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Abstract
Euploidy plays an important role in the evolution and diversification of Psidium Linnaeus, 1753. However, 
few data about the nuclear DNA content, chromosome characterization (morphometry and class) and 
molecular markers have been reported for this genus. In this context, the present study aims to shed light 
on the genome of Psidium guineense Swartz, 1788, comparing it with Psidium guajava Linnaeus, 1753. 
Using flow cytometry, the nuclear 2C value of P. guineense was 2C = 1.85 picograms (pg), and the karyotype 
showed 2n = 4x = 44 chromosomes. Thus, P. guineense has four chromosome sets, in accordance with 
the basic chromosome number of Psidium (x = 11). In addition, karyomorphometric analysis revealed 
morphologically identical chromosome groups in the karyotype of P. guineense. The high transferability 
of microsatellites (98.6%) further corroborates with phylogenetic relationship between P. guajava and 
P. guineense. Based on the data regarding nuclear genome size, karyotype morphometry and molecular 
markers of P. guineense and P. guajava (2C = 0.95 pg, 2n = 2x = 22 chromosomes), P. guineense is a tetraploid 
species. These data reveal the role of euploidy in the diversification of the genus Psidium.
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Introduction

Psidium Linnaeus, 1753 is a genus of Myrtaceae that comprises about 92 species (Go-
vaerts et al. 2013), predominantly distributed in the Neotropics. The species of this 
genus differ from those belonging to other Myrtaceae genera by seeds with bony testa, 
cochlear embryo with small cotyledons and large hypocotyl (Landrum and Kawasaki 
1997). Brazil is a relevant center of Psidium species diversity, comprising approximate-
ly 60 taxa widely distributed in different biomes (Sobral et al. 2014). The genus is eco-
nomically important (Rai et al. 2010), with Psidium guajava Linnaeus, 1753, Psidium 
cattleyanum Sabine, 1821 and Psidium guineense Swartz, 1788 being the most relevant 
commercial species for fruit production and/or source of compounds in the pharma-
ceutical industry. Of these taxa, P. cattleianum (Costa and Forni-Martins 2007, Costa 
et al. 2008, Souza et al. 2015) and P. guajava (Costa and Forni-Martins 2007, Coser 
et al. 2012) are the best-known species with regard to cytogenetic features.

Karyotypic characterization has been applied to better understand the changes that 
occur during genome evolution (Éder-Silva et al. 2007). Based on previous cytogenetic 
studies, euploidy has led to diversification in Psidium (Briggs and Walters 1997). In 
fact, a series of euploid organisms, such as diploid (2n = 22), tetraploid (2n = 44), 
hexaploid (2n = 66) and octoploid (2n = 88) species (Atchison 1947, Costa and Forni-
Martins 2006a, 2006b, 2007), derived from the basic x = 11 chromosome number 
(Atchison 1947, Costa et al. 2008), has been reported for the genus. Nevertheless, the 
relationship among species that arose from euploidy events is still poorly understood 
in Psidium.

According to current knowledge, few Psidium species are diploid (2n = 22), such as 
Psidium chinense Loudon, 1830 (Naitani and Srivastava 1965), Psidium friedrichsthali-
anum Niedenzu, 1893 and P. guajava, which is the only diploid species whose karyo-
type has been characterized (Coser et al. 2012). Considering that the genus Psidium 
shows polyploid species (2n = 44–88 chromosomes), the allo- and/or autopolyploidi-
zation in diploid species of this genus can be related to the occurrence of polyploidy. 
Thus, the chromosome number and karyotype characterization of the polyploid spe-
cies represents the basis to understand the origin and diversification in Psidium.

Euploid species are key models for evolution because they provide evidence of 
the polyploidization event that promoted diversification and speciation. Considering 
that, this study aimed to refine the knowledge about karyological aspects of Psidium 
guineense. Besides, a comparison was performed with the diploid species (2x = 22) P. 
guajava, because this species is the only of the Psidium genus characterized from flow 
cytometry (FCM), cytogenetic (Coser et al. 2012) and molecular markers (Risterucci 
et al. 2005, Guavamap 2008, Nogueira et al. 2015).



