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Abstract
Representatives of the order Labriformes show karyotypes of extreme conservatism together with others 
with high chromosomal diversification. However, the cytological characterization of epigenetic modifica-
tions remains unknown for the majority of the species. In the family Labridae, the most abundant fishes 
on tropical reefs, the genomes of the genus Bodianus Bloch, 1790 have been characterized by the occur-
rence of a peculiar chromosomal region, here denominated BOD. This region is exceptionally decon-
densed, heterochromatic, argentophilic, GC-neutral and, in contrast to classical secondary constrictions, 
shows no signals of hybridization with 18S rDNA probes. In order to characterize the BOD region, the 
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methylation pattern, the distribution of Alu and Tol2 retrotransposons and of 18S and 5S rDNA sites, 
respectively, were analyzed by Fluorescence In Situ Hybridization (FISH) on metaphase chromosomes of 
two Bodianus species, B. insularis Gomon & Lubbock, 1980 and B. pulchellus (Poey, 1860). Immunolo-
calization of the 5-methylcytosine revealed hypermethylated chromosomal regions, dispersed along the 
entire length of the chromosomes of both species, while the BOD regions exhibited a hypomethylated 
pattern. Hypomethylation of the BOD region is associated with the precise co-location of Tol2 and Alu 
elements, suggesting their active participation in the regulatory epigenetic process. This evidence under-
scores a probable differential methylation action during the cell cycle, as well as the role of Tol2/Alu ele-
ments in functional processes of fish genomes.
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Introduction

Genomes of some representatives of Labriformes families carry preferential chro-
mosomal rearrangements (Sena and Molina 2007; Molina et al. 2014; Almeida et 
al. 2017), and singular regional DNA organization (Molina et al. 2012; Amorim 
et al. 2016). Labridae, the fifth largest marine fish family, with approximately 600 
species, displays remarkable ecological and evolutionary diversification (Parenti and 
Randall 2000). Its phylogeny, where the relationships of the highest categories have 
been better recognized, is a long-standing and widely discussed problem (Westneat 
and Alfaro 2005). Particular evolutionary trends in karyotype differentiation, such 
as pericentric inversions and centric fusions, occur among tribes of this family (Mo-
lina and Galetti 2004, Sena and Molina 2007, Molina et al. 2014, Almeida et al. 
2017). Indeed, while some groups show karyotype conservatism (Sena and Molina 
2007), others possess karyotypes modeled by pericentric inversions, e.g. in the tribe 
Hypsigenyini and, particularly, the species of the genus Bodianus Bloch, 1790 (Mo-
lina et al. 2012).

The representatives of the tribe Hypsigenyini exhibit relatively symmetrical 
karyotypes, with 2n = 48 and high fundamental number (NF) values as compared 
to other ones (Arai 2011). Some Atlantic species, such as Bodianus rufus (Linnaeus, 
1758), B. pulchellus (Poey, 1860) and B. insularis Gomon & Lubbock, 1980, have 
been analyzed in detail, and phylogenetically shared particular chromosomal regions 
have been identified. These regions, located at the p arms of the second subtelocentric 
chromosome pair, were characterized as exceptionally decondensed, heterochromatic 
and argentophilic, suggesting the presence of rDNA sites. However, these regions are 
neither GC-rich, nor do they display hybridization signals with 18S rDNA probes, 
indicating the presence of distinct repetitive sequences with unusual organization 
(Molina et al. 2012).

Molecular analyses have significantly widened the knowledge of the genomic or-
ganization and epigenetic modeling of the chromatin, particularly with respect to his-
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tone modifications of the euchromatin and heterochromatin (Fuchs et al. 2006). DNA 
methylation is catalyzed by a conserved class of DNA methyltransferases (Dnmt’s) 
broadly present in protists, fungi, plants and animal genomes (Craig and Brickmore 
1994; Dyachenko et al. 2010). Islets of CpG dinucleotides (C-phosphate-G, on the 
fifth carbon) are correlated with 5-methylcytosine content (5 mC) (Vanyushin et al. 
1973), which indicates hyper- and hypomethylation patterns in the chromatin related 
to gene regulation (Baylin et al. 1991; Almeida et al. 1993; Feinberg 1993; Barbin et 
al. 1994).

