. B Archetypal funnel-form flower. C Main 
pollinator, the long-nosed bat Leptonycteris yerbabuenae. D Mature, fleshy fruit. Photo A by Jon Rebman; 
photo C by Merlin D. Tutle.

Inspection of chromosome numbers

The chromosome numbers inspected in this study were obtained from individual plants 
from natural populations across the wide distributional range of P. pringlei encompass-
ing variation in ecology, latitude, and longitude as well as floral morphology, breeding 
systems, and levels of genetic diversity. Fruits with mature seeds were collected in the 
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field from three to 10 individuals in the following localities of the BCP: Bahía de Los 
Ángeles (BAN), Cabo San Lucas (CBS), Catalana Island (ICA), Cerralvo Island (ICE), 
El Comitán (COM), López Mateos (LMA), Loreto (LOR), San Felipe (SFE), Puente 
Querétaro (PQU), and Santa Rosalía (SRO). Also, one fruit collected in mainland 
Mexico from one locality, Álamos (ALA), Sonora, was scrutinised (Table 1). We also 
included one previous count by Pinkava et al. (1973) from El Rosario (ROS) and an 
allozymatic inference of the ploidy level by Murawski et al. (1994) from Bahía Kino 
(BKI) (Table 1) for a grand total of 13 locations. The distance among the different 
sample sites varies from 20 km between López Mateos (LMA) and Puente Querétaro 
(PQU) to 983.7 km between Cabo San Lucas (CBS) and San Felipe (SFE).

Mitotic chromosome numbers were determined using meristematic cells from fresh 
root tips following a modified protocol by Cota et al. (1996). Approximately 30 seeds 
per fruit were first rinsed with 10 % commercial bleach (NaClO) and then germinated 
in Petri dishes with moistened filter paper under controlled greenhouse conditions. The 
one-week-old root tips of ca. 1 cm in length were trimmed and immersed in Colchicine 
0.2 % to arrest chromosomes at metaphase and kept at 4 °C for 2–4 h, then rinsed twice 
with distilled water and fixed in Carnoy’s fluid (3:1 ethanol 95 % and glacial acetic 
acid v/v) overnight. Next, the roots were rinsed with distilled water, hydrolysed in 1N 
HCl at 60 °C, rinsed twice with distilled water, and stained with aceto-orcein at room 
temperature for 1 h. Semi-permanent slides were prepared by squashing root tips in 
Hoyer’s medium and then examined in a Zeiss Axio Imager Z1 microscope (Carl Zeiss, 
Toronto, ON, Canada) at 40×, 60×, and 100× (immersion oil). Photographs were taken 
using an AxioCam MRm charge-coupled digital CCD camera and AxioVision 4.8 im-
aging software. Chromosome size was estimated using the measuring tool available in 
the AxioVision 4.8 imaging software to add the corresponding scale bar to the pictures. 
For consistency, meiotic chromosome counts in CBS were also performed in anthers 
from mature flower buds of one hermaphrodite and two male plants.

For meiotic figures and counts, anthers from floral buds at different developmental 
stages were fixed in Carnoy’s solution, then stained with aceto-orcein at room tempera-
ture for 1 h, squashed, mounted in Hoyer’s medium and microscopically examined as 
indicated above. A minimum of three cytological figures from different individuals 
were scrutinized in each population for confirmation of chromosome number. Finally, 
the geographic distribution of diploid and polyploid cytotypes from the localities ex-
amined was plotted on a base map obtained from the Comisión Nacional para el 
Conocimiento y Uso de la Biodiversidad (CONABIO, http://www.conabio.gob.mx) 
using the ArcGIS 10.4 software (ESRI).

Idiogram construction

Idiograms were reconstructed based on microscopic observation of mitotic figures. Chro-
mosome homology for diploid and tetraploid cytotypes follows Cota and Wallace (1995), 
which is based on similarities in morphology, length, and centromere position, the pri-
mary physical features used because no satellites or secondary constrictions were detected.

http://www.conabio.gob.mx
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Phenotypic variation in floral characters

To compare floral variability among diploid and polyploid populations of P. pringlei, 
17 floral traits were selected and a one-way ANOVA of morphological attributes from 
flowers gathered for the five genetic populations fide Gutiérrez-Flores et al. (2017) was 
performed. Only data from bisexual flowers were used to avoid potential misinterpre-
tations due to gender variation. Measurements of floral phenotypic traits and ANOVA 
tests are summarized in Table 2.