Title: Refinement of the karyological aspects of Psidium guineense (Swartz, 1788)... 119

Material and methods

Psidium guajava fruits were obtained from 50 plants growing in orchards located in 
different regions of the Brazil. Psidium guineense fruits were obtained from indigenous 
populations occurring in Atlantic Forest remnants located in the Municipalities of 
Alegre (four individuals), Itapemirim (three individuals), Santa Teresa (seven individu-
als), and Conceição da Barra (six individuals), all located in Espírito Santo state. The 
sampling was done between 2012 and 2014.

FCM and molecular analyses were conducted with the same 50 individuals of P. 
guajava and 20 of P. guineense. Due to FCM results, karyotype characterization was 
performed using seeds obtained from ten distinct plants of the two species. Solanum 
lycopersicum Linnaeus, 1753, ‘Stupické’ (reference standard for FCM, 2C = 2.00 pi-
cograms – pg; Praça-Fontes et al. 2011) seeds were supplied by Dr. Jaroslav Doležel 
(Experimental Institute of Botany – Czech Republic).

2C nuclear measurement

Leaves were collected from S. lycopersicum (standard), P. guajava and P. guineense 
(samples). Nuclei suspensions were obtained from leaf fragments of the standard and 
of each sample, according to a previously described protocol (Otto 1990, Coser et 
al. 2012). These suspensions were analyzed in a Partec PAS® flow cytometer (Partec® 
GmbH, Munster – Germany) equipped with a laser source (488 nm). Nuclei-emitted 
propidium iodide fluorescence was collected by an RG 610-nm band-pass filter. The 
equipment was calibrated for linearity and aligned with microbeads and standard solu-
tions according to the manufacturer’s recommendations. FloMax® software (Partec®) 
was used for the data analysis. Six independent replicates were performed for each 
individual, with over 10,000 nuclei analyzed per replicate. The mean 2C values of P. 
guajava and P. guineense were calculated by dividing the mean channel of the G0/G1 
fluorescence peak for the reference standard by the mean channel of the G0/G1 peak 
for each sample.

Karyotype characterization

Seeds of P. guineense and P. guajava were germinated in Petri dishes containing distilled 
water (dH2O) at 30 °C. The roots showing 1.0–2.0 cm in length were treated for a peri-
od of 4, 15 or 19 h with the microtubule-inhibiting agents amiprophos-methyl (APM, 
Nihon Bayer Agrochem K. K.®) or oryzalin (ORY, Sigma®) at a final concentration of 
4 µM. Subsequently, the roots were washed with dH2O for 20 min, then fixed in fresh 
methanol:acetic acid (Merck®) solution (3:1). The fixative was changed three times, 
and the roots were stored at -20 °C for 24 h. The roots were washed and incubated for 
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2:00, 2:15 or 2:30 h at 34 °C in pectinase solution (Sigma®, E6287) at ratios of 1:8, 
1:10, 1:12 or 1:15 (enzyme:water). Next, the roots were washed for 10 min in dH2O, 
fixed once more, and stored at -20 °C (Coser et al. 2012). Slides were prepared using 
the techniques of root meristem dissociation and air-drying (Carvalho et al. 2007). The 
slides were analyzed and the chromosome images were captured with a Media Cyber-
netics® EvolutionTM charge-coupled device (CCD) video camera mounted on a Nikon 
80i microscope (Nikon – Japan).

Molecular analysis

The genomic DNA was extracted from young leaves according to Doyle and Doyle 
(1990). The integrity and concentration of the DNA samples were verified using a Na-
nodropTM 2000. Amplification reactions were performed using 142 simple sequence 
repeat (SSR) markers (Suppl. material 1) designed for P. guajava (Risterucci et al. 2005, 
Guavamap 2008). Each amplification reaction consisted of 15 µL of solution contain-
ing: 60 ng DNA, 0.3 µM of each primer, 1.5 U Taq polymerase DNA (Phoneutria), 
1.7 µM MgCl2 and 0.2 µM dNTPs. The following program was used: denaturation at 
94 °C for 4 min, followed by 35 cycles of denaturation at 94 °C for 45 s, annealing at 
temperature (Ta) of 50 °C or 55 °C for 1 min, and extension at 72 °C for 8 min. The 
reactions were performed in a Veriti® 96-Well Thermal Cycler ABI. The amplification 
products were separated using 6% polyacrylamide gel electrophoresis, stained with 
ethidium bromide, and photographed using a photo-documentation system (Chemi-
Doc XRS + System – Bio-RadTM). For confirmation, up to three independent replica-
tions were performed.