Although the knowledge of the methylation patterns is growing among vertebrates, 
it is still restricted in fishes, especially in relation to repetitive DNA regions (transcrip-
tional and non-transcriptional), which are apparently limited to the heterochromatic 
regions and sex chromosomes (Schmid et al. 2016). Repetitive sequences have been 
the target of intense investigation in several fish groups (Vicari et al. 2008; Cioffi et 
al. 2010b; Costa et al. 2014, 2016; Barbosa et al. 2015), showing extreme complexity 
in some species (Costa et al. 2015). In this context, probable synergic or antagonistic 
interactions between collocated distinct sequences still need to be clarified.

In this study, we analyzed the DNA methylation pattern in the metaphase chro-
mosomes of B. pulchellus and B. insularis, phylogenetically very close species (Gomon 
2006), especially in the exclusive decondensed region (Ag+/CMA0/C+), here referred 
as BOD, in allusion to genus Bodianus. The data were compared with the structural 
patterns of the chromosomes, identified by the 18S and 5S rDNAs and the transpos-
able elements Tol2 and Alu mapping using FISH.

Methods

Individuals, collection sites, chromosome preparation and bandings

Individuals of Bodianus pulchellus (n = 6, all immature individuals) from Bahia State 
(12°58'20"S, 38°31'05"W), on the northeastern Brazilian coast, and B. insularis (n 
= 5, 2 males and 3 immature individuals) from São Pedro and Paulo Archipelago 
(0°55'19"N, 29°21'44"W), were used in cytogenetic analyses. The individuals were 
collected under authorization provided by the Chico Mendes Institute of Biodiversity 
Conservation (ICMBIO/SISBIO) (license #02001.001902/06-82) and all experimen-
tal procedures followed the rules of the Animal Ethics Committee of the Federal Uni-
versity of Rio Grande do Norte (protocol 044/2015).

Mitosis stimulation followed the protocols developed by Molina (2001) and Mo-
lina et al. (2010). Mitotic chromosomes were obtained by means of the in vitro inter-
ruption of the cell cycle (Gold et al. 1990). An amount of 150μl of cell suspension was 
dropped onto a wet slide covered by a film of distilled water, heated to 60 °C and dried 
at room temperature. The Ag-NOR (Nucleolus Organizer Regions) sites and the extra 
nuclear argentophilic regions were identified according to Howell and Black (1980).
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FISH and immunostaining of methylated DNA

FISH was performed according to Pinkel et al. (1986). The 5S and 18S rDNA se-
quences were detected by double-color FISH analyses. Both ribosomal sequences were 
isolated from the Hoplias malabaricus (Bloch, 1794) (Teleostei, Characiformes) ge-
nome. The 5S rDNA included 120 base pairs (bp) of the 5S rRNA gene and 200bp 
from the non-transcribed spacer (NTS) (Martins et al. 2006). The 18S rDNA probes 
corresponded to a 1400bp segment from the 18S rRNA gene, obtained through PCR 
of the nuclear DNA (Cioffi et al. 2010a). The 5S rDNA probes were labeled with 
biotin-14-dATP by nick translation according to the manufacturer’s recommendations 
(BioNick Labeling System; Invitrogen, San Diego, CA, USA). The 18S rDNA was 
labeled by nick translation with Digoxigenin-11-dUTP, in line with the manufacturer’s 
recommendations (Roche, Mannheim, Germany). The Tol2 transposon probes were 
obtained by PCR of the nuclear DNA of Rachycentron canadum using the primers 
Tol2-5F 5'-CTG TCA CTC TGA TGA AAC AG-3' and Tol2-5R 5'-CTT TGA CCT 
TAG GTT TGG GC-3' (Kawakami and Shima 1999). The probes were labeled with 
Digoxigenin-11-dUTP by nick translation following the manufacturer’s recommen-
dations (Roche, Mannheim, Germany). The (TTAGGG)n sequences were mapped 
by FISH using Telomere PNA FISH Kit/FITC according to manufacturer’s instruc-
tions (Dako Citomation). The Alu transposon probes were obtained by PCR of the 
genomic DNA of Rachycentron canadum (Linnaeus, 1766) using the primers Alu CL1 
5’-TCC CAA AGT GCT GGG ATT ACA G-3’ and Alu CL2 5’-CTG CAC TC AGC 
CTG GG-3’ (Lengauer et al. 1992), and were labeled with Digoxigenin-11-dUTP by 
nick translation following the manufacturer’s recommendations (Roche, Mannheim, 
Germany). The chromosomes were counter-stained with Vectashield/DAPI (1.5mg/
ml) (Vector) and photographed with an Olympus BX50 epifluorescence microscope 
coupled to an Olympus DP73 digital camera, using CELLSENS software (Olympus).

