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Abstract
Species of infraorder Cimicomorpha of Heteroptera exhibit holokinetic chromosomes with inverted 
meiosis for sex chromosomes and high variation in chromosome number. The family Reduviidae, 
which belongs to this infraorder, is also recognized by high variability of heterochromatic bands and 
chromosome location of 18S rDNA loci. We studied here five species of Reduviidae (Harpactorinae) 
with predator habit, which are especially interesting because individuals are found solitary and dispersed 
in nature. These species showed striking variation in chromosome number (including sex chromosome 
systems), inter-chromosomal asymmetry, different number and chromosome location of 18S rDNA loci, 
dissimilar location and quantity of autosomal C-heterochromatin, and different types of repetitive DNA 
by fluorochrome banding, probably associated with occurrence of different chromosome rearrangements. 
Terminal chromosome location of C-heterochromatin seems to reinforce the model of equilocal dispersion 
of repetitive DNA families based in the “bouquet configuration”.
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Introduction

Species of the suborder Heteroptera share several cytogenetic features such as the occur-
rence of holokinetic chromosomes, inverted meiosis for sex chromosomes and variation 
in chromosome number (Ueshima 1979, Manna 1984, Pérez et al. 2000, Papeschi and 
Bressa 2006, Bardella et al. 2014a). Chromosome numbers vary from 2n = 4 in Nepo-
morpha to 2n = 80 in Cimicomorpha (Ueshima 1979, Manna 1984, Papeschi and Bressa 
2006), and the latter infraorder displays the greatest karyotype diversity among the Het-
eroptera (Kuznetsova et al. 2011). These insects also exhibit diversity in heterochromatin 
distribution (Grozeva and Nokkala 2003, Grozeva et al. 2004, Ituarte and Papeschi 2004, 
Bressa et al. 2005, Franco et al. 2006, Panzera et al. 2010, Bressa et al. 2008, Chirino et 
al. 2013, Bardella et al. 2014a). Previous reports on C-heterochromatin in heteropterans 
showed that C-bands are terminally located. However, intercalary patterns are described 
in several species (Camacho et al. 1985, Dey and Wangdi 1990, Pérez et al. 1997, Pa-
peschi et al. 2003, Ituarte and Papeschi 2004, Grozeva and Nokkala 2003, Angus et al. 
2004, Grozeva et al. 2004, Waller and Angus 2005, Angus  2006, Bressa et al. 2008).

The 18S rDNA locus is the principal marker on chromosomes of Nepomorpha, 
Pentatomomorpha and Cimicomorpha (González-García et al. 1996, Papeschi et al. 
2003, Cattani et al. 2004, Cattani and Papeschi 2004, Dias de Campos Severi-Aguiar 
and Azeredo-Oliveira 2005, Severi-Aguiar et al. 2006, Morielle-Souza and Azeredo-
Oliveira 2007, Bressa et al. 2008, 2009, Grozeva et al. 2010, 2011, Poggio et al. 2011, 
2013a, 2014, Panzera et al. 2012, Chirino et al. 2013a, Bardella et al. 2013). Of the 
36 species of Pentatomomorpha studied until now, the rDNA loci are preferably lo-
cated in autosomes with only four species with rDNA loci on the sex chromosomes 
(González-García et al. 1996, Bressa et al. 2009, Grozeva et al. 2011, Bardella et al. 
2013). On the contrary, in Cimicomorpha, the location of rDNA loci are more heter-
ogeneous: the hybridization sites are observed on autosomes, sex chromosomes or both 
simultaneously (Dias de Campos Severi-Aguiar and Azeredo-Oliveira 2005, Severi-
Aguiar et al. 2006, Morielle-Souza and Azeredo-Oliveira 2007, Grozeva et al. 2010, 
2011, 2013, 2014, Panzera et al. 2012, 2014, Poggio et al. 2011, 2013a, 2013b).