Results and discussion

The FCM protocol, using isolation buffer for 10 min and staining buffer for 30 min, 
provided peaks relative to G0/G1 nuclei with coefficient of variation (CV) lower than 
3.46%, and thus high resolution. This result indicates that the suspensions contained 
sufficient number of intact, isolated and stoichiometrically stained nuclei.

Based upon the large number of plant samples of distinct genotypes evaluated 
in this study, the mean nuclear 2C value is 0.95 pg for all P. guajava plants (Fig. 1a) 
and 1.85 pg for all P. guineense pants (Fig. 1b). The 2C values of P. guajava and P. 
guineense are small compared with those of most angiosperms, according to reference 
values defined by Bennett and Leitch (2011). Similarly, low 2C DNA content values 
were also found in some Myrtaceae, such as the genus Eucalyptus L’Hér. 1789, which 
varies from 0.80 to 1.50 pg.

Psidium guajava was one of the first Myrtaceae species for which the nuclear ge-
nome size was measured using Feulgen microdensitometry. With this method, mean 
values of 2C = 0.66 pg (Bennett and Smith 1976) and 2C = 1.24 pg (Ohri 2002) were 
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Figure 1. Representative histograms obtained from FCM analysis of nuclear suspensions stained with 
propidium iodide. A G0/G1 nuclei peak of the sample P. guajava (2C = 0.95 pg), positioned in channel 
95, and the standard S. lycopersicum (2C = 2.00 pg) in channel 200 B G0/G1 nuclei peak of the sample 
P. guineense (2C = 1.85 pg), positioned in channel 185, and the standard S. lycopersicum (2C = 2.00 pg) 
in channel 200.

obtained. Nuclear DNA content has also been measured for P. guajava using FCM, 
and the mean values were 2C = 0.507 pg (‘White’), 2C = 0.551 pg (‘Red’, Costa et 
al. 2008), 2C = 0.95 pg (28 genotypes, Coser et al. 2012), 2C = 0.99 pg (‘Paluma’) 
and 2C = 1.02 pg (‘Purple’, Souza et al. 2015). In the present study, the 2C value for 
P. guineense was 2C = 1.85 pg, approximately twice that observed in P. guajava (2C = 
0.95 pg). The 2C value of P. guineense has also been measured as 2C = 2.02 pg (Souza 
et al. 2015).

The distinct 2C values observed for P. guineense and P. guajava may be related to 
the different techniques, plant standards, nuclear isolation and staining procedures 
used. More inconsistent values of DNA content were found by Costa et al. (2008), 
who used Arabidopsis thaliana Linnaeus, 1753, ‘Columbia’ (2C = 0.32 pg) as reference 
standard. The leaf of this species exhibits endopolyploidy (2C, 4C, 8C…) (Yotoko et 
al. 2011); thus, it is necessary to correctly check the reference G0/G1 peak to measure 
the 2C value of the sample based on the 2C nuclei of this standard.