Results

Chromosome number and morphology

Chromosome counts performed in the populations of P. pringlei investigated revealed 
variation in ploidy level. Foremost, our survey unveiled the first diploid (2n = 2x = 22) 
count for this species and expanded the current cytological knowledge with additional 
tetraploid (2n = 4x = 44) cytotypes in different localities of the BCP. The diploid 
counts were consistently determined in all mitotic cells in plants from Cerralvo (ICE) 
and Catalana (ICA) Islands (Figs 2, 3; Table 1), which are composed of hermaphrodite 
populations. Double chromosome dosage was found in all the remaining populations 

Table 1. Sample sites of the columnar cactus Pachycereus pringlei for which chromosome numbers were 
investigated, including counts by Pinkava et al. 1973 (†) and Murawski et al. 1994 (*). All diploid counts 
represent new reports for this species. Breeding systems, genetic diversity and genetic populations accord-
ing to Gutiérrez-Flores et al. (2016). ND = not determined.

Locality Code Latitude Longitude Chromosome 
number

Ploidy 
level

Breeding 
system

Genetic 
diversity

Genetic 
population

Cabo San 
Lucas CBS 22.9438 -109.9905 2n = 44 Tetraploid Mainly 

dioecious 0.38 CBS

Catalana 
Island ICA 25.6768 -110.8087 2n = 22 Diploid Herma

phroditic 0.40 ICA

Cerralvo Island ICE 24.1868 -109.8775 2n = 22 Diploid Herma
phroditic 0.26 ICE

El Comitán COM 24.1332 -110.4317 2n = 44 Tetraploid

Mainly 
trioecious

0.45

South
López Mateos LMA 25.2726 -111.8942 2n = 44 Tetraploid 0.45
Loreto LOR 25.8918 -111.4698 2n = 44 Tetraploid ND
Puente 
Querétaro PQU 25.3508 -111.6094 2n = 44 Tetraploid 0.45

Santa Rosalía SRO 27.2408 -112.3615 2n = 44 Tetraploid

Mainly 
gynodio

ecious

ND

North

Bahía de Los 
Ángeles BAN 28.9164 -113.5541 2n = 44 Tetraploid 0.35

El Rosario ROS 30.0861 -115.6795 n = 22 Tetraploid† ND
San Felipe SFE 30.3716 -114.8537 2n = 44 Tetraploid 0.35
Álamos ALA 26.8978 -109.4578 2n = 44 Tetraploid 0.35
Bahía Kino BKI 28.5000 -111.8063 ND Tetraploid* ND
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Table 2. Measurements of phenotypic floral traits, including sample size (mean ± SE) and statistical 
comparisons of bisexual flowers between diploid (ICE, ICA) and polyploid (CBS, SOUTH, NORTH) 
populations of Pachycereus pringlei in the Baja California Peninsula, Mexico. Lower case superscript letters 
indicate floral characters having statistically significant differences.

Floral trait
Diploid Polyploid

ICE ICA CBS SOUTH NORTH
n = 50 n = 35 n = 7 n = 20 n = 38

Corolla width (mm) 33.3 ± 0.7 36.2 ± 0.9 29.4 ± 1.2 33.1 ± 1.0 36.0 ± 0.7
Floral length (mm) 90.7 ± 1.2 86.8 ± 0.4 76.4 ± 2.8 85.1 ± 2.1 96.2 ± 1.5
Nectary length (mm) 12.9 ± 0.3 13.0 ± 0.3 9.2 ± 0.4 11.9 ± 0.4 13.0 ± 0.3
Nectary width (mm) 11.1 ± 0.2b 10.7 ± 0.3b 8.7 ± 0.5a 9.3 ± 0.2a 9.9 ± 0.3a

No. of pollen grains (x106) 2.8 ± 0.3c 2.3 ± 0.2cb 1.0 ± 0.2a 1.3 ± 0.2a 1.6 ± 0.2ab

