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Abstract
Carangidae are an important and widespreaded family of pelagic predatory fishes that inhabit reef regions or 
open ocean areas, some species occupying a vast circumglobal distribution. Cytogenetic comparisons among 
representatives of its different tribes help to understand the process of karyotype divergence in marine eco-
systems due to the variable migratory ability of species. In this sense, conventional cytogenetic investigations 
(Giemsa staining, Ag-NORs, and C-banding), GC base-specific fluorochrome staining and FISH mapping 
of ribosomal DNAs were performed. Four species, Elagatis bipinnulata (Quoy et Gaimard, 1825) and Seriola 
rivoliana (Valenciennes, 1883) (Naucratini), with circumtropical distributions, Gnathanodon speciosus (Forsskål, 
1775) (Carangini), widely distributed in the tropical and subtropical waters of the Indian and Pacific oceans, 
and Trachinotus carolinus (Linnaeus, 1766) (Trachinotini), distributed along the western Atlantic Ocean, 
were analyzed, thus encompassing representatives of three out its four tribes. All species have diploid chromo-
some number 2n = 48, with karyotypes composed mainly by acrocentric chromosomes (NF = 50–56). The 
18S rDNA/Ag-NORs/GC+ and 5S rDNA loci were located on chromosomes likely homeologs. Karyotypes 
showed a pattern considered basal for the family or with small variations in their structures, apparently due to 
pericentric inversions. The migratory capacity of large pelagic swimmers, in large distribution areas, likely re-
stricts the fixation of chromosome changes in Carangidae responsible for a low level of karyotype diversification.
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Introduction

The spatial distribution of biodiversity is related to the existing or past physical and en-
vironmental conditions. In this context, fishes provide good models for investigating the 
association between chromosome diversity and environmental characteristics of different 
regions and ecosystems (Molina et al. 2014). Some fish groups show a high congruence 
between their high biodiversity and patterns of karyotype diversifications (Bertollo et al. 
2000). Among freshwater fishes, the species diversity is linked to an evident allopatric iso-
lation scenarios leading to the fixation of chromosome rearrangements (Moreira-Filho and 
Bertollo 1991; Costa et al. 2019). In marine fishes, in addition to environmental physical 
barriers, the karyotype diversification is also associated with the limited dispersion or colo-
nization capacity of the species (Molina and Galetti 2004; Molina et al. 2014), together 
with the effective size of the populations (Riginos et al. 2016; Motta-Neto et al. 2019).

The marine environment is both extensive and multidimensional due to its varied 
ecological patterns, thus providing complex evolutionary conditions that impacts the ge-
netic structure of species (Rocha 2003). Egg types and length of the larval period are not 
the only biological factors predicting the geographic structure of the reef fish populations 
(Shulman and Bermingham 1995). Larval behavior and habitat availability are equally 
important ones for maintaining the population structure (Kohn and Clements 2011). In 
demersal species, for example, the association of biogeographic barriers physical factors 
such as currents, and the dispersion of eggs and larvae, can promote larval retention and 
the maintenance of genetically connected populations over long distances (Taylor and 
Hellberg 2003; Craig et al. 2007; Saenz‐Agudelo et al. 2011). The maintenance of wide-
ly distributed populations is particularly more limited in reef species, as exemplified by 
the absence of circumglobal distribution in any Gobiidae species, the most species-rich 
marine group (Gaither et al. 2016). On the other hand, in groups with pelagic habits 
and vast oceanic distributions, genetic patterns are established by migrating adults, larval 
behavior, and dispersal under limits of physical or ecological barriers (Palumbi 1994).

The investigation of environmental effects on the genetic diversity of marine fish 
species depends on favorable spatial models, which have been used to identify causes 
and factors that promote their karyotype differentiation (Accioly et al. 2012; Molina et 
al. 2012; Amorim et al. 2017; Motta-Neto et al. 2019). Additionally, it is also advanta-
geous to add an integrated view of contemporary ecological and environmental pat-
terns associated with the historical biogeography of the groups (Molina 2007; Molina 
et al. 2014; Amorim et al. 2017).