Based on DNA content, the occurrence of karyotype modifications that increased 
the genome size may have played a role in the origin of P. guineense. To confirm 
this hypothesis, karyotypic characterization was accomplished for P. guineense and P. 
guajava. The root tips that were treated with 4 µM APM for 15 h and macerated in 
1:10 pectinase solution for 2 h provided the most adequate metaphases for morpho-
metric analysis. Metaphases were chosen based on relevant characteristics: well-spread 
chromosomes with well-defined constriction, without chromatin deformations and 
cytoplasmic background noise. These features allowed accurate chromosome count-
ing, morphometric characterization and assembly of the karyograms (Fig. 2, Table 1).
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The chromosome number of P. guajava and of P. guineense were accurately deter-
mined here as 2n = 2x = 22 and 2n = 4x = 44, respectively (Fig. 2, Table 1). Thus, no in-
traspecific karyotype variations were identified for all P. guajava and P. guineense plants. 
Differently, other studies have reported cytotypes for P. guineense (Srivastava 1977) and 
mainly for P. guajava (Kumar and Ranade 1952, Majumder and Mukherjee 1972, Sriv-
astava 1977, Costa and Forni-Martins 2006a, Éder-Silva et al. 2007, Souza et al. 2015), 
indicating the occurrence of an intraspecific chromosome variation related to euploidy 
and aneuploidy. During all period of the experiments (2012–2014), none plant exhibit-
ing somatic chromosome number variation was recorded for both Psidium species.

Psidium guajava exhibited metacentric (pairs 3, 4, 8, 9, 10) and submetacentric 
chromosomes (pairs 1, 2, 5, 6, 7, 11). This species had relatively small and morpho-
logically similar chromosomes, two of which (1 and 11) were distinguished by their 

Figure 2. A P. guajava karyogram showing 2n = 2x = 22 chromosomes, being five metacentric (3, 4, 8, 9, 10) 
and six submetacentric pairs (1, 2, 5, 6, 7, 11) B P. guineense karyogram showing 2n = 4x = 44 chromosomes, 
with two metacentric (11, 12) and twenty submetacentric pairs (1–10, 13–22). Note groups of morphologi-
cally identical chromosomes, such as 1 and 2, 3 and 4, 21 and 22. Bar = 5 μm.



Anelise Machado Marques et al.  /  Comparative Cytogenetics 10(1): 117–128 (2016)124

very distinct total length. Paredes et al. (2006) reported variation in the morphomet-
ric classification of the chromosomes of some P. guajava genotypes, relating seven 
metacentric, two submetacentric and two acrocentric chromosome pairs. However, 
the same authors reported eight metacentric, one submetacentric and two acrocentric 
chromosome pairs in other genotypes. Coser et al. (2012) studied for the first time 
the morphometric characterization of P. guajava using enzymatic cellular dissociation 
of the roots and air-drying of the slides. The authors observed that, independently of 
genotype, P. guajava has 2n = 2x = 22 chromosomes with five metacentric (3, 4, 8, 9, 
10) and six submetacentric pairs (1, 2, 5, 6, 7, 11).

As observed for P. guajava, the karyotype of P. guineense also showed only meta-
centric (11, 12) and submetacentric (1–10, 13–22) chromosomes (Table 1). Previous 
cytogenetic approaches revealed a karyotype for P. guineense of 2n = 4x = 44 chromo-
somes (Chakraborti et al. 2010). Besides metacentric and submetacentric chromo-
somes, Chakraborti et al. (2010) also reported an acrocentric one, as well as a chromo-
some pair distinguished by a secondary constriction for P. guineense. The two latter 
features were not found in the present work.

The karyomorphometric analysis also revealed groups of morphologically identical 
chromosomes in P. guineense: 1–2, 3–4, 5–6, 7–8, 9–10, 11–12, 13–14, 15–16, 17–18, 
19–20 and 21–22 (Table 1). Therefore, the cytogenetic procedures discriminated 11 
chromosome groups, equivalent to the basic chromosome number of the genus Psidium. 
Based on total size and class, the previous study performed by Chakraborti et al. (2010) 
identified only four chromosome groups (A, B, C and D) for P. guineense.