No. of stamens (in 0.5 cm2) 48.6 ± 1.0ab 43.0 ± 1.8a 49.0 ± 3.14ab 53.4 ± 1.9b 51.6 ± 2.0b

No. of tepals 49.9 ± 0.6 46.7 ± 1.2 44.3 ± 1.6 47.9 ± 1.4 49.9 ± 0.8
P:O ratio (x103 ) 2337 ± 255b 2638 ± 307b 1178 ± 289a 911 ± 117a 2166 ± 203a

Stamen length (mm) 10.0 ± 0.2 10.2 ± 0.2 11.9 ± 0.7 10.0 ± 0.2 10.9 ± 0.2
Tepal length (mm) 23.0 ± 0.4 23.5 ± 0.4 19.0 ± 0.6 20.4 ± 0.6 23.0 ± 0.5
Tepal width (mm) 7.7 ± 0.3 8.1 ± 0.3 5.9 ± 0.3 8.0 ± 0.3 9.1 ± 0.2
Ovary length (mm) 14.0 ± 0.4 9.4 ± 0.4 8.3 ± 0.7 13.4 ± 0.7 15.5 ± 0.5
Ovary width (mm) 8.9 ± 0.3 7.9 ± 0.3 8.1 ± 0.5 8.7 ± 0.4 9.6 ± 0.3
Pistil length (mm) 44.6 ± 0.7 47.1 ± 0.9 43.8 ± 1.2 47.9 ± 1.4 51.0 ± 0.9
Stigma length (mm) 9.8 ± 0.3 8.8 ± 0.3 7.7 ± 0.5 8.9 ± 0.3 10.7 ± 0.4
No. of ovules (mm) 1550 ± 66b 907 ± 40a 849 ± 115a 1505 ± 118b 1614 ± 112b

Stamen-stigma distance (mm) 0.5 ± 0.5a 2.0 ± 0.6ab 1.5 ± 1.1ab 4.2 ± 1.0bc 5.4 ± 0.6c

investigated from both the BCP and mainland Mexico (Figs 2, 3; Table 1). All counts 
performed in pollen grains from flower buds were diploid (n = x = 22), and no ab-
normal figures or disruptive cell divisions were noted. These observations supported 
tetraploidy in two male individuals and one hermaphrodite plant from CBS.

The overall morphology of mitotic chromosomes for diploid and tetraploid cy-
totypes of this columnar cactus is, in general, symmetric and uniform in shape, i.e., 
chromosomes are mostly metacentric (M) with a few submetacentric (SM) and rela-
tively small in size (measuring in average 2µm in length) (Figs 2, 4). No visible physi-
cal structural differences or secondary constrictions (satellites) were detected in any 
of the diploid and polyploid populations investigated. The karyotype in diploid and 
tetraploid populations is also symmetric (Fig. 4) and the variation mainly involves nu-
merical changes with insignificant differences in chromosome shape and proportions.

Phenotypic variation in floral characters

Morphological comparisons of bisexual flowers among populations revealed a few sig-
nificant statistical differences that can be associated with variation in ploidy level. For 
instance, diploid individuals from ICE and ICA have wider nectaries (11.1 ± 0.2 and 10.7 
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Figure 2. Representative metaphase chromosomes of Pachycereus pringlei. Cerralvo Island (ICE) and 
Catalana Island (ICA) are the sole localities for diploid cytotypes. Remaining pictures in plate are typical 
chromosomes in different tetraploid populations. Scale Bar: 2 µm.

± 0.3 mm, respectively) and larger P:O ratios (2,337 ± 255 and 2,638 ± 307, respectively). 
The diploid cytotypes also tend to have larger amount of pollen grains (2.8 x106 and 2.3 
x106, respectively), fewer number of stamens (48.6 ± 1.0, and 43.0 ± 1.8, respectively), 
fewer number of ovules (1,550 ± 66 and 907 ± 40, respectively), and closer proximity 
between stamen and stigmas (0.5 ± 0.5 and 2.0 ± 0.6 mm, respectively). See also Table 2.