The DNA methylation patterns in the metaphase chromosomes were detected 
through binding analysis of the monoclonal antibody to 5-methylcytosine. Indirect 
immunodetection of the methylated DNA was conducted according to Marques et 
al. (2011). The slides were treated with 20 mg/ml RNAse (Invitrogen) diluted 1:200 
in 2XSSC for one hour, followed by exposure to 1mg/ml pepsin (1:100) in 0.01 N 
HCl (100μl per slide) for 20 minutes. They were then denatured in 70% formamide 
for 3 min at 75 °C and blocked with 3 % BSA diluted in 1X PBS with 0.1 % Tween 
20, for 30 minutes at 37 °C and incubated with the mouse-anti-5-methylcytosine 
primary antibody (Eurogentec) in 1 % BSA/1X PBS (1:100) overnight at 4 °C. The 
5 mC was detected using anti-mouse-FITC diluted (1:200) in 1 % BSA/1X PBS for 
1 hour at 37 °C. Finally, the slides were washed in 1X PBS, mounted with DAPI/
Vectashield antifading (Vector Laboratories) and analyzed by fluorescence micros-
copy under a Leica DMBL photomicroscope (Leica Microsystems) equipped with 
a CCD Cohu camera (CohuHD Costar), using QFISH software. Composition of 
the image with the hybridization signals was done with Photoshop CS5 (Adobe) 
software.
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The chromosomes were categorized as metacentric (m), submetacentric (sm), sub-
telocentric (st) and acrocentric (a), according to Levan et al. (1964) and arranged in 
descending order of size. A single ideogram for both species was constructed in order 
to highlight the repetitive sequences and the methylation patterns identified by 5 mC.

Results

Bodianus pulchellus and B. insularis have diploid chromosome number 2n=48 and 
identical karyotypes, composed of 4m+12sm+14st+18a chromosomes, NF value 78. 
As previously described for these species (Molina et al. 2012), the 10th subtelocentric 
pair exhibited an extensive decondensed terminal region that could reach up to four 
times the size of the largest chromosome pair (Figs 1, 2) – the BOD region.

Ag-NOR sites were located in the terminal region of the pair No. 9 in karyotypes 
of both species (Fig. 1a, b). These sites and the BOD region were also argentophilic 
(Fig. 1a, b; highlighted), as in previous descriptions (Molina et al. 2012).

Double-FISH with 5S and 18S rDNA probes revealed a non-syntenic location 
for these ribosomal sites. The 18S rDNA sites were exclusively located in the terminal 
regions on the p arms of the pair No. 9, corresponding with the Ag-NOR signals. No 
hybridization signals were detected in the BOD regions of both species (Fig. 1a, b). On 
the other hand, 5S rRNA genes were located in the terminal regions on the q arms of 
the pair No. 16 in both species, and an extra pericentromeric site on the p arms of the 
pair No. 19, only in B. insularis (Fig. 1a, b).

The hybridization with the transposable element Alu was only performed in B. 
insularis, while Tol2 mapping was performed in both species. These sequences ex-
hibited a similar distribution pattern in the chromosomes preferentially located in 
the terminal regions of the chromosomes and particularly accumulated in the BOD 
one (Fig. 1c–e; highlighted).

The hybridization signals with (TTAGGG)n probes were variable, with the major-
ity having the same size, besides some chromosomes showed no detectable signals (data 
not shown). Immunostaining with 5 mC revealed that most metaphase chromosomes 
of the two species were hypermethylated (Fig. 2b, d). By contrast, the BOD regions 
were distinctly hypomethylated, as well as the centromeric regions of the majority of 
chromosomal pairs (Fig. 2).

All results were summarized in the ideogram of the Figure 3 below.

