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Abstract
Pipidae is a clade of Anura that diverged relatively early from other frogs in the phylogeny of the group. 
Pipids have a unique combination of morphological features, some of which appear to represent a mix of 
adaptations to aquatic life and plesiomorphic characters of Anura. The present study describes the karyo-
type of Pipa carvalhoi Miranda-Ribeiro, 1937, including morphology, heterochromatin distribution, and 
location of the NOR site. The diploid number of P. carvalhoi is 2n=20, including three metacentric pairs 
(1, 4, 8), two submetacentric (2 and 7), three subtelocentric (3, 5, 6), and two telocentric pairs (9 and 10). 
C-banding detected centromeric blocks of heterochromatin in all chromosome pairs and the NOR detected 
in chromosome pair 9, as confirmed by FISH using the rDNA 28S probe. The telomeric probes indicated 
the presence of interstitial telomeric sequences (ITSs), primarily in the centromeric region of the chromo-
somes, frequently associated with heterochromatin, suggesting that these repeats are a significant component 
of this region. The findings of the present study provide important insights for the understanding of the 
mechanisms of chromosomal evolution in the genus Pipa, and the diversification of the Pipidae as a whole.
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Introduction

Chromosome studies provide important insights into the diversification of karyotypes 
and represent an effective approach for the identification of homologies among spe-
cies (Targueta et al. 2018). This approach provides a systematic understanding of the 
rearrangements of the genome that have occurred during the evolutionary history of 
the target group.

Pipids are a clade of anurans that diverged relatively early from other frogs in the 
phylogeny of the group (Pyron and Wiens 2011). Pipids have a unique combination 
of morphological features, some of which appear to represent a mix of adaptations 
to aquatic life and plesiomorphic characters of Anura (Cannatella and Trueb 1988, 
Cannatella 2015, Araújo et al. 2017). The frogs of the family Pipidae dwell in fresh-
water environments and have behavioral and physiological features that are unique in 
anuran amphibians, making this group an excellent model for evolutionary studies 
(Cannatella and Trueb 1988, Cannatella and De Sá 1993, Pough et al. 2001). The 
family currently includes four genera: Hymenochirus Boulenger, 1896 (4 species), Pseu-
dohymenochirus Chabanaud, 1920 (1 species), Xenopus Wagler, 1827 (29 species), and 
Pipa Laurenti, 1768 (7 species), which are distributed in sub-Saharan Africa and South 
America (Frost 2019).

However, based on molecular phylogenetic inferences and presumed ancestral dip-
loid numbers, some authors have distinguished a fifth lineage, Silurana, which includes 
all the species derived from an ancestor with 2n = 20 (Evans et al. 2004, Pyron and 
Wiens 2011), from Xenopus, which has an ancestral diploid number of 2n = 18. Ev-
ans et al. (2015) suggested that Xenopus should be divided into two subgenera, Xeno-
pus and Silurana. Other authors consider Xenopus and Silurana a monophyletic clade, 
without the necessity of separation of subfamilies or genera between them (e.g., De Sá 
and Hillis 1990, Cannatella and De Sá 1993, Graf et al. 1996), in this work we will 
consider them as a single group, Xenopus tropicalis group (Frost 2019).

Pipa is the only non-African representative of the Pipidae, and evidences from a 
number of different sources indicates that this South American lineage is derived from 
an ancestor closely related to the extant members of the genus Hymenochirus. Pipidae 
was widely distributed in Gondwana and after its splintering, those lineages had dis-
tributions associated with the Afro-Tropical (Hymenochirus, Pseudhymenochirus and 
Xenopus) and Neotropical Regions (Pipa). The historical isolation resulted in the diver-
sification of the ancestral lineage of the genus Pipa, which is found in South America, 
as far north as Panama (Trueb et al. 2005, Frost 2019).