Discussion

Geographic and range expansion of chromosome numbers in P. pringlei

Chromosome number variation, especially polyploidy, is one of the major biological 
processes that has affected angiosperm evolution (Stebbins 1971), leading to different 
or new evolutionary lines promoting new genome combinations in organisms (Wen-
del and Doyle 2005), including the Cactaceae (Cota and Philbrick 1994). The signifi-
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Figure 3. Distribution of diploid and tetraploid individuals in populations (black dots) of Pachycereus 
pringlei. Dark gray areas in ICA and ICE indicate distribution of diploid (2n = 22) cytotypes. Diagonal 
shaded area indicates the predicted coverage of tetraploid (2n = 44) cytotypes. See Table 1 for full names 
of the abbreviated localities indicated in the map.

cance of polyploidy in the cactus family is more evident in the subfamily Opuntioideae, 
in which polyploid taxa, primarily in the genus Opuntia Miller, 1754 (Pinkava and 
McLeod 1971, Pinkava et al. 1973, 1998, Baker and Pinkava 1987, Baker et al. 2009b, 
Majure et al. 2012), are common. In subfamily Cactoideae, polyploidy is more spo-
radic despite the large number of species circumscribed in this group, probably due 
to the relatively recent origin and the unexplored cytological aspects of this lineage. 
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Different levels of polyploidy have been reported in various clades of the Cactoideae 
including terrestrial, e.g., Blossfeldia liliputana Wendermann, 1937 (Ross 1981), Echi-
nocereus Engelmann, 1848 (Cota 1991, Cota and Wallace 1995), Mammillaria spp. 
(Ross 1981), Weberbauerocereus weberbaueri (K. Schumann ex Vaupel, 1913) Backe-
berg, 1958 (Sahley 1996), and epiphytic taxa, e.g., Hylocereus (A. Berger, 1905) Britton 
& Rose, 1909 and Selenicereus (A. Berger, 1905) Britton & Rose, 1909 (Lichtenzveig 
et al. 2000), and Rhipsalis baccifera (Solander, 1771) Stearn, 1939 (Cota-Sánchez and 
Bomfim-Patrício 2010). Additionally, autotetraploidy (four copies of a single genome 
due to doubling of an ancestral chromosome complement) has been documented in the 
columnar cactus W. weberbaueri (Sahley 1996) and in P. pringlei (Murawski et al. 1994).

This study has unveiled the first report of diploid (2n = 2x = 22) cytotypes in 
P. pringlei and expands the distributional range of the tetraploid (2n = 4x = 44) condi-
tion known for this species. Geographically, our survey also revealed that the base dip-
loid number is maintained exclusively in the two deep-water islands (ICA and ICE) of 
the Gulf of California characterised by the prevalence of hermaphrodite individuals. In 
turn, double chromosome dosage (tetraploidy) is consistent throughout the three BCP 
populations (CBS, North and South) (Fig. 3) and is associated with the presence of 
unisexual plants and a dioecious, gynodioecious or trioecious breeding system (Table 1). 
We predict that the tetraploid condition extends to other continental islands, such as 
Espíritu Santo, San José, Monserrat, San Lorenzo, and Tiburón, which are areas with 
unisexual plants (Gutiérrez-Flores 2015). Conceivably, an increment in chromosome 
number has enabled P. pringlei to colonize wide areas of the BCP. The same premise has 
been proposed in other cacti, e.g., Echinocereus, in which polyploid taxa occupy wider 
territories and ecological sorting, from medium to high latitudes and elevations relative 
to the overall distribution of the genus and diploid relatives (Cota and Philbrick 1994, 
Cota-Sánchez 2008). Also, comparable biogeographic patterns exist for other angio-
sperm taxa with different cytotypes, e.g., Chamerion (Rafinesque, 1818) Rafinesque ex 
Holub, 1972 (Husband and Schemske 1998), Chrysolaena H. Robinson, 1988 (Do 
Pico and Dematteis 2014), and members of the Asparagaceae (Azizi et al. 2016).