Discussion

Structural chromosome characteristics of Bodianus species

The heterochromatic regions of fish genomes have been the target of intense investigation. 
Although displaying variations in the amount and distribution on chromosomes, hetero-
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Figure 1. Metaphase chromosomes of the species B. insularis (a, c, e) and B. pulchellus (b, d); the chro-
mosome pairs bearing the BOD region are identified with arrows and highlighted in the boxes a, b 18S 
(red signals) and 5S rDNA FISH (green signals). In the boxes, the argentophilic pattern showed in the 
BOD regions and the DAPI staining pattern, respectively c, d Distribution of the Tol2 element in the 
chromosomes. An accumulation of Tol2 sequences is perceptible in the BOD regions e - Distribution of 
the Alu transposable element on the chromosomes of B. insularis. Scale bar: 5μm.
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chromatin can harbor a diversified panel of collocated sequences, whereby the effects of 
this interaction under gene regulation and dispersion pattern need to be better investigated 
(Costa et al. 2015). Functional biases could derive from the joint distribution of multigene 
families, or from their association with other repetitive sequences, constituting adaptive 
aspects and implying maintenance and dispersion in the chromosomes (Costa et al. 2016).

Argentophilic decondensed regions in vertebrates are often related to NOR sites 
(Árnason 1981; Schmid et al. 1982; Birstein 1984; Supanuam et al. 2012). Previ-

Figure 2. Metaphase chromosomes of the species Bodianus pulchellus (a, b) and Bodianus insularis (c, 
d) after DAPI staining (left) and sequential immunodetection of methylated sites with the monoclonal 
antibody 5mC (right). The chromosome pairs bearing the BOD region are denoted with arrows and 
highlighted in the boxes. Scale bar: 5μm.
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Figure 3. Ideogram showing distribution of repetitive sequences and the methylation pattern in the meta-
phase chromosomes of B. insularis and B. pulchellus, a dashed line highlights the decondensed BOD region.

ous cytogenetic studies identified an intriguing chromosomal region on homeologous 
pairs in B. pulchellus, B. insularis and B. rufus (Molina et al. 2012). This region, now 
identified as BOD one, exhibits a high decondensed structure and a heterochromatic, 
GC-neutral and argentophilic constitution, but that does not exhibit any hybridiza-
tion signals with 18S rDNA probes. The sharing of this particular set of constitutive 
and functional characteristics indicates that the origin of the BOD region precedes 
the phyletic diversification of those species (Molina et al. 2012), representing a very 
favorable sui generis condition for the study of the complexity of repetitive DNA ar-
rangements in fishes.

In several vertebrate species, including fishes, argentophilic sites not associated 
with rDNA sites, known as pseudo-NORs, were already described (Ozouf-Costaz et 
al. 1997; Pisano et al. 2000; Caputo et al. 2002; Dobigny et al. 2002; Gromicho et al. 
2005; Cabrero and Camacho 2008). Structurally, the BOD regions have similarities 
with pseudo-NORs that are tandem arrays of a heterologous DNA sequences. In some 
species, the pseudo-NORs do not exhibit promoter sequences and have high affinity 
for the upstream binding factor (UBF), a DNA binding protein and component of the 
Pol I transcription machinery which binds extensively across the rDNA repeat in vivo 
(Prieto and McStay 2008). The formation of pseudo-NORs is associated to a special 
class of multigene families, like histones and ribosomal genes, from both protein- and 
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non-protein-coding with capacity of translocation known as orphons (Childs et al. 
1981, Cabrero and Camacho 2008).

Pseudo-NORs used to mimic real NORs in several aspects, as they can remain 
decondensed during mitosis when the transcription is inactivated and the nucleolus 
is broken down, forming novel silver positive secondary constrictions (Mais et al. 
2005). UBF can displace histone H1 from histone octamers in vitro (Kermekchiev et 
al. 1997), thereby promoting the chromatin decompaction. Additionally, Ag-positive 
loci can be the result of the presence of residual acidic proteins with affinity for silver, 
reacting with this compound (Dobigny et al. 2002). In fact, pseudo-NORs are reactive 
to silver staining despite their transcriptional silence (Mais et al. 2005). The typical de-
condensation observed in secondary constrictions should be promoted by the action of 
binding argyrophilic proteins that prevent the full condensation of that region (Prieto 
and McStay 2008). These elements could explain the argentophilic and decondensed 
nature of the chromatin present in the BOD region.