A negative correlation was found when associating the dispersive potential of the 
pelagic larvae with the karyotype diversification in reef fish (Molina and Galetti 2004; 
Sena and Molina 2007). Although an increasing number of large pelagic species have 
recently been the target of more detailed cytogenetic analyses (Soares et al. 2013, 2014, 
2017), studies on the dispersive potential and chromosome diversification have been 
neglected in pelagic fish. It is estimated that almost three hundred of marine fish spe-
cies have a circumtropical distribution (Gaither et al. 2016), and, among them, the 
Carangidae family (Carangoidei, Carangiformes) stands out with several species reach-
ing wide oceanic distributions (Froese and Pauly 2020).
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Carangidae are pelagic fishes with high swimming capacity, composed of 31 
genera and 150 presently recognized species (Nelson et al. 2016; Fricke et al. 2020), 
with very variable hydrodynamic body adaptations, ranging from slender to deep-
bodied ones (Honebrink 2000). Their phylogenetic relationships based on mor-
phological (Smith‐Vaniz 1984) and molecular data (Damerau et al. 2017) point 
out four monophyletic tribes, namely Naucratinae, Scomberoidinae, Caranginae, 
and Trachinotinae. The ancient origin of this group and its radiation during the 
Cretaceous period offer extensive spatial scenarios (Honebrink 2000) for analyz-
ing its genetic diversity (Santini and Carnevale 2015). Thus, cytogenetic analyses 
in groups with such a wide geographic distribution, provide favorable tools for 
understanding the role of biogeographic barriers and the dispersive potential on 
karyotype changes.

In view of the environmental complexity to which the marine fish groups are sub-
jected, the investigation of their chromosome change patterns must consider wide 
taxonomic, biogeographic, and different biological models. In the context of the ma-
rine environment, cytogenetic analyses in groups with a wide geographic distribution, 
such as Carangidae, provide an understanding of the role of biogeographic barriers and 
the dispersive potential on karyotype changes. Therefore, we performed cytogenetic 
analyses using conventional and molecular protocols in Elagatis bipinnulata (Quoy et 
Gaimard, 1825) (Rainbow runner), Seriola rivoliana (Valenciennes, 1883) (Greater 
amberjack), Gnathanodon speciosus (Forsskål, 1775) (Golden trevally), and Trachinotus 
carolinus (Linnaeus, 1766) (Florida pompano), which have extensive geographical dis-
tribution. The patterns of their karyotype evolution were discussed in relation with the 
dispersive potential estimated by their geographic distribution.

Material and methods

Individuals and mitotic chromosome preparation

Cytogenetic analyses were performed on the species Elagatis bipinnulata (n = 15; 10 
males; 5 females), and Seriola rivoliana (n = 4; 1 male; 3 females), both from off the São 
Pedro and São Paulo archipelago (00°56'N, 29°22'W) located in the Meso-Atlantic 
region; in Gnathanodon speciosus (n = 2; juveniles), from the Pacific and Indo-Pacific, 
obtained through ornamental fish traders, and Trachinotus carolinus (n = 10; 4 males; 
6 females), from cultivated stock of the coast of Florida (USA). The samples were col-
lected with the authorization of the Brazilian environmental agency ICMBio/ SISBIO 
(License #19135-4, #131360-1 and #27027-2).

The individuals were subjected to in vivo mitotic stimulation according to Molina 
et al. (2010). Chromosome preparations were obtained from short-term culture (Gold 
et al. 1990) using tissue suspensions from the anterior portion of the kidney. All the 
experiments followed ethical protocols and anesthesia conducted with clove oil prior 
the animals were sacrified. The process was approved by the Animal Ethics Committee 
of Federal University of Rio Grande do Norte (Protocol 44/15).
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Standard cytogenetic procedures

The nucleolus organizing regions (NORs) and the chromosomal heterochromatin content 
were analyzed according to the C-banding and Ag-NOR methods, reported by Sumner 
(1972) and Howell and Black (1980), respectively. The CG rich sites were vizualized with 
the base-specific mithramycin (MM) fluorochrome and DAPI staining (Schweizer 1976).