According to Schuh and Slater (1995), Cimicomorpha includes species with dif-
ferent habits, such as predatory and hematophagous (Reduviidae), phytophagous 
(Miridae) and ectoparasitic (Cimicidae and Polyctenidae). Predators are interesting 
because they act in the biological control of other insects, either in natural or agricul-
tural environments (Schaefer and Panizzi 2000). The study of these insects is difficult 
because they are always found scattered in nature, without the formation of colonies. 
The small number of individuals obtained is a limiting factor for comparative analyses 
of relatedness and karyotype evolution, as well as for population approaches. We made 
great efforts to obtain a large number of predators of Cimicomorpha to increase our 
knowledge of the karyotypical structure of these insects. Our goal was to generate a 
good volume of data and to compare them with the results previously reported for oth-
er heteropteran groups. The results presented here for the family Reduviidae provide 
information on karyotype organization, including the distribution of heterochromatin 
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and location of 18S rDNA sites. These analyses reinforce the model of equilocal disper-
sion of repetitive DNA families based in the “bouquet organization”.

Materials and methods

Five species of Heteroptera belonging to the family Reduviidae (subfamily Harpactorinae) 
were collected in the South and Southeast regions of Brazil, and information about the 
collection localities is given in Fig. 1 and Table 1. Conventional karyotypes of Apiomerus 
lanipes (Fabricius, 1803) and Cosmoclopius nigroannulatus (Stål, 1860) were previously de-
scribed (Poggio et al. 2007), while all cytogenetic information on Zelus laticornis (Herrich-
Schäffer, 1853), Montina confusa (Stål, 1859) and Repipta flavicans (Amyot & Serville, 
1843) is new. Gonads were dissected out and the seminiferous tubules were fixed in a solu-
tion of methanol-acetic acid (3:1, v:v) and stored at 20°C below zero. For the preparation 
of slides, tubules were incubated in 45% acetic acid for 10 min at room temperature, and 
squashed in a drop of 45% acetic acid. Coverslips were removed after freezing in liquid ni-
trogen, and the slides air-dried. For conventional staining the slides were treated with 1N 
HCl for 6 min at room temperature and stained with 2% Giemsa for 1 min at room tem-
perature. The samples were air-dried and mounted with Entellan. Chromosome measure-
ments were made in five metaphases I, with similar chromosome condensation, for each 
species. The measurement was performed manually, using a needle point compass. Chro-
mosome pairs were arranged in decreasing size, according to the average size and standard 
deviation. The sex chromosomes were distinguished by the characteristic arrangement in 
metaphase I and were measured separately since they exhibit univalent behavior.

For chromosome C-banding (Sumner 1982, with modifications), slides were aged 
for three days after removal of coverslips. Afterwards, the slides were incubated in 0.2 
N HCl for 10 min at room temperature, 5% barium hydroxide at 60°C for 2 min, 
and 2× SSC, pH 7.0, at 60°C for 60 min. Samples were treated with 30 µl of each 
fluorochrome: 0.5 mg/ml chromomycin A3 (CMA3/Sigma) for 1.5 h at room tem-
perature and 2 µg/ml 4’6-diamidino-2-phenylindole (DAPI/Invitrogen) for 30 min at 
room temperature. Preparations were mounted with a medium composed of glycerol/
McIlvaine buffer, pH 7.0 (1:1, v:v), plus 2.5 mM MgCl2.