Among polyploids, tetraploidy is the most successful condition (De Wet 1980). In 
fact, tetraploidy is the most frequent form in the Cactaceae (Pinkava et al. 1985), and the 
radiation success of Echinocereus from central Mexico to the southwest of the US has been 
attributed to the prevalence of tetraploids throughout the distribution range (Cota 1991, 
Cota and Philbrick 1994) and the Humifusa clade of Opuntia s.s. (Majure et al. 2012). 
Similarly, the relatively fast radiation of the South American epiphytic cactus Rhipsalis 
baccifera into areas of the New and Old Worlds has been accompanied by successive cycles 
of polyploidy (di-, tetra- and hexaploid), in conjunction with life history traits, such as 
facultative selfing, asexual reproduction, and vivipary (Cota-Sánchez and Bomfím Patrí-
cio 2010). Accordingly, the incidence of polyploidy can be associated with increasing the 
colonizing ability and diversification of species into new environments due to relaxed se-
lection in the additional genome copies (Stebbins 1971, Adams and Wendel 2005, Cota-
Sánchez 2008). Thus, it is not surprising that the dominance and success of polyploid 
(tetraploid) cytotypes in P. pringlei is reflected in their extensive distribution and ability to 
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colonize a widespread range of habitats and ecological conditions in relation to the diploid 
state, which is restricted to ICA and ICE. Recent studies, e.g., Levy and Feldman (2004), 
Adams and Wendel (2005), have shown that the paramount ability of polyploids to adapt 
to a gamut of novel factors is based on a wide spectrum of molecular and physiological 
adjustments conferred by the amalgamation of two or more genomes.

During past geological events, the southern BCP, including ICE and ICA Islands, 
exhibited suitable niche conditions that served as refugia for populations of P. pringlei 
during the Last Glacial Maximum (LGM), as evidenced by Ecological Niche Modelling 
(Gutiérrez-Flores et al. 2016). Consequently, we suggest that ICE and ICA could be the 
relicts of a southern BCP diploid ancestor of P. pringlei from which both the polyploid 
and unisexual conditions gradually evolved in concert in mainland BCP. This, in turn, 
facilitated the northward range expansion during the Holocene, resulting in the mod-
ern dispersal of this neopolyploid complex with concomitant colonisation of suitable 
habitats available after the glacial retreat, leading to the present-day distribution of this 
cactus throughout the BCP and mainland Sonora. The same rationale has been used 
to explain the colonisation of large geographic areas of the polyploid Opuntia humi-
fusa (Rafinesque, 1820) Rafinesque, 1830 s.l. and O. macrorhiza Engelmann, 1850 s.l. 
based on LGM events (Majure et al. 2012). Similarly, rapid high polyploidisation caused 
by recurrent population fragmentation and expansion during the Pleistocene has taken 
place in other angiosperms, including Cerastium Linnaeus, 1753, Draba Linnaeus, 1753, 
Parnassia Linnaeus, 1753, Saxifraga Linnaeus, 1753, and Vaccinium Linnaeus, 1753 (Ab-

Figure 4. Idiograms of tetraploid (A) and diploid (B) cytotypes of the columnar cactus Pachycereus 
pringlei. Asterisk (*) denotes submetacentric chromosomes.
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bott and Brochmann 2003, Brochmann et al. 2004), and other plants. Nonetheless, 
it is unclear whether the extent of polyploid populations of P. pringlei in the BCP is a 
consequence of higher diversification rates following the ubiquitous genome duplication.

Chromosome morphology

In terms of morphology, the chromosomes of P. pringlei follow the overall homogene-
ous pattern reported for the sister taxon P. weberi (J.M. Coulter, 1896) Backeberg, 1960 
(Gama-López 1994) and, in general, for the cactus family (Cota and Wallace 1995, 
Las Peñas et al. 2008 and references therein). Because of the similarity and minute size 
of chromosomes among cytotypes, no major structural differences were detected. That 
is, the chromosomes are consistently small and mostly metacentric with no evident 
secondary satellites. Therefore, except for the numerical difference, the homogeneous 
chromosome morphology in terms of arm length and shape makes the characterization 
between diploid and tetraploid cytotypes difficult. In addition to uniformity, chromo-
some size between diploid and tetraploid individuals is also insignificant, and structur-
al changes, if any, remain cryptic. Similarly, in Opuntia, morphological differentiation 
is equivocal and has been a commonly reported event among diploid and polyploid 
cytotypes (Majure et al. 2012). Thus, structural chromosomal arrangements, either 
cryptic or physical, should not be ruled out in this columnar cactus because speciation 
without detectable chromosomal changes or divergence has been documented in other 
plants, e.g., Platanus Linnaeus, 1753 (Swanson et al. 1981) and Stephanomeria Nuttall, 
1841 and Clarkia Pursh, 1814 (Crawford 1985).