Fluorescence in situ hybridization (FISH)

FISH was performed according to Pinkel et al. (1986). The 18S and 5S rDNA probes 
were obtained using PCR with DNA template from Rachycentron canadum (Linnaeus, 
1766) (Euteleostei, Rachycentridae) and primer pairs NS1 5'-GTA GTC ATA TGC 
TTG TCT C-3' and NS8 5'-TCC GCA GGT TCA CCT ACG GA-3' (White et al., 
1990) and A 5'-TAC GCC CGA TCT CGT CCG ATC-3' and B 5'-CAG GCT GGT 
ATG GCC GTA AGC-3' (Pendás et al. 1994), respectively. The probes were labeled 
by nick translation (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) with 
digoxigenin-11-dUTP and biotin-14-dATP for the 18S rDNA, and 5S rDNA, respec-
tively. Hybridization signals were detected using anti-digoxygenin-rhodamine (Roche, 
Mannheim, Alemanha) and streptavidin-FITC (Vector Laboratories, Burlingame, CA, 
USA), for the 18S and 5S rDNA probes, respectively, according to the manufacturer’s 
specifications. The chromosomes were counterstained with Vectashield/DAPI (Vector 
Laboratories, Burlingame, CA, USA).

Cytogenetic analyses

At least 30 metaphase spreads per individual were analyzed to confirm the chromo-
some number, karyotype structure, and FISH results. Images were photographed using 
an Olympus BX51 epifluorescence microscope coupled to an Olympus DP73 digital 
image capture system (Olympus Corporation, Ishikawa, Japan) with the cellSens (Ver-
sion 1.9 Digital, Tokyo, Kanto, Japan) software. Chromosomes were classified as meta-
centric (m), submetacentric (sm), subtelocentric (st), and acrocentric (a) according to 
their arm ratios (Levan et al. 1964). To count the chromosome arms (NF), the m, sm, 
and st chromosomes were considered with two arms and the acrocentric chromosomes 
(or if classified indistinctly as st/a) with only one arm.

Estimation of maximum linear geographic distribution and total area occu-
pied by species

The maximum linear geographic distribution distance (MLD) and the occupied area 
by each species (OA) were obtained through the Ocean Biogeographic Information 
System (Obis 2020). The OBIS platform performs analyses using an online manage-
ment software that accesses spatial distribution databases associated with the high-
est taxonomic levels, geographic area, time, and depth, providing a map of localities 
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related to environmental data. Based on the maps for each species, the corresponding 
files were loaded in the public domain software Image J (Rasband 2018), allowing us to 
measure the distribution areas and the linear distribution axis distances of each species 
and tribe, as presented in Table 1. To calculate the proportionality of the distances and 
distribution areas, the data for each species and each tribe were defined proportionally 
to the data of Elagatis bipinnulata, a species chosen as a representative parameter of the 
maximum circumglobal distribution for the family.

Statistical analysis

The descriptive statistical analysis (Table 1) and Spearman’s rank correlation coeffi-
cient were calculated using the RStudio software. The Shapiro-Wilk test was used to 
normality afferition. These tests were conducted to determine the correlation between 
the number of chromosome arms (NF) and the measure of the species’ geographic dis-
tribution, as indicated by the maximum axis of linear geographic distribution (MLD) 
and total area occupied (OA). The level of significance adopted was p < 0.05. The cy-
togenetic database for the Carangidae species was obtained from an exhaustive up-to-
date online review. The cytogenetic data (2n, karyotype composition, NF) covered the 
studies published among the years 1974 and 2021, and was used in comparative intra- 
and inter-group analyses. The search was developed in representative research portals, 
encompassing Google Scholar (https://scholar.google.com.br/), SciELO (http://www.
scielo.br/), Portal de Periodicos (http://www.periodicos.capes.gov.br/), Web of Science 
ResearchGate (http://www.researchgate.net), and included the extensive review by 
Arai (2011).

Results

Cytogenetic data

All species had 2n = 48, but with different karyotypes. While E. bipinnulata and 
G. speciosus shared karyotypes with 2st+46a (NF = 50), S. rivoliana has 2sm+2st+44a 
(NF = 52), and T. carolinus has 4m+4sm+40a (NF = 56). No evidence of the presence 
of differentiated sex chromosomes was found.