The genus currently contains seven species: P. arrabali Izecksohn, 1976, P. aspera 
Mueller, 1924, P. carvalhoi Miranda-Ribeiro, 1937, P. myersi Trueb, 1984, P. parva 
Ruthven & Gaige, 1923, P. pipa (Linnaeus, 1758), and P. snethlageae Muller, 1914 
(Frost 2019). In most cases, the only cytogenetic information available for the pipid 
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species is the diploid number. The Xenopus + Silurana lineages (sensu Evans et al. 2015), 
the sister group of Pipa, have the largest number of karyotyped species, including re-
current cases of polyploidy, with the chromosomal number being used as a criterion 
for the description of new species (Evans et al. 2015). The karyotypes of Hymenochirus 
boettgeri (Tornier, 1896) and Pseudohymenochirus merlini Chabanaud, 1920 (a mono-
typic genus) were described recently, filling gaps in the chromosomal history of the 
Pipidae (Mezzasalma et al. 2015). In the case of Pipa the available cytogenetic data 
are limited to the diploid numbers for P. parva (2n = 30) and P. pipa, with 2n = 22 
(Wickbom 1950, Morescalchi 1968, Morescalchi et al. 1970). Pipa carvalhoi present a 
diploid number of 20 chromosomes; however, this information was only determined 
based on an ideogram published by Mezzasalma et al. (2015), which was inferred based 
on the data of an unpublished degree thesis (Pfeuffer-Friederich 1980).

As no data whatsoever are available for the other five Pipa species, further stud-
ies will be essential for the understanding of the genomic rearrangements that have 
occurred during the adaptive radiation of this lineage in South America. Here, we 
describe the karyotype of P. carvalhoi, including the position of the NORs and the dis-
tribution pattern of the heterochromatin. We also documented the intrachromosomal 
spread of the telomeric (TTAGGG)n motifs and discuss these findings in the context 
of the phylogenetic scenario of the family Pipidae.

Material and methods

Samples

We analyzed three specimens of Pipa carvalhoi collected in Buerarema (three male), 
Bahia state, Brazil, and three from Buíque (two male + one juvenile), Pernambuco 
state, Brazil. The collection of specimens was authorized by SISBIO/Instituto Chico 
Mendes de Conservação da Biodiversidade through protocol number 55481-1. The 
specimens were deposited in the “Célio Fernando Baptista Haddad” Amphibian Col-
lection (CFBH), on the Rio Claro campus of São Paulo State University (UNESP) 
and in Natural History Museum in Universidade Federal de Alagoas (MHN-UFAL).

Staining procedures

The chromosomal preparations were obtained from intestinal and testicular cells treat-
ed with 2% colchicine for 4 hours, using techniques modified from King and Rofe 
(1976) and Schmid (1978). The mitotic metaphases were stained with 10% Giemsa 
for karyotyping. The heterochromatic regions were identified by C-banding, using 
the technique described by Sumner (1972) and C-banding + DAPI. We detected the 
NORs using the Ag-NOR method (Howell and Black 1980). The chromosomes were 
ranked and classified according to the scheme of Green and Sessions (1991).
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Fluorescence in situ hybridization

Loci of 28S rDNA were detected fluorescence in situ hybridization (FISH). We used 
the 28S fragment isolated by Bruschi et al. (2012) to detect the rDNA genes. This 
probe was PCR-labeled with digoxigenin and hybridized following the protocol of 
Viegas-Péquignot (1992). Finally, the vertebrate telomeric (TTAGGG)n sequence 
probe was obtained by PCR amplification and labeling, based on Ijdo et al. (1991).

Results

The diploid number of the P. carvalhoi karyotype was 2n = 20 chromosomes (Fig. 1). 
The karyotype contains three metacentric pairs (1, 3, 8), two submetacentric (2 and 
7), three subtelocentric (4, 5, 6), and two telocentric pairs, 9 and 10 (Fig. 1). The same 
karyotype was recorded in both populations.