Fluorescent in situ hybridization (FISH) was done as described in Bardella et al. 
(2010) and performed on samples of at least two individuals per species. The pAt05 
clone, containing a partial sequence of the 18S rDNA of Antiteuchus tripterus (Fabricius, 
1787) (Pentatomidae, Pentatomomorpha), was labeled with digoxigenin-11-dUTP by 
nick translation (DIG-nick translation mix Roche prepared according to the procedures 
recommended by the manufacturer). Preparations were treated with 30 µl of hybridiza-
tion mixture containing 4 µl of labeled probe (100 ng), 15 µl of 100% formamide, 6 
µl of 50% polyethylene glycol, 3 µl of 20×SSC, 1 µl of 10% SDS and 1 µl of water. 
Chromosome denaturation/renaturation was done at 90°C for 10 min using a thermal 
cycler, and hybridization was performed for 12 h at 37°C in a humidified chamber. Post-
hybridization washes were carried out at different concentrations of SSC buffer (3.17M 
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Figure 1. Maps of South America and Brazil (A). The section in B indicates the position of the states 
with collection points (SP: São Paulo, MS: Mato Grosso do Sul and PR: Paraná). The locations 1, 2, 3 and 
4, which indicate the cities where heteropterans were collected, are specified in Table 1.

NaCl and 0.34M Na3C6H5O7), with 60% stringency due to heterologous hybridization. 
For detection, anti-digoxigenin-rhodamine in 5% BSA/4× SSC/0.2% Tween 20 (1:100, 
v:v) was used. The post-detection washes were performed in 4× SSC/0.2% Tween 20 
at room temperature. Slides were mounted with 26 µl of DABCO solution (1,4-diaza-
bicyclo (2.2.2)-octane (2.3%), 20 mM Tris-HCl, pH 8.0, (2%) and glycerol (90%) in 
distilled water), 2 µl of 2 µg/ml DAPI and 1 µl of 50 mM MgCl2.

All chromosome images were acquired separately in grayscale mode using a Leica 
DM 4500 B epifluorescence microscope equipped with a very high sensitivity, 1.4 
MPixel resolution, firewire interface Leica DFC300 FX camera. Pseudo coloration of 
blue/red colors for DAPI, greenish for CMA3 and greenish-yellow for rhodamine were 
done using Leica IM50 4.0 software, as well as the overlapping of images.

Results

The chromosome numbers found for the five species of Reduviidae were 2n = 22 + XY 
in A. lanipes, 2n = 24 + X1X2X3Y in C. nigroannulatus, 2n = 24 + XY in Z. laticornis, 
2n = 12 + XY in M. confusa and 2n = 18 + XY in R. flavicans (Fig. 2A–E, respectively). 
In Z. laticornis and R. flavicans the size of chromosomes decreased gradually (Fig. 2 
and Fig. 3). In A. lanipes, chromosome asymmetry was due to the existence of a larger 
autosomal pair. Cosmoclopius nigroannulatus exhibited three sex chromosomes (X) with 
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reduced size, and M. confusa showed three larger autosomal pairs (Fig. 3). In all spe-
cies, the sex chromosomes were smaller of the chromosome complement; except in A. 
lanipes, where the sex chromosomes exhibited intermediate relative sizes (Fig. 3).

The predominant sex determination system was the simple XY in the species stud-
ied, except C. nigroannulatus, which displayed X1X2X3Y (Fig. 2B). The difficulty of 
keeping these species in captivity made it impossible to obtain eggs, and this prevented 
the differentiation of the sex chromosomes X and Y for the species with a simple sex 
chromosome system. Therefore, these chromosomes are named here generically as only 
“sex chromosomes”. The comparison of measurements of sex chromosomes showed 
that X1X2X3 of C. nigroannulatus were five times smaller than the sex chromosomes 
of M. confusa, R. flavicans and Z. laticornis, and up to ten times smaller than the sex 
chromosomes of A. lanipes (Table 1 and Figs 2–4).