C-positive heterochromatic blocks were located mainly in the pericentromeric re-
gions and in the terminal regions of some chromosome pairs to a lesser extent (Fig. 1). 
An unique Ag-NOR site, coincident with conspicuous heterochromatic and MM+/
DAPI- regions was found in the four species. In E. bipinnulata and G. speciosus, these 
regions were located in the end of the short arms of the large st pair No. 1. In S. rivoli-
ana and T. carolinus, they were located in the same position, but in the similarly sized 
subtelocentric pair No. 2 in S. rivoliana, and in a large a element marked as pair No. 
5 in T. carolinus (Fig. 1). In all species, the Ag-NOR sites corresponded to the positive 
18S rDNA hybridization signals.

https://scholar.google.com.br/
http://www.scielo.br/
http://www.scielo.br/
http://www.periodicos.capes.gov.br/
http://www.researchgate.net
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Table 1. Cytogenetic data from species of the family Carangidae and their maximum linear geographic 
distribution (MLD) and occupied area (OA) and ratio with the maximum distribution values defined for 
the family. Vertical bars represent the set of parameters available to the species.

Species MLD Km 
× 104

% 
LGDmax

OA Km2 
× 104

% 
OAmax

2n Karyotype NF Ref.

Naucratini
Elagatis bipinnulata (Quoy et Gaimard, 1825) 3.80 100 977.05 100 48 2st+46a 50 1
Seriolina nigrofasciata (Rüppell, 1829) 1.34 40 213.16 30 48 48a 48 2
Seriola rivoliana Valenciennes, 1833 3.14 90 446.50 50 48 2sm+2st+44a 52 1
Seriola dumerili (Risso, 1810) 2.05 60 526.26 60 48 2sm+46a 50 3

48 2sm+2st+44a 52 4
Seriola quinqueradiata Temminck et Schlegel, 
1845

0.13 10 18.54 20 48 2sm+2st+44a 52 5

Seriola lalandi Valenciennes, 1833 1.43 40 454.94 50 48 2m+2sm+6st+38a 58 6
Average values 1.98 60 439.41 50 51.7
Scomberoidini
Scomberoides lysan (Forsskål, 1775) 2.15 60 523.60 60 48 4m/sm+44a 52 7
Oligoplites saliens (Bloch, 1793) 0.60 20 36.95 10 48 4m/sm+44st/a 52 8
Average values 1.37 40 280.28 30 52
Carangini
Alectis ciliaris (Bloch, 1787) 2.75 80 579.72 60 48 48a 48 9
Alepes djedaba (Forsskål, 1775) 1.33 40 161.50 20 56 56a 56 10
Alepes melanoptera (Swainson, 1839) 0.83 30 122.57 20 48 2sm+46a 50 10
Atropus atropos (Bloch et Schneider, 1801) 0.71 20 43.83 10 48 48a 48 7
Atule mate (Cuvier, 1833) 1.48 40 483.84 50 50 14sm+36a 64 11
Carangoides armatus (Rüppell, 1830) 0.99 30 197.62 30 48 2st+46a 50 7
Carangoides equula (Temminck et Schlegel, 1844) 1.48 40 221.06 30 48 2st+46a 50 9
Carangoides bartholomaei (Cuvier, 1833) 0.73 20 219.65 30 48 6sm+42a 54 12
Caranx praeustus Anonymous (Bennett), 1830 0.67 20 41.97 10 48 10m/sm+28a 58 7
Caranx latus Agassiz, 1831 1.14 40 212.55 30 48 2sm+46a 50 12
Caranx lugubris Poey, 1860 3.59 100 379.16 40 48 2sm+46a 50 13
Caranx ignobilis (Forsskål, 1775) 2.21 60 590.42 70 48 2sm+46a 50 14
Caranx sexfasciatus Quoy et Gaimard, 1825 2.48 70 875.01 90 48 2st+46a 50 9
Chloroscombrus chrysurus (Linnaeus, 1766) 1.33 40 422.56 50 48 48a 48 15
Gnathanodon speciosus (Forsskål, 1775) 2.47 70 615.10 70 48 2st+46a 50 1
Megalaspis cordyla (Linnaeus, 1758) 1.06 30 336.44 40 50 2st+48a 50 10
Selene setapinnis (Mitchill, 1815) 1.23 40 298.39 40 46 2sm+44a/2m+44a 48 16
Selene vomer (Linnaeus, 1758) 0.69 20 289.54 30 48 2st+46a 50 16
Selene brownii (Cuvier, 1816) 0.40 20 46.20 10 48 48a 48 16
Trachurus japonicus (Temminck et Schlegel, 1844) 0.23 10 40.34 10 48 4m+14sm+12st+18a 78 9
T. mediterraneus (Steindachner, 1868) 0.58 20 122.38 20 48 4m+6sm+38st/a 58 17