Considering the basic chromosome number of Psidium (x = 11) (Atchison 1947, 
Costa et al. 2008), the cytogenetic data suggest the origin of P. guineense from a poly-
ploidization event. Therefore, the cytogenetic data confirm the FCM results in which the 
mean DNA contents of P. guajava (2C = 0.95 pg) and P. guineense (2C = 1.85 pg) indi-
cate the polyploidy origin of the latter species. Polyploid species have been reported for 
Psidium (Atchison 1947, Andrade and Forni-Martins 1998, Costa and Forni-Martins 
2006a, 2006b, 2007, Costa et al. 2008), as tetraploid (2n = 44, Psidium acutangulum 
Candolle, 1828, P. cattleyanum Sabine, Psidium grandifolium Candolle, 1828, Psidium 
friedrichsthalianum and P. guineense), hexaploid (2n = 66, P. cattleyanum) and octoploid 
(2n = 88, P. cattleyanum) plants.

From meiotic analysis in P. guineense, Chakraborti et al. (2010) related the oc-
currence of 22 bivalents and, consequently, of a Mendelian segregation in anaphases. 
These facts and cytogenetic data found here suggest that P. guineense is a true allopoly-
ploid. A true allopolyploid is a hybrid formed through reproductive cells of species 
with different karyotypes (Stebbins 1947). Due of this, homologous chromosomes 
paring in meiosis, enabling the establishment only of bivalents and the formation of 
viable reproductive cells. Therefore, the reproductive behavior of the true allopoly-
ploids is like a diploid species, allowing the maintenance of the ploidy level during the 
generations, as observed for P. guineense (Chakraborti et al. 2010).

The variation in chromosome number seen in the genus Psidium can promote ge-
netic isolation and possibly create barriers to gene flow (Stace 1991), leading to specia-
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tion (Briggs and Walters 1997). Polyploidy is considered one of the main mechanisms 
of evolution in plants (Soltis et al. 2003). Auto- or allopolyploids may exhibit genetic 
and phenotypic alterations compared with their ancestral species (Soltis and Soltis 1999, 
Mable 2003). These changes can be observed in the first generation after polyploidization 
or hybridization, and also along the evolutionary history of the polyploid, leading to in-
creased diversity (Soltis and Soltis 1999, Soltis et al. 2009, Weiss-Schneeweiss et al. 2013).

Among the 142 SSR markers, 140 were amplified in P. guineense, representing 98.6% 
of transferability. The high amplification rate (98.6%) found for the P. guajava SSR prim-
ers in P. guineense showed that the annealing regions are conserved in both species, reveal-
ing the high similarity between them. This result also evidenced that these DNA sequences 
of P. guineense are very similar in relation to P. guajava, since values of cross-amplification 
of approximately 73% have been reported for species of the same genus (Barbará et al. 
2007). According to Barbará et al. (2007) and Nogueira et al. (2015), the transferability 
rate of the SSR is higher among species phylogenetically related due to conservation of the 
sequences between them. Due this fact, SSR markers have been used to compare the simi-
larity level between the genome of distinct species, allowing to analyze the phylogenetic re-
lationship (Buschiazzo and Gemmell 2010, Meglécz et al. 2012, Nogueira et al. 2015). As 
well as for SSR markers, P. guajava and P. guineense exhibit strong morphological similarity 
between them. This fact makes it laborious to identify these species at specific level. Based 
on this fact, in this study, P. guajava and P. guineense were distinguished from leaf (number 
of veins, hairiness scattered over the abaxial leaf and adaxial) and floral (apiculus) structures.

Of the 140 primers, 117 were chosen to determine the total number of alleles, 
which varied from 170 for P. guineense to 148 for P. guajava (Suppl. material 1). 
The occurrence of three and four alleles in P. guineense for 9.6% of the primers in 
comparison to 3.4% in P. guajava (2x = 22) corroborates the polyploid origin of P. 
guineense (4x = 44) evidenced by nuclear DNA content and karyotype. Besides that, 
the molecular data reveal the occurrence of some duplicated sequences, such as the 316 
and 422 SSR loci (Suppl. material 1), which showed three allele forms in both species. 
Based on these results, SSR markers can be considered an important complementary 
tool to study the genome evolution in Psidium, as is already the case for investigating 
the genome of vertebrates (Buschiazzo and Gemmell 2010).

This study points to the tetraploidy origin of P. guineense. These results reveal the 
importance of combining cytogenetic and molecular markers for a better understand-
ing of how euploid events have influenced the speciation process in angiosperms.
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