Fluorescent C-chromosome banding exhibited a large variability in the occurrence 
of C-DAPI+/CMA3

+ bands among the five species:

A. lanipes: Only the largest autosomal pair showed terminal C-DAPI+/CMA3
+ bands 

(Fig. 4A–B). The heterochromatic sex chromosomes of this species exhibit different 

Figure 2. Conventional staining with 2% Giemsa of meiotic chromosomes of five species of Reduviidae. 
A Apiomerus lanipes: Metaphase I. 2n = 22 + XY B Cosmoclopius nigroannulatus. Metaphase I. 2n = 24 + 
X1X2X3Y C Zelus laticornis Metaphase I. 2n = 24 + XY D Montina confusa. Metaphase II. 2n = 12 + XY 
E Repipta flavicans. Metaphase I. 2n = 18 + XY. The arrowheads indicate the sex chromosomes. Bar = 5µm.
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fluorescent patterns (Fig. 4A–B). One sex chromosome appeared totally C-DAPI+/
CMA3

+, and the other was totally C-DAPI+ with C-CMA3
+ band observed as 

subterminal dots (arrowheads in the Fig. 4A–B).
M. confusa: A large number of heterochromatic bands is observed: the two largest 

autosomes and both sex chromosomes exhibited C-DAPI+/CMA3
+ bands in both 

terminal regions. The third autosomal pair showed a C-DAPI+/CMA3
+ band in 

only one terminal region, whereas the three smaller pairs were totally C-DAPI+/
CMA3

+ (Fig. 4D–E).
C. nigroannulatus: Autosomal complement not exhibit fluorescence banding. The Y 

chromosome is totally C-DAPI+/CMA3
+ (Fig. 4G-H),

Z. laticornis:only one sex chromosome was totally C-DAPI+/CMA3
+ (Fig. 4J–K).

R. flavicans exhibited no fluorescent bands in autosomes and sex chromosomes (Fig. 4M–N).

Figure 3. Graph showing the difference in karyotype in five species of Reduviidae, based on the decrease 
in chromosome size. SC indicates the position of the sex chromosomes of similar size, LSC points to 
the large sex chromosome, SSC shows the small sex chromosome, and FSC indicates the fragmented sex 
chromosomes. Note that Montina confusa displays the karyotype with a great sized variation among the 
five species analyzed, and Apiomerus lanipes is the only species with sex chromosomes of intermediate size 
relative to the autosomes.
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Figure 4. C-DAPI/CMA banding and FISH with 18S rDNA probe in five predatory species of Redu-
viidae. A–C Apiomerus lanipes. Diplotene: terminal DAPI+/CMA + bands in the largest bivalent (arrows), 
one sex chromosomes totally DAPI+/CMA+ (arrowhead) and the other sex chromosome totally DAPI+ 

(arrowhead) with a terminal CMA+ dot. In metaphase I, the hybridization rDNA signals are located at 
terminal positions of both sex chromosomes (arrow and box - metaphase II) D–F Montina confusa. Go-
nial mitosis with two autosomal pairs and both sex chromosomes exhibiting DAPI+/CMA+ bands at both 
terminal regions (arrow and the word S, respectively), one autosomal pair with DAPI+/CMA+ band at one 
terminal region (arrowhead) and three autosomal pairs totally DAPI+/CMA+(asterisk). In metaphase I, 
ribosomal loci are located on the largest bivalent (arrow) G–I Cosmoclopius nigroannulatus. In metaphase 
I, the Y chromosome appear entirely DAPI+/CMA+ (asterisk) and hybridization signals of rDNA on two 
sex chromosomes in metaphase II (arrows). Note the aggregation of the three X chromosomes J–L Zelus 
laticornis. Metaphase I has one sex chromosome totally DAPI+/CMA+ (asterisk), and the rDNA sites are 
situated on one bivalent (arrow) M–O Repipta flavicans. Diakinesis without heterochromatic regions. The 
hybridization signals are located on one sex chromosome in metaphase I (arrow). Arrowheads indicate the 
sex chromosomes. Bar = 5µm.
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FISH experiments with the 18S rDNA probe showed variation in number, loca-
tion, and signal intensity. In all species the hybridization signals always appeared at 
terminal chromosome positions. In A. lanipes, both sex chromosomes showed hybridi-
zation signals (Fig. 4C). In C. nigroannulatus, one of the signals of 18S rDNA was 
located on the largest sex chromosome (Y), whereas the other ribosomal signal was 
observed on one of the fragmented X chromosomes (Fig. 4I), which had a CMA3-neg-
ative signal after C-CMA banding (Fig. 4H). In R. flavicans, a hybridization signal was 
observed on one sex chromosome (Fig. 4O). In M. confusa (Fig. 4F) and Z. laticornis 
(Fig. 4L), hybridization signals were observed on a large autosomal bivalent.