0.69 48 4m+4sm+14st+26a 70 18
T. trachurus (Linnaeus, 1758) 1.32 20 423.31 50 48 2sm+46a 50 18
Average values 2.75 40 327.54 40 53.4
Trachinotini
Trachinotus goodei Jordan et Evermann, 1896 0.67 20 89.73 10 48 4m/sm+44a 52 19
T. carolinus (Linnaeus, 1766) 0.69

0.19
20
10

122.06 20 48 8m/sm+40a 56 19
25.22 10 48 4m+4sm+40a 56 1

T. falcatus (Linnaeus, 1758) 1.30 40 265.56 30 48 10m/sm+38a 58 19
125.64 20 48 2m+2st+44a 52 20

T. ovatus (Linnaeus, 1758) 0.67 20 89.73 10 48 2m+4sm+42st/a 54 10
Average values 0.69 20 122.06 20 54.4

Notes: 1 – present study; 2 – Tripathy and Das (1988); 3 – Vitturi et al., (1986); 4 – Sola et al. (1997); 5 – Ida et al. (1978); 6 – Chai 
et al. (2009); 7 – Das et al. (1980); 8 – Castro-Leal et al. (1998); 9 – Murofushi and Yosida (1979); 10 – Choudhury et al. (1993); 
11 – Lee and Loo (1975); 12 – Jacobina et al. (2014a); 13 – Jacobina et al. (2014b); 14 – Patro and Prasad (1979); 15 – Accioly et al. 
(2012); 16 – Jacobina et al. (2013); 17 – Vasiliev (1978); 18 – Caputo et al. (1996); 19 – Jacobina et al. (2012); 20 – Nirchio et al. 2014.
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The 5S rDNA loci were also unique, but with an interstitial or terminal distribu-
tion in a pairs of similar size among the species, and non-syntenic with the 18S ones. 
In E. bipinnulata and S. rivoliana, they were interstitially located in the q arms of the 
pair labelled as No. 6; in the terminal region of the short arms of the pair labelled as 
No. 6 in T. carolinus, and in the pericentromeric region of the smallest chromosome 
pair No. 24 in G. speciosus (Fig. 1).

NF average and geographic distribution

The average number of the chromosome arms (NF average) showed an negative cor-
relation with the averages of linear distances of distribution and areas occupied for each 

Figure 1. Karyotypes of Elagatis bipinnulata, Seriola rivoliana, Gnathanodon speciosus, and Trachinotus 
carolinus arranged after Giemsa staining (Ag-NORs and MM+/DAPI- sites, highlighted), C- banding, and 
double-FISH with 18S rDNA (red) and 5S rDNA (green) probes. The chromosome pairs were tentatively 
numbered. Scale bar: 5 μm.
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tribe. In fact, the NF average showed be progressively divergent on the NF considered 
as basal for the family (NF = 50) in Naucratini (51.7), that encompass an average 
linear distribution distance equivalent to 60% of the greatest distance established for 
the family (LD), and 50% concerning the largest occupied area (LOA); Scomberoidini 
(52), with 40% (LD) and 30% (LOA), Carangini (53.4), with 40% (LD) and 40% 
(LOA) and Trachinotini (54.4), with 20% (LD) and 20% (LOA) (Table 1).