Representatives of Bodianus display karyotypes with a larger number of biarmed 
chromosomes when compared to those of other Labridae genera (Sena and Molina 
2007). This is a synapomorphic pattern and indicates intense structural chromosome 
reorganization in this clade. However, several common characteristics, such as the pres-
ence of a single 18S rDNA site and the BOD region, could indicate a lower level of 
diversification among the youngest branches of this group. In fact, the presence of a 
single chromosome pair bearing 18S rDNA sites represent the most frequent pattern 
found in fishes (Gornung 2013) as well as in several perciform groups (Motta-Neto et 
al. 2012; Costa et al. 2016). On the other hand, 5S rDNA sites show a more diversified 
pattern, being present on a single chromosome pair in B. pulchellus but on two pairs 
in B. insularis. The monitoring of ribosomal genes in chromosomes in a phylogenetic 
perspective makes it possible to identify the sequential patterns of change or synteny 
maintenance over time (Affonso et al. 2014; Fernandes et al. 2015; Costa et al. 2016), 
especially in conserved karyotypes, such as in Bodianus.

In genomes of some fish species, a high chromosome dynamism has been identi-
fied for Tol2 elements, which can be situated in different genomic regions (Koga and 
Hori 1999), or be preferentially concentrated and collocated with 18S rDNA sites 
(Costa et al. 2013). Therefore, the presence of structural and functional characteristics 
of the BOD region, typical of pseudo-NORs, may indicate that these regions were 
originally repositories of rDNA. Indeed, Alu and Tol2 elements exhibit a remarkable 
accumulation in the BOD regions. Transposable elements are transposed by a cut-and-
paste mechanism, involving their excision and insertion elsewhere in the chromatin. 
Additionally, the spreading of transposons can be concatenated with the capacity of the 
orphons translocation through the genome via dispersion and magnification of minor 
loci consisting of a few rDNA copies (Dubcovsky and Dvorak 1995) as observed in 
Aegilops speltoides Tausch (Flaksberger 1935) (Raskina et al. 2004). If the excision pro-
cess of transposons is excessive, it may affect the function of a particular gene, making 
it functionally unstable, requiring only that the transposon insertion occurs within or 
very close to the gene (Lippman et al. 2004), as observed in this study.
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Alu elements concentrate huge amounts of CpG islands that are genomic regions 
that contain a high frequency of CpG dinucleotides, commonly representing promot-
ers, which are usually located in GC dense regions. CpG islands tend to be hypometh-
ylated allowing an open chromatin organization and facilitating neighboring gene ex-
pression (Jones and Baylin 2002; Gu et al. 2016). On the other hand, Alu sequences 
are punctuated by multiple CpG domains, many of which overlapping with known 
protein binding sites (Rowold and Herrera 2000), possibly the same aforementioned 
argyrophilic binding proteins which keep the chromatin decondensed and conse-
quently opened. Thus, the marked occurrence of Alu and Tol2 elements in the BOD 
regions could have significantly interfered in the ribosomal gene functionality, causing 
a pseudogenization process.

Differential methylation in Bodianus metaphase chromosomes

Despite the fact that a significant part of the genome of some organisms is composed of 
repetitive DNA sequences, their origins, dispersion and functional interaction remain 
largely unknown (Biémont and Vieira 2006). In this context, methylation patterns 
help us understand the functional aspects of the genome. DNA methylation is an 
important epigenetic modification in the genome of vertebrates, where only small frac-
tions of it are hypomethylated (Nakamura et al. 2014). An overview of methylation 
in the vertebrate genome indicates that more basal groups such as fish and amphib-
ians have higher methylation levels than reptiles, mammals and birds and is inversely 
related to body temperature (Vanyushin et al. 1973; Jabbari et al. 1997; Varriale and 
Bernardi 2006a, b). Despite the occurrence of chromosomal rearrangements associated 
with DNA methylation, this process may suppress homologous recombination, ena-
bling genomes rich in repeats to remain relatively stable (Colot and Rossignol 1999).

The immunolocalization of 5-methylcytosine in the metaphase chromosomes of 
the two Bodianus species revealed a primarily hypermethylated pattern, despite the 
striking contrast observed in the BOD and the centromeric regions, both notably hy-
pomethylated. In general, centromeric regions exhibit particular epigenetic character-
istics, including DNA hypermethylation. The presence of hypomethylated regions in 
the centromeres of some chromosome pairs of the Bodianus species demonstrates an 
uncommon and likely functional condition of these regions, which are closely associ-
ated with the chromosome segregation process.