Discussion

Species of Reduviidae show low variation in chromosome number, from 2n = 12 in 
the genus Polididus Stål, 1858 (Manna and Deb-Mallich 1981) up to 2n = 34 in the 
genus Bagauda Bergroth, 1903 (Ueshima 1979), when compared with other families 
of Cimicomorpha, such as Miridae (2n = 14 to 80) and Cimicidae (2n = 14 to 50) 
(Kuznetsova et al. 2011). Many of these chromosome variations have been associated 
with chromosomal rearrangements such as fusion and fragmentation (Ueshima 1979, 
Papeschi and Bidau 1985, Papeschi 1988, 1994, Rebagliati et al. 2001, Bressa et al. 
2002, Papeschi and Bressa 2006, Poggio et al. 2007, 2009, 2014, Grozeva et al. 2010, 
Chirino et al. 2013, Chirino and Bressa 2014). Although these arguments have been 
proposed considering the occurrence of rearrangements, there is not much evidence 
of these changes in Heteroptera. Rearrangements are more precisely evidenced when 
trivalents, multivalents or robust cytogenetic markers (heterochromatin, rDNA sites 
or others) are noted. Samples of these events were reported for species of Belostoma La-
treille, 1807 (Papeschi 1994, 1996) and Triatoma infestans (Klug, 1834) (Poggio et al. 
2013b). Other examples of chromosome changes were reported in insects of the family 
Aradidae, where fusions were important for karyotype evolution (Jacobs 2003), as well 
as the dysploidy that originated the neoXneoY sex system in Dysdercus albofasciatus 
Guérin Meneville, 1831 (Bressa et al. 2009). Dysploidy is recognized as an important 
evolutionary mechanism for karyotype differentiation in organisms with holokinetic 
chromosomes, for both plants (Guerra 2008) and animals (Bardella et al. 2014a). Due 
to the lack of phylogenetic analyses as well as the absence of chromosome markers 
for most heteropterans, the evolutionary direction for certain rearrangements is very 
speculative, especially in heteropteran predators. However, there are sporadic examples 
where chromosome rearrangements can be supposed, as observed in C. nigroannulatus, 
where numerical diversity is clearly linked to the fragmentation of sex chromosomes 
(Papeschi 1994, 1996, Poggio et al. 2007, 2013a, 2014).

Of the five karyotypes of Reduviidae studied here, two (R. flavicans and Z. lati-
cornis) showed a gradual decrease in size. This feature is common in Heteroptera, and it 
has been observed in species of different families, such as Holhymenia rubiginosa Bred-
din, 1904, Coreidae (Bressa et al. 2008) and Edessa rufomarginata (De Geer, 1773), 
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Pentatomidae (Rebagliati et al. 2003). On the other hand, the substantial dissimilarities 
in the autosomal size or between sex chromosomes and autosomes were marked in three 
of the species here analyzed. In A. lanipes, the presence of a greater bivalent could be 
associated with a reduction in their chromosome number (2n = 24), when compared 
with the modal number of the subfamily Harpactorinae, 2n = 26 (Poggio et al. 2007). 
A similar situation was observed in Dichelops furcatus (Fabricius, 1775), (Rebagliati et 
al. 2001), and in Lygaeus alboornatus Blanchard, 1852 (Bressa et al. 2002), in which a 
very large bivalent probably originated from a chromosome fusion. In C. nigroannula-
tus, as discussed above, the reduced size of three X chromosomes is due to fragmenta-
tion events, as reported by Poggio et al. (2007). The most striking case found here was 
the karyotype of M. confusa. Grozeva et al. (2006) reported more than one large chro-
mosome in Macrolophus costalis Fieber, 1858 (Miridae). In heteropterans, significant 
variation in karyotype size may be associated not only with chromosomal rearrange-
ments, but also with differential accumulation of heterochromatin, able to change the 
set size (Panzera et al. 1995, 2004, Bressa et al. 2008, Chirino et al. 2013, Bardella et al. 
2014b). However, this does not seem be the case for A. lanipes and M. confusa, because 
if we disregard the heterochromatin, these chromosomes are still very large.