Statistical data

The average of the two distribution measures (MLD and OA) and NF values showed 
evidences on an statistically supported relationship between karyotype and geographic 
distribution, that encompass a synergic set of ecological, adaptive, and migratory char-
acteristics. The variables MLD (p = 0.001), OA (p = 0.001), and NF (p < 3.097e-07) 
did not present a normal distribution (Shapiro-Wilk test). The analysis revealed a high 
correlation between the MLD and OA (Pearson’s correlation r = 0.829, p ≤ 0.05). The 
NF values showed a moderate negative Pearson’s correlation coefficient with the MLD 
(r = -0.419, p = 0.0144) and modest negative correlation with OA (r = -0.876, p = 
0.043).

Discussion

In contrast to other marine fish groups, Carangidae have a representative set of cytoge-
netic data (Table 1), now including new data for species of the genera Elagatis Bennett, 
1840, Seriola Cuvier, 1816, Gnathanodon Bleeker, 1850, and Trachinotus Lacepède, 
1801, reaching 22% of its species, encompassing all tribes. This repertoire shows re-
markable conservation of the diploid number, with 2n = 48 occuring in 88% of the 
species. On the other hand, divergences exits in the karyotype compositions, with 
variation in chromosome arms (NF) from 48 to 78 (Table 1). Karyotypes with NF = 
50 (composed by one pair of two-armed chromosomes – m, sm, or st) plus 46 acro-
centric elements) are shared by 35% of the species and constitute the most widespread 
condition among Carangidae tribes (Chai et al. 2009; present data). However, this 
probable basal constitution for the family shows increasing evolutionary divergences 
among tribes mainly modeled by pericentric inversions (Sola et al. 1997; Rodrigues et 
al. 2007). Other chromosome rearragements, such as centric fissions and fusions, have 
a lesser extent on the karyotype differentiation. In fact, fissions are phylogenetically 
restricted and detected only in three Carangini species, leading to the increase from the 
basal 2n = 48 to 2n = 50 and 2n = 56 (Table 1). Likewise, Robertsonian fusions are also 
rare events, with a polymorphic pattern in Seriola dumerili (Risso, 1810) (2n = 48/47) 
(Vitturi et al. 1986) and a stable condition in Selene setapinnis (Mitchill, 1815) (2n = 
46) (Jacobina et al. 2013).

Pericentric inversions are predominant changes in the order, but to a lesser ex-
tent in the syntenic composition of gene groups. If so, the chromosome conservation 
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evidenced among the four Carangidae genera could encompass a wide shared synteny 
among the species. Indeed, genetic maps of Seriola species evidenced a high collinearity 
among their linkage groups (Ohara et al. 2005), thus supporting this hypothesis. Ad-
ditionally, comparison of carangid genome assemblies (Zhang et al. 2019), including 
Trachinotus ovatus (Linnaeus, 1758) (2m+4sm+42st/a; Choudhury et al. 1993), Seriola 
quinqueradiata Temminck et Schlegel, 1845 (2sm+2st+44a; Ida et al. 1978), S. dumer-
ili (2sm+2st+44a; Sola et al. 1997), and S. rivoliana Valenciennes, 1833 (2sm+2st+44a; 
present data) revealed synteny with T. ovatus 24 linkage groups, indicating that fission 
and/or fusion events are unlikely during their karyotype evolution.

If pericentric inversions are the most common rearrangements in Carangidae, 
and if they are equally likely to occur in all tribes, a similar level of karyotype di-
vergence among them would be expected. However, this does not occur, as seen 
by cytogenetic data covering representative species from most genera of each tribe 
(Table 1). Since tribes share a common origin, what factors would be linked with 
this differential fixation of chromosome rearrangements? Data show that, on average, 
species of the Naucratinae tribe has NF = 51.7, the closest one to that considered 
basal (NF = 50) for the family, followed by species from the Scomberoidini (NF = 
52), Caranginae (NF = 53.4), and Trachinotini (NF = 54.4) tribes. Notably, the level 
of karyotype diversification of these groups was inversely proportional to their geo-
graphic distribution, thus suggesting that the dispersive potential and, consequently, 
the level of gene flow maintained by migrants) are agents driving the karyotype evo-
lution in the group.