DNA methylation is considered a controlling mechanism of gene expression, in-
cluding the ribosomal ones (Ferraro and Lavia 1983; Ferraro and Prantera 1988). In-
deed, there is an inverse correlation between DNA methylation and the transcriptional 
activity of several eukaryotic genes (Kanungo 1994), as well as nucleolar size and the 
number of rDNA loci sites (Bacalini et al. 2014). In mammals, there is a strong rela-
tion between states of DNA methylation and gene silencing (Eden et al. 1994). On the 
other hand, in invertebrates, the origins and meaning of methylation patterns show, 
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in some cases, the absence of a correlation between methylation and gene expression 
(Tweedie et al. 1997). In more basal fish groups, GC-rich heterochromatins, which are 
frequently related to NOR regions (Gornung 2013), are highly methylated in the germ 
line, but to a lesser degree in somatic chromosomes (Covelo-Soto et al. 2014). The hy-
pomethylation patterns of repetitive and ribosomal DNA classes can lead to chromatin 
decondensation (Carvalho et al. 2000; Jones and Baylin 2002), as demonstrated here 
for the BOD regions.

In some Perciformes species, Tol2 elements are distributed along the chromosomes 
and distinctly associated with 18S rDNA sequences (Costa et al. 2013). In Bodianus, 
both the accumulation of these transposons in the BOD regions as well their hypometh-
ylated nature, are prominent. It has been reported that the methylation process plays a 
protective role against invasive DNAs or transposable elements (Yoder et al. 1997; Do-
erfler 1991) and is a key mechanism in gene regulation and expression (Finnegan et al. 
1998; Heslop-Harrison 2000; Attwood et al. 2002). Indeed, the transposable sequences 
in the human genome are highly methylated (Kricker et al. 1992). Fishes have shown 
hypermethylated regions confined to constitutive heterochromatin, particularly in het-
eromorphic sex chromosomes, demonstrating that several hypermethylated regions are 
co-localized with repetitive elements (Schmid et al. 2016).

It is known that DNA methylation may limit the dispersion of various transpos-
able elements in a number of genomes (Scortecci et al. 1997; Miura et al. 2001; Iida et 
al. 2006). However, this condition does not occur in the BOD regions. If methylation 
inhibits the dispersion of transposable elements, why is the BOD region, extremely rich 
in Alu and Tol2 elements are not methylated? The answer may be related to the following 
considerations: (1) Alu elements appear to be preferentially located in GC-rich genomic 
isochores (Deininger 2006), explaining the accumulation of this transposable element in 
the 18S rDNA sites; (2) CpG islands, strongly present in Alu elements, are hypomethyl-
ated as a response to an overlapping between the CpG domains and the argyrophilic pro-
teins binding sites, which prevent the full condensation of the heterochromatin through 
the displacement of the histone H1 from the histone octamers. This way, the open and 
decondensed heterochromatin may offer favorable conditions for the accumulation of 
the Tol2 retrotransposon in such region; (3) the epigenetic action promoted by the ex-
cessive excision of transposons inserted within or very close to the gene in the BOD 
region, affects its function and makes it functionally unstable. Therefore, novel NORs 
are formed in other chromosomal locations by the transposons spreading, associated with 
the translocation of orphons and the magnification of minor rDNA loci. Evidence sug-
gests that in some fish species, such as Oryzias latipes (Temminck and Schlegel 1846), the 
Tol2 element, underwent a rapid expansion in the past, but acquired interactive control 
mechanisms (Iida et al. 2006). Therefore, in the same way compensatory evolutionary 
mechanisms may have been fixed in the Bodianus BOD region, thereby controlling the 
activity and dispersion of Tol2 and Alu elements. The delimitation of a preferential reser-
voir for these transposable elements in the BOD region would therefore constitute effec-
tive protection for genes allocated to the other chromosomes of the karyotype.
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Conclusion

DNA methylation is one of the epigenetic processes that has modulated the molecu-
lar evolution of life, but its influence in karyotype evolution and interaction in the 
structural chromosome regions are little known, especially for fish species. The use of 
monoclonal antibodies in cytogenetic study of Bodianus species provided an overview 
of the methylation pattern of metaphase chromosomes, with sufficient resolution to 
characterize the peculiar BOD regions. The complex composition of the BOD chroma-
tin suggests that it is a pseudo-NOR containing a relict sequence of an ancestor rDNA. 
The DNA organization of such region provided evidence of its functional dynamics, 
possibly in the transcriptional control of Tol2 and Alu elements. In this sense, the meth-
ylation process, associated with the dispersion control of the transposable elements, 
may have played a particular active role in the evolutionary process of Bodianus species.
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Motta-Neto CC, Lima-Filho PA, Araújo WC, Bertollo LAC, Molina WF (2012) Differentiated 
evolutionary pathways in Haemulidae (Perciformes): karyotype stasis versus morphological dif-
ferentiation. Reviews in Fish Biology and Fisheries 22(2): 457–465. https://doi.org/10.1007/
s11160-011-9236-4

Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization 
of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 
411(6834): 212–214. https://doi.org/10.1038/35075612

Nakamura R, Tsukahara T, Qu W, Ichikawa K, Otsuka T, Ogoshi K, Saito TL, Matsushima K, 
Sugano S, Hashimoto S, Suzuki Y, Morishita S, Takeda H (2014) Large hypomethylated 

https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
https://doi.org/10.1016/0888-7543(92)90160-T
https://doi.org/10.1016/0888-7543(92)90160-T
https://doi.org/10.1038/nature02651
https://doi.org/10.1101/gad.310705
https://doi.org/10.1159/000323971
https://doi.org/10.1007/s10709-005-2674-y
https://doi.org/10.1016/j.jembe.2004.03.011
https://doi.org/10.4238/vol9-3gmr840
https://doi.org/10.1016/j.margen.2012.01.001
https://doi.org/10.1016/j.margen.2012.01.001
https://doi.org/10.1016/j.margen.2014.05.001
https://doi.org/10.1016/j.margen.2014.05.001
https://doi.org/10.1007/s11160-011-9236-4
https://doi.org/10.1007/s11160-011-9236-4
https://doi.org/10.1038/35075612


Differential hypomethylation of the repetitive Tol2/Alu-rich sequences... 161

domains serve as strong repressive machinery for key developmental genes in vertebrates. 
Development 141(13): 2568–2580. https://doi.org/10.1242/dev.108548

Ozouf-Costaz C, Pisano E, Bonillo C, Williams R (1997) Ribosomal RNA location in the Antarc-
tic Champsocephalus gunnari (Nototheniodei, Channichthyidae) using banding and fluores-
cence in situ hybridization. Chromosome Research 4(8): 557–561. https://doi.org/10.1007/
BF02261718

Parenti P, Randall JE (2000) An annotated checklist of the species of the labroid fish families 
Labridae and Scaridae. Ichthyological Bulletin J.L.B. Smith Institute of Ichthyology, Rho-
des Universiry, 68: 1–97.

Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, 
fluorescence hybridization. Proceedings fo the National Academy of Sciences of the United 
States of America 83(9): 2934–2938. https://doi.org/10.1073/pnas.83.9.2934

Pisano E, Angelini C, Mazzei F, Stanyon R (2000) Adaptive radiation in Antarctic notothenioid 
fish: studies of genomic change at chromosomal level. Italian Journal of Zoology 67(S1): 
115–121. https://doi.org/10.1080/11250000009356365

Prieto JL, McStay B (2008) Pseudo-NORs: A novel model for studying nucleoli. Biochimica 
et Biophysica Acta 1783(11): 2116–2123. https://doi.org/10.1016/j.bbamcr.2008.07.004

Raskina O, Belyayev A, Nevo E (2004) Activity of the En/Spm-like transposons in meiosis 
as a base for chromosome repatterning in a small, isolated, peripheral population of Ae-
gilops speltoides Tausch. Chromosome Research 12(2): 153–161. https://doi.org/10.1023/
B:CHRO.0000013168.61359.43

Rowold DJ, Herrera RJ (2000) Alu elements and the human genome. Genetica 108(1): 57–72. 
https://doi.org/10.1023/A:1004099605261

Scortecci KC, Dessaux Y, Petit A, Van Sluys MA (1997) Somatic excision of the Ac transposable 
element in transgenic Arabidopsis thaliana after 5-azacytidine treatment. Plant and Cell 
Physiology 38(3): 336–343. https://doi.org/10.1093/oxfordjournals.pcp.a029171

Schmid M, Löser C, Schmidtke J, Engel W (1982) Evolutionary conservation of a common 
pattern of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromo-
soma 86(2): 149–179. https://doi.org/10.1007/BF00288674