The C-banding technique detected centromeric blocks of heterochromatin in all 
chromosome pairs. Interstitial heterochromatin blocks were also detected in the long 
arms of pair 5 (Fig. 1B). Pericentromeric C-positive banding was observed in the long 
arm of pair 3, and in the short arm of the submetacentric pair 7 (Fig. 1B). The centro-
meric blocks of heterochromatin presented DAPI-positive signals in all the chromo-
somes, in addition to pericentromeric heterochromatin in pair 3 (Fig. 1C). The DAPI 
staining also revealed a conspicuous bright signal in the pericentromeric regions of 
both arms of pair 3 and 8. Neither of these features were revealed by the C-banding 
(Fig. 1C).

Under conventional Giemsa staining, a secondary constriction was observed in 
the subterminal regions of the homologs of pair 9, which coincides with the NOR 
site (in both populations), detected by the Ag-NOR method and confirmed by FISH 
using the rDNA 28S probe (Fig. 2A), and this region was DAPI-negative (Fig. 2B). 
The telomeric probe hybridized all the telomeres in the chromosomes of P. carvalhoi. 
Conspicuous signals of Interstitial Telomeric Sequences (ITSs) can be observed in the 
centromeric/pericentromeric region of the homologs of pairs 1, 2, 4, 5, 6, 7, and 8, and 
in the interstitial region of the long arm of chromosome pair 9. A secondary constric-
tion was also observed in chromosome pair 8 (Fig. 2A, C).

Discussion

The chromosomal evolution of the pipids appears to have involved complex rearrange-
ments, including recurrent polyploidization events and associated shifts in the diploid 
number (Table 1). In the present study, we redescribed the karyotype of P. carvalhoi, in-
cluding the distribution of the heterochromatin and the NOR site. In the phylogenetic 
reconstructions of the superfamily Pipoidea proposed by Pyron and Wiens (2011) and 
Irisarri (2011), the 2n = 22 diploid number was identified as the plesiomorphic condi-
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tion, based on the karyotype of Rhinophrynus dorsalis Duméril & Bibron, 1841 (Bogart 
and Nelson 1976), the only member of the Rhinophrynidae.

Subsequently, Mezzasalma et al. (2015) proposed that the ancestral karyotype of 
Pipidae had a diploid number of 2n = 20, based on the conserved diploid numbers 
observed in Xenopus (= Silurana) tropicalis and Hymenochirus boettgeri + Pseudhymeno-
chirus merlini. The phylogenetic inferences of Evans et al. (2004) and Irisarri (2011) in-
dicated the existence of two clades in the clawed frogs (Xenopus), with a well-supported 
synapomorphy of the diploid number, which divides the species of this genus into two 
separate lineages: the subgenus Silurana (2n = 20) and the subgenus Xenopus, which 
has the primitive diploid number (2n = 18). The diploid number (2n = 20) found in 

Figure 1. Karyotype of P. carvalhoi. a Prepared by conventional Giemsa staining b C-banding and 
c DAPI staining. The arrow indicates the NOR site.
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Figure 2. Fluorescence in situ hybridization in P. carvalhoi karyotype. a Hybridized with the 28S rDNA 
probe b the NOR-bearing chromosome highlighted by DAPI-staining, the Ag-NOR method, and FISH 
with 28S rDNA c In situ hybridization with the telomeric probe in the karyotype of P. carvalhoi from 
Pernambuco, Brazil. The arrows in c indicate the interstitial telomeric sequences (ITSs) and the constric-
tion in chromosome 8 are indicates by asterisk.

Xenopus (= Silurana) tropicalis (Gray, 1864) and the polyploidy of the species derived 
from this form [2n = 4x = 40: Xenopus (= Silurana) calcaratus Peters, 1877; Xenopus 
(= Silurana) epitropicalis Fischberg, Colombelli and Picard 1982; Xenopus (= Silurana) 
mellotropicalis Evans et al. 2015] correspond to a retention of the plesiomorphic condi-
tion of the pipids (Mezzasalma et al. 2015).
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Table 1. Detailed cytogenetic data available for species of the Pipidae family. NOR: Nucleolar Organizer 
Region; M= metacentric; SM= submetacentric; ST=subtelocentric; T=telocentric; p= short arm; q=long 
arm; (–) no data.