Stebbins’ (1971) hypothesis on the frequency of chromosome types in plants is 
useful to explain the existence of symmetric idiograms in diploid and tetraploid cy-
totypes of P. pringlei. In plants, metacentric chromosomes are fairly common, e.g., 
Araceae (Turco et al. 2014), Arecaceae (Oliveira et al. 2016) and Asparagaceae (Chen 
et al. 2017), and originate by the fusion of two telocentric chromosomes with relatively 
little effect in gene sequence (Stebbins 1971). In the Cactaceae, symmetric karyotypes 
are also ordinary, e.g., Echinocereus (Cota and Wallace 1995), Nyctocereus (A. Berger, 
1905) Britton & Rose, 1909 (Palomino et al. 1988), Setiechinopsis Backeberg, 1950 
(Las Peñas et al. 2011), Opuntia Ser. Armata (Las Peñas et al. 2017), and other species 
exhibiting low degree of variability in karyotype morphology. Hence, the morphologi-
cal homogeneity of chromosomes in P. pringlei is not surprising.

Chromosome number and diversification of breeding systems

Foremost, it is worth noting that the correspondence of the base chromosome number 
(x = 11) with a hermaphroditic mating system in most cacti, including members of the 
basal subfamily (Pereskioideae) and species closely related to P. pringlei, such as P. weberi 
(Gama-López, 1994) and P. pecten-aboriginum (Engelmann ex S. Watson, 1886) Brit-
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ton & Rose, 1909 (Pinkava et al. 1977), indicates that both the evolution of unisexu-
ality and polyploidy are derived conditions in the Cactaceae, an idea put forward by 
Gutiérrez-Flores et al. (2017). In fact, there is an apparent transition between breeding 
system and ploidy level. The change from hermaphroditism to trioecy is coupled with 
an increase in chromosome number in P. pringlei and is consistent with polyploidisa-
tion events reported for other cacti with non-hermaphroditic sexual systems (Valiente-
Banuet et al. 1997, Fleming et al. 1998, Strittmatter 2002, Díaz and Cocucci 2003, 
Strittmatter et al. 2006, 2008). Our results imply that in P. pringlei the hermaphrodite 
system is diploid and restricted to ICA and ICE, whereas the tetraploid condition is 
essentially associated with unisexual, dioecious, gynodioecious and trioecious breeding 
systems (Table 1). Also, the high level of genetic divergence reported for the ICE and 
ICA populations (Gutiérrez-Flores et al. 2016) support the general idea that difference 
in ploidy level is an important factor for reproductive isolation, as proposed by Baker 
and Pinkava (1987, 1999), Cota and Philbrick (1994), and Baker (2002, 2006). How-
ever, intra- and inter-population experimental crosses between different cytotypes are 
needed to determine the degree of compatibility and reproductive potential.

Taxonomic implications in relation to morphology and ploidy level

Diploid and tetraploid plant populations may or may not be ecologically differentiated 
(Cota 1991). According to De Wet (1980), in the absence of chromosome informa-
tion, close morphological resemblance may imply genetic continuity, a characteristic of 
conspecific populations. However, when a difference in ploidy level is known to exist, 
the issue is that barriers to gene exchange characteristic of distinct species are generally 
found between diploid and polyploid populations, which poses a taxonomic problem, 
i.e., whether or not to recognize these entities as two different species on the basis of 
reproductive isolation due to differences in chromosome number.