Schmid M, Steinlein C, Yano CF, Cioffi MB (2016) Hypermethylated chromosome regions in 
nine fish species with heteromorphic sex chromosomes. Cytogenetic and Genome Research 
147(2–3): 169–78. https://doi.org/10.1159/000444067

Sena DCS, Molina WF (2007) Chromosomal rearrangements associated with pelagic larval 
duration in Labridae (Perciformes). Journal of Experimental Marine Biology and Ecology 
353(2): 203–210. https://doi.org/10.1016/j.jembe.2007.08.020

Supanuam P, Tanomtong A, Khunsook S, Sangpadee W, Pinthong K, Sanoamuang L, Keawsri 
S (2012) Localization of nucleolar organizer regions (NORs) of 4 gibbon species in Thai-
land by Ag-NOR banding technique. Cytologia 77(2): 1–8. https://doi.org/10.1508/
cytologia.77.141

Tweedie S, Charlton J, Clark V, Bird A (1997) Methylation of genomes and genes at the 
invertebrate-vertebrate boundary. Molecular and Cellular Biology 17(3): 1469–1475. 
https://doi.org/10.1128/MCB.17.3.1469

https://doi.org/10.1242/dev.108548
https://doi.org/10.1007/BF02261718
https://doi.org/10.1007/BF02261718
https://doi.org/10.1073/pnas.83.9.2934
https://doi.org/10.1080/11250000009356365
https://doi.org/10.1016/j.bbamcr.2008.07.004
https://doi.org/10.1023/B:CHRO.0000013168.61359.43
https://doi.org/10.1023/B:CHRO.0000013168.61359.43
https://doi.org/10.1023/A:1004099605261
https://doi.org/10.1093/oxfordjournals.pcp.a029171
https://doi.org/10.1007/BF00288674
https://doi.org/10.1159/000444067
https://doi.org/10.1016/j.jembe.2007.08.020
https://doi.org/10.1508/cytologia.77.141
https://doi.org/10.1508/cytologia.77.141
https://doi.org/10.1128/MCB.17.3.1469


Clóvis C. Motta-Neto et al.  /  Comparative Cytogenetics 12(2): 145–162 (2018)162

Vanyushin BF, Mazin AL, Vasilyev VK, Belozersky AN (1973) The content of 5-methylcytosine in 
animal DNA: the species and tissue specificity. Biochimica et Biophysica Acta – Nucleic Acids 
and Protein Synthesis 299(3): 397–403. https://doi.org/10.1016/0005-2787(73)90264-5

Varriale A, Bernardi G (2006a) DNA methylation and body temperature in fishes. Gene 385: 
111–121. https://doi.org/10.1016/j.gene.2006.05.031

Varriale A, Bernardi G (2006b) DNA methylation in reptiles. Gene 385: 122–127. https://
doi.org/10.1016/j.gene.2006.05.034

Vicari MR, Artoni RF, Moreira-Filho O, Bertollo LAC (2008) Colocalization of repetitive 
DNAs and silencing of major rRNA genes. A case report of the fish Astyanax janeiroensis. 
Cytogenetic and Genome Research 122(1): 67–72. https://doi.org/10.1159/000151318

Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of 
the reef fish family Labridae. Molecular Phylogenetics and Evolution 36(2): 370–90. 
https://doi.org/10.1016/j.ympev.2005.02.001

Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragen-
omic parasites. Trends in Genetics 13(8): 335–340. https://doi.org/10.1016/S0168-
9525(97)01181-5

https://doi.org/10.1016/0005-2787(73)90264-5
https://doi.org/10.1016/j.gene.2006.05.031
https://doi.org/10.1016/j.gene.2006.05.034
https://doi.org/10.1016/j.gene.2006.05.034
https://doi.org/10.1159/000151318
https://doi.org/10.1016/j.ympev.2005.02.001
https://doi.org/10.1016/S0168-9525(97)01181-5
https://doi.org/10.1016/S0168-9525(97)01181-5

	Differential hypomethylation of the repetitive Tol2/Alu-rich sequences in the genome of Bodianus species (Labriformes, Labridae)
	Abstract
	Introduction
	Methods
	Individuals, collection sites, chromosome preparation and bandings
	FISH and immunostaining of methylated DNA

	Results
	Discussion
	Structural chromosome characteristics of Bodianus species
	Differential methylation in Bodianus metaphase chromosomes

	Conclusion
	References