Species Ploidy 
level

Karyotype formula NOR 
site

Reference

Xenopus tropicalis group 

X. tropicalis 2n = 20 2 M + 14 SM + 4 A 5q Tymowska and Fischberg 1973; Uehara et al. 2002
X. epitropicalis 4n = 40 4M + 28 SM+ 8 A 5q Tymowska and Fischberg 1982; Tymowska 1991
X. new tetraploid 1 4n = 40 4M + 28 SM+ 8 A 5q Tymowska 1991; Evans et al. 2004
X. new tetraploid 2 4n = 40 4M + 28 SM+ 8 A 5q  Evans et al. 2004
Xenopus laevis group 

X. borealis 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 4p Tymowska and Fischberg 1973; Tymowska 1991
X. clivii 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 4p Tymowska and Fischberg 1973; Tymowska 1991
X. fraseri 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 6q Tymowska and Fischberg 1973; Tymowska 1991
X. gilli 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 12p Tymowska and Fischberg 1973; Tymowska 1991
X. laevis laevis 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 12p Tymowska 1991
X. laevis bunyoniensis 4n = 36 6 M+ 14 SM+ 2 ST + 14 T – Tymowska 1991
X. laevis petersi 4n = 36 6 M+ 14 SM+ 2 ST + 14 T – Tymowska and Fischberg 1973; Tymowska 1991
X. laevis poweri 4n = 36 6 M+ 14 SM+ 2 ST + 14 T – Tymowska 1991
X. laevis sudanensis 4n = 36 6 M+ 14 SM+ 2 ST + 14 T – Tymowska 1991
X. laevis victorianus 4n = 36 6 M+ 14 SM+ 2 ST + 14 T – Tymowska and Fischberg 1973; Tymowska 1991
X. largeni 4n = 36 6 M+ 14 SM+ 2 ST + 14 T – Tymowska 1991
X. muelleri 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 4p Tymowska and Fischberg 1973; Tymowska 1991
X. pygmaeus 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 6q Loumont 1986
X. sp. nov. VI 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 4p Tymowska 1991
X. sp. nov. IX 4n = 36 6 M+ 14 SM+ 2 ST + 14 T 12p Tymowska 1991
X. amieti 8n = 72 12 M + 28 SM + 4 ST + 28 T 5q Kobel et al. 1980
X. andrei 8n = 72 12 M + 28 SM + 4 ST + 28 T 18q Loumont 1983
X. boumbaensis 8n = 72 12 M + 28 SM + 4 ST + 28 T 6p+ 4p Loumont 1983
X. itombwensis 8n = 72 12 M + 28 SM + 4 ST + 28 T – Evans et al. 2008
X. lenduensis 8n = 72 12 M + 28 SM + 4 ST + 28 T – Evans et al. 2011
X. vestitus 8n = 72 12 M + 28 SM + 4 ST + 28 T 12p Tymowska 1991
X. wittei 8n = 72 12 M + 28 SM + 4 ST + 28 T 12p Tymowska 1991
X. sp. nov. X 8n = 72 12 M + 28 SM + 4 ST + 28 T 18q Tymowska 1991
X. longipes 12n = 108 18 M + 42 SM + 6 ST + 42 T 7p Loumont and Kobel 1991
X. ruwenzoriensis 12n = 108 18 M + 42 SM + 6 ST + 42 T 11q Tymowska and Fischberg 1973; Tymowska 1991
X. cf. boumbaensis 12n = 108 18 M + 42 SM + 6 ST + 42 T 7p Evans 2007
X. sp. nov. VIIIa 12n = 108 18 M + 42 SM + 6 ST + 42 T 7p Tymowska 1991
Genus Pseudhymenochirus