The variation in the content and distribution of heterochromatin in autosomes 
and sex chromosomes is well documented in heteropteran species, and occurs mainly 
in the terminal chromosomal regions (Grozeva and Nokkala 2002, Bressa et al. 2005, 
Panzera et al. 2010, Grozeva et al. 2010, Chirino et al. 2013, Suman and Kaur 2013, 
Poggio et al. 2014, Bardella et al. 2014a). This common feature was observed only 
in M. confusa among the predator species studied here. On the other hand, C. cos-
moclopius and Z. laticornis showed heterochromatin located only in one of the sex 
chromosomes. The heterochromatic profile reported in A. lanipes is similar to that 
observed for T. infestans, but the latter displays a greater number of bivalents with 
terminal heterochromatic regions (Panzera et al. 1995, 2010, Bardella et al. 2014b).T. 
infestans was the best studied species of Reduviidae in relation to the distribution of 
heterochromatin. This species exhibits bands in terminal chromosome regions, but 
there is a variation in the chromosome pairs carrying bands, which is associated with 
the geographic distribution of each population in South America (Panzera et al. 1992, 
1995, 2004, 2014). High interspecific variation in distribution of heterochromatin has 
also been reported for other species of Cimicomorpha (Grozeva and Nokkala 2001, 
Panzera et al. 2010) and Pentatomomorpha (Bardella et al. 2014a). Despite the high 
variability found in the content and distribution of heterochromatin, the constancy in 
the positioning of bands in terminal chromosome regions suggests that mechanisms 
of dispersion of heterochromatin could be associated with positioning of satDNA in 
interphase. The model of “bouquet polarization,” which postulates that chromosomes 
can be closely associated with the nuclear envelope through their ends, could support 
the idea of the sharing of repetitive DNA families at terminal chromosomal regions. 
The “bouquet polarization” model was proposed by Rodriguez Iñigo et al. (1996) 
when cells in the transition interphase-prophase I of Dociostaurus genei (Ocskay, 1832) 
(Orthoptera) were studied. Among Heteroptera, the “bouquet” has been mentioned 
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for Pyrrhocoris apterus Linnaeus, 1758. (Suja et al. 2000) and Graphosoma italicum 
(O.F. Muller, 1766) (Vieira et al. 2009). Except for Holhymenia histrio, H. rubiginosa, 
Macrolophus costalis and Spartoceras batatas (Fabricius, 1758), which show interstitial 
bands on some chromosomes (Franco et al. 2006, Grozeva et al. 2006, Bressa et al. 
2008, Bardella et al. 2014a), the terminal pattern of heterochromatin distribution, 
such as that found here in M. confusa, was also found in almost all species of Heterop-
tera. The total absence of bands, as found here in R. flavicans, has been seen in different 
families of Heteroptera: Reduviidae (Poggio et al. 2011); Belostomatidae (Papeschi 
and Bidau 1985, Papeschi 1994, Papeschi and Bressa 2006), Coreidae (Bressa et al. 
2005, Bardella et al. 2014a), Pentatomidae and Pyrrhocoridae (Bressa et al. 2009, 
Bardella et al. 2014a). This suggests that the presence or not of heterochromatin may 
be intrinsic in each genome, regardless of the phylogenetic relationships of the species 
studied to date.