Unveiling polyploid individuals from diploid ancestors leads to the discov-
ery of new cytotypes and potential taxonomic issues because different populations 
are frequently associated with an assortment of floral and/or vegetative phenotypes 
(Brickford et al. 2007). In this regard, the phenotypic variation reported in vegetative 
(Medel-Narváez et al. 2006) and reproductive (Gutiérrez-Flores et al. 2017) traits in 
populations of P. pringlei has been interpreted as a physiological response to a gradual 
change in environmental conditions and sex-specific selection acting at different mag-
nitudes on sexual characters of floral morphs and populations (Gutiérrez-Flores et al. 
2017). However, considering floral attributes (Table 1) and data reported by Gutié-
rrez-Flores et al. (2017), it is clear that the flowers from the diploid populations in 
ICA and ICE have, in general, wider nectaries, shorter stamen-stigma distance, larger 
amounts of pollen grains, larger P:O ratios, and fewer number of stamens and ovules 
compared to flowers of the polyploid counterparts. These morphological differences in 
conjunction with discrepancy in chromosome number, and geographic isolation are 
key elements suggesting the description of a new subspecies. Although some may argue 
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that these few, somewhat obscure, floral traits may not warrant the recognition of a 
new taxonomic entity even with the evidence of a difference in ploidy, we argue that 
these floral features play a role in pollinator selection and breeding systems, reinforc-
ing reproductive isolation between polyploids in mainland BCP and Sonora and their 
diploid progenitors in populations from the ICA and ICE islets, further suggesting a 
distinct taxonomic unit. Thus, rather than one species with different cytotypes, which 
can hinder insights into evolution, speciation, and conservation, we propose two ge-
netically divergent subspecies with distinct ploidy levels, geographic ranges, breeding 
systems, and floral morphological differences. In concert, all these factors may also 
be largely responsible for the genetic divergence and putative reproductive isolation 
between diploid and tetraploid P. pringlei populations. This idea is also substantiated 
by several cytological studies providing compelling evidence to effectively distinguish 
diploid from polyploid species of cacti by correlating morphology with geography. For 
instance, the existing geographic variation of diploid and tetraploid phenotypically 
similar cytotypes in Echinocereus spp. (Cota and Philbrick 1994), the morphological 
disparities, sometimes cryptic, among diploid and polyploid cytotypes of the Humifusa 
clade of Opuntia s.s. (Majure et al. 2012), the dimorphic hexaploid (2n = 66) Echi-
nocereus yavapaiensis M.A. Baker, 2006 (Baker 2006), as well as in other higher plants 
(Bickford et al. 2007, Rani et al. 2015, Molgo et al. 2017) and animals (Vacher et al. 
2017) have been used as evidence to delimit new taxa.

Evidently, genomic changes potentially produce new gene complexes, facilitat-
ing rapid evolution of individuals and their new attributes (Soltis and Soltis 1999). 
However, although some functional traits are important in explaining species success, 
genome flexibility, and versatility in reproductive systems, morphological evaluations 
encompassing a large, wide-ranging number of individuals are needed to deal with a 
formal taxonomic description and the implications arising from differences in ploidy 
and patterns of geographic variation and inconsistency in morphological features 
throughout the populations of P. pringlei. At present, we can only say that variations 
in morphology, genetic diversity, and ploidy level suggest reproductive isolation and 
support the recognition of a new taxonomic entity.

Concluding remarks

Merging chromosome number information, genetic data, breeding systems, and floral 
morphology has provided new insights to better understand the evolutionary history and 
reproductive success of this iconic cactus in northwestern Mexico. P. pringlei has diploid 
and tetraploid populations with distinctive distribution. Although tetraploids have not 
been named as distinct species due to the tradition of including multiple cytotypes de-
rived from diploid relatives as a single species and the practicality of adhering to the gen-
eral morphological species concept (Soltis et al. 2007), our results allude to the possibility 
of describing a new subspecies in P. pringlei. The diploid condition is endemic to Catalana 
and Cerralvo Islands, whereas polyploid populations characterise the populations from 
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mainland BCP and Sonora. This cytogeographic distribution suggests the distinction of 
the diploid populations as a new taxonomic entity, which is likely the ancestral condition 
of the broadly distributed tetraploid throughout the BCP. Succinctly, we suggest that 
chromosome doubling in conjunction with allopatric distribution, differences in neutral 
genetic variation, floral traits, and breeding systems has driven the reproductive isolation, 
evolution, and diversification of this columnar cactus. These functional attributes render 
this species an ideal candidate to conduct ecological genetic investigations to further 
explore the selective forces acting on plants and their life history traits.
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