P. merlini  2n = 20 8 M + 4 SM + 6 ST + 2 T 10q Mezzasalma et al. 2015
Genus Hymenochirus 

H. boettgeri 2n = 20 14 M + 2 SM + 4 ST 4p Mezzasalma et al. 2015
Genus Pipa

P. carvalhoi 2n = 20 6 M+ 4 SM+6 ST + 4 T 9q Present study
8 M + 8 SM + 4 T† Mezzasalma et al. 2015

P. pipa 2n = 22 8 M + 14 A – Wickbom 1950

6M + 2ST + 14A Morescalchi et al. 1970
P. parva 2n = 30 30 T – Morescalchi 1981

†Chromosomal formula shown by Mezzasalma et al. 2015 was based in Pfeuffer-Friederich 1980 and Sachsse 1980.
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The diploid number (2n = 20) recorded here in P. carvalhoi also corresponds to 
a retention of the plesiomorphic condition of the pipids, and an overview of all the 
known karyotypes of pipid species indicates that the morphology of pairs 1, 2, 3, and 
4 is highly conserved, as it is in the outgroup, Rhinophrynus dorsalis (Mezzasalma et 
al. 2015). Despite the conservative karyology of the principal pipid clades, the known 
diploid numbers of Pipa species vary considerably. The two other species for which 
data are available are P. parva, which has a karyotype (2n = 30) composed entirely of 
telocentric pairs (Wickbom 1950, Morescalchi 1968), and P. pipa, which has a diploid 
number of 2n = 22 (Morescalchi et al. 1970).

The comparison of the karyotypes of P. carvalhoi and P. pipa (Wickbom 1950, 
Morescalchi et al. 1970) indicates interspecific chromosomal homologies of the 
metacentric and submetacentric pairs 1, 2, 3, and 4. The minor differences between 
the P. pipa karyotypes published by Wickbom (1950) and Morescalchi et al. (1970) 
are derived from variation in the chromosomal nomenclature adopted in the two 
studies, rather than any real karyotype differences among the P. pipa populations. 
As the P. parva karyotype contains only telocentric pairs, the recognition of chro-
mosome homologies with other Pipa species are currently restricted by the lack of 
appropriate markers.

The pericentromeric heterochromatin block in the homologs of pair 3 of P. carval-
hoi could be a common feature of pipid karyotypes. Interestingly, this heterochromatin 
block, is also present in Xenopus (= Silurana) tropicalis (Tymowska & Fischberg, 1982), 
Hymenochirus boettgeri, and Pseudhymenochirus merlini karyotype (Mezzasalma et al. 
2015), which all have a diploid number of 2n = 20 chromosomes. As the configura-
tion of the heterochromatin is a valuable marker for the interspecific comparison of 
karyotypes, the unique non-centromeric heterochromatin blocks found in some of the 
chromosomes of P. carvalhoi constitute an important diagnostic trait for the analysis of 
the interspecific variation in the pipids, based on C-banding.

We detected interstitial telomeric sequences (ITSs) in the centromeric/peri-
centromeric region of the metacentric and submetacentric chromosomes of the P. 
carvalhoi karyotype. Based in Mezzasalma et al. (2015) hypothesis, the P. carvalhoi 
karyotype have been diversification from primitive Pipidae karyotype mainly by peri-
centromeric inversion involved pairs 3, 6, 8-10. In our data, the pericentromeric ITS 
detected in homologues of pairs 6, 8 and 9 validated this hypothesis, highlights the 
role of the intrachromosomal rearrangements shaping karyotype diversification in 
Pipidae. The pericentromeric inversion involved pair 3 occurred without repositioned 
telomeric repeats that justify absence of the ITS in this metacentric pair. Canonical 
telomeric repeats are located in the terminal regions of the chromosomes, but several 
vertebrate species have blocks of (TTAGGG)n repeats in non-terminal regions of 
their chromosomes (Meyne et al. 1990, Bolzán 2017). Non-telomeric (TTAGGG)
n repeats have been described frequently in anuran species see (Bruschi et al. 2014, 
Schmid and Steinlein 2016, Schmid et al. 2018). For example, Nanda et al. (2008) 
reported the presence of ITSs in pipid chromosomes for the first time, detecting a 
wealth of non-telomeric (TTAGG)n repeats in the chromosomes of Xenopus clivii 
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Peracca, 1898, in pair 17 of the Xenopus Laevis (Daudin, 1802) karyotype, and as-
sociated with the NOR in X. borealis and X. muelleri (Peters, 1844). Interestingly, the 
ITS markers were fundamental to the discrimination of the karyotypes of these four 
species, which all share the same diploid number (2n = 36) and have highly uniform 
chromosome morphology, when analyzed using a classical cytogenetic approach. The 
ITSs distinguish X. clivii, which has much more numerous ITSs in comparison with 
the other Xenopus karyotypes.