In heteropteran species, many C-heterochromatic bands can be AT or GC-rich, 
such as in M. confusa (Rebagliati et al. 2003, Bressa et al. 2005, Franco et al. 2006, 
Bardella et al. 2010, 2012, 2014a, Chirino et al. 2013). In this way, the example of 
T. infestans can be highlighted because the distinct repetitive DNA families (AT- and 
GC-rich) appear adjacently arranged at terminal chromosome regions (Bardella et al. 
2014b). On the other hand, species with small amounts of constitutive heterochro-
matin generally exhibit only CG-rich bands or dots associated with the nucleolar or-
ganizer regions (NORs), as observed in Graphosoma italicum (González-García et al. 
1996), among others (Cattani et al. 2004, Papeschi and Bressa 2006, Bardella et al. 
2010, Grozeva et al. 2013, Chirino et al. 2013). Only in few species, NORs associated 
with AT-rich regions have been observed (Fossey and Liebenberg 1995, Bardella et al. 
2010). Differently, Z. laticornis showed CG and AT-rich heterochromatin completely 
restricted to only one of the sex chromosomes without association with the NORs. 
Similar cases have been reported in T. brasiliensis Neiva, 1911 and T. rubrovaria Blan-
chard, 1834 (Bardella et al. 2010).

The FISH studies in five species of predators studied here showed a variation in 
number (1-3) and distribution (autosomes and/or sex chromosomes) of 18S rDNA 
sites. These variations are included within the range previously reported for Reduviidae 
(Bardella et al. 2010, Panzera et al. 2012). For this group, Poggio et al. (2011) sug-
gested that the 18S rDNA sites are generally located at the terminal position on the 
X chromosome, or on both sex chromosomes in species with simple sex chromosome 
system (XY). However, in most cases the ribosomal loci are located at terminal posi-
tion on an autosomal pair in species with multiple sex chromosomes (XnY). However, 
our data on C. nigroannulatus, which shows fragmentation of the X chromosome, sug-
gests an additional situation for the distribution of 18S rDNA sites, since the rDNA 
signals appeared on both one of the fragmented X chromosomes and Y chromosome. 
The presence of 18S or 45S rDNA loci in one or more sex chromosomes has also been 
observed in several reduviid species from the subfamilies Triatominae (Severi-Aguiar 
et al. 2006, Panzera et al. 2012) and Reduviinae (Poggio et al. 2013a) with multiple 
sex chromosome system. There is at least one example, Dysdercus albofasciatus, where 
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the original X chromosome was inserted into the NOR-autosome next to the rDNA 
cluster in an ancestor carrying the X0 system, resulting in a neo-sex-chromosome sys-
tem (Bressa et al. 2009). We did not observe chromosomal rearrangements associated 
directly with the mobility of 18S rDNA sites in the reduviids. However, the variation 
in the chromosomal location of rDNA loci seems to be more common in reduviids 
from the Cimicomorpha infraorder than in the Pentatomomorpha infraorder (Panzera 
et al. 2012, Bardella et al. 2013, Poggio et al. 2013a). This variability indicates differ-
ent evolutionary pressures for the 18S rDNA distribution in the suborder Heteroptera, 
as in other insect groups (Nguyen et al. 2010).

Despite the five analyzed species belong to the same subfamily (Harpactorinae) 
and share the predatory habit (Zhang and Weirauch 2013), we observe different evo-
lutionary pathways in their chromosomes based on the extensive cytogenetic differ-
ences: i) great variation in chromosome number, ii) inter-chromosomal asymmetry, 
iii) simple and multiple sex systems, iv) different number and chromosome location of 
18S rDNA loci, v) dissimilar location and quantity of autosomal C-heterochromatin, 
and vi) different types of repetitive DNA by fluorochrome banding. The chromosome 
diversity found in this study clearly shows the need for analysis of a large number of 
species to establish evolutionary patterns in predator reduviids.
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