Despite being an unusual feature of vertebrate genomes, we found ITS sites in 
euchromatic regions (in pair 9, for example), as found in some other anuran species. 
Schmid and Steinlein (2016) proposed ‘large ITSs in restricted euchromatic regions 
(restricted eu-ITSs)’ as a new category of ITS in anuran karyotypes. These euchromatic 
ITSs have already been documented in chromosome pairs 2 and 9 of Hypsiboas boans 
(Linnaeus, 1758) (Schmid and Steinlein 2016), which is consistent with the presence 
of these markers in pair 9 of P. carvalhoi.

Adopting the parsimony criterion, we rejected the hypothesis that the ITSs detect-
ed in the P. carvalhoi karyotype are remnants of centric (Robertsonian) fusions, given 
that P. carvalhoi has the plesiomorphic pipid diploid number. However, for some chro-
mosomes (pairs 6, 8 and 9) theses ITS to confirm occurrence of the intrachromosomal 
rearrangements during evolution of this karyotype. Already, for others ITS signals, 
our data support the conclusion that the presence of the intrachromosomal telomeric 
motif (TTAGGG)n represents a component of the repetitive DNA sequences spread 
throughout these chromosomes. Furthermore, the ITSs found in the P. carvalhoi chro-
mosomes coincide with the heterochromatic blocks detected by C-banding in chromo-
somes 1, 2, 4, 5 and 7. The role of telomeric repeats as repetitive motifs of part of the 
satellite DNA has already been described in a number of rodent genera, with a unique 
signal being found in the pericentromeric heterochromatin together with Msat-160 or 
in telomeric probes, in experiments with co-located het-ITSs and the Msat-160 satel-
lite DNA (Rovatsos et al. 2011).

Ruiz-Herrera et al. (2008) proposed a model to account for the presence of 
short ITSs in the genome of vertebrates, in which the sequences originate from 
the insertion of telomeric repeats during the repair of double-strand breaks (DBSs) 
in the DNA, which may occur either with or without the intervention of telom-
erase, with the telomerase-mediated repair of the DSBs possibly leading to the 
appearance of ITSs. Bolzán and Bianchi (2006) concluded that the amplification 
of these sequences may be related to (i) the insertion of telomeric repeats dur-
ing the repair of double-strand breaks or (ii) transposable elements. In the former 
case (i), the telomerase may catalyze the addition of telomeric sequences directly 
to non-terminal regions through the direct addition of (TTAGGG)n repeats to 
the ends of broken chromosomes (chromosome healing). The amplification of the 
ITSs may also occur through unequal crossing over between the repeats of sister 
chromatid breakage-fusion-bridge cycles, replication slippage (Lin and Yan 2008), 
gene conversion, and excision and reintegration events through the ‘rolling circle’ 
mechanism (Bolzán 2017).
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Conclusion

Overall, then, the results of the present study indicate that P. carvalhoi has a karyo-
type of 2n = 20 chromosomes, supporting that this chromosome formula represents 
the pleiomorphic condition of the pipids, with interspecific chromosomal homologies 
indicating a highly conserved karyotype configuration. The presence of ITSs in some 
chromosomes may have originated independently during the chromosomal evolution 
of this species which in others pairs correspond to evidences of the pericentromeric in-
versions occurred during Pipidae karyotype diversification. The findings of the present 
study provide important insights into the mechanisms of chromosomal evolution in 
the genus Pipa and the diversification of the family Pipidae as a whole.
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