The geographic variables MLD and OA showed a high positive correlation with each 
other and both showed a negative correlation with the NF (p ≤ 0.05). In fact, the data 
set revealed that the probability of chromosomal variations decreases as the geographical 
distribution of the species expands. Between the two distribution variables, MLD ex-
hibited a more pronounced negative correlation with the NF. Although both parameters 
are negatively associated with chromosomal variation, they have different prediction 
intervals. The modest correlation between OA and NF, was statistically significant, and 
probably related to lower precision in the definition of the ecological areas occupied by 
the species. In contrast, MLD, despite being a simpler parameter, proved to be a more 
effective predictor of differences in the dispersive potential of migratory species.

Large pelagic fish populations, whose life histories include migratory behavior, 
planktonic larval stages, and broadcast spawning, maintain high levels of gene flow 
among vast oceanic areas (Pla and Pujolar 1999; Tripp-Valdez et al. 2010), thus find-
ing fewer opportunities for fixing chromosome rearrangements and, essentially, main-
taining a more conservative karyotype evolution (Molina 2007; Accioly et al. 2012; 
Soares et al. 2013; Molina et al. 2014; Motta-Neto et al. 2019). Having that in mind, 
the low rate of NF divergence in Naucratini is probably due to the wide distribution of 
some Elagatis, Seriola, and Seriolina Wakiya, 1924 species reaching circumglobal scales 
(Froese and Pauly 2020). In contrast, Carangini, the most diverse Carangidae tribe, 
shows the largest ranges in the diploid number and NF, from 46 to 56 and 48 to 78, 
respectively (Table 1). In this group, several species have a circumglobal distribution 
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(e.g., Gnathanodon speciosus and Caranx lugubris Poey, 1860), which show the basal 
karyotype pattern for the family. In spite of this group has an average NF conspicuous-
ly higher than that of Naucratini, this value is strongly biased by Trachurus Rafinesque, 
1810, species, which have higher NF values (NF = 50–78). In fact, Trachurus diverge 
markedly from other Carangini groups because its species have a limited distribution 
(FAO 2020), with evidence of strong genetic structuring between broad and distant 
regions (Karaiskou et al. 2004). Thus, the analysis of the structural diversification of 
Carangini karyotypes, removing the particular group Trachurus (Fig. 2), drastically 
reduces the NF values for this tribe, making the NF = 51.3, thus very close to that of 
the Naucratini subfamily. On the other hand, Trachinotini species showed the lowest 
geographic distributions among the other tribes and the more divergent NF values.

Significantly, a conservatism pattern can also be seen at microstructural cytoge-
netic level. For example, the 18S rDNA sites, that are usually characterized by a high 

Figure 2. Karyotype index of chromosomal similarity (orange) and divergence (blue) regarding the proba-
ble basal karyotype for Carangidae studied species. Maps show the magnitude of the geographic distribution 
of Elagatis bipinnulata, Seriola rivoliana, Gnathanodon speciosus, and Trachinotus carolinus (top to bottom).
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evolutionary dynamism among fishes (Gornung 2013), have a stable distribution pat-
tern among the four species now analyzed, as well as in several other Carangidae spe-
cies (Accioly et al. 2012; Jacobina et al. 2012, 2014a). Their similarity in number and 
chromosomal location probably represent a homeolog linkage group among them. 
Although the 5S rDNA sites exhibit a more dynamic evolutionary pattern in other 
species (Accioly et al. 2012; Jacobina et al. 2012, 2013, 2014a, b), they also reveal here 
signs of microstructural conservatism.

The distribution of some Trachinotus species in the Western Atlantic is subdivided 
by the Amazonas and Orinoco rivers barrier. In this context, T. carolinus from Carib-
bean, first analyzed here, shows no variable karyotypes compared to those previously 
reported for populations from the southeast and northeast Brazilian coasts (Rodrigues 
et al. 2007; Jacobina et al. 2012).

Biogeographic barriers in marine oceans affect the karyotype diversification (Mo-
lina et al. 2012), but have different effects among the species (Motta-Neto et al. 2019). 
In this context, cytogenetic analyses in fish populations from different biogeographic 
regions help to decipher the karyotype evolution in groups with large distribution.

Conclusions

Carangidae constitute a marine fish group in which many species are vagrant/no-
madic pelagic swimmers, ranging from a single ocean to circumglobal distribu-
tions. Gene flow among marine fish populations with significant population sizes 
and extensive distributions can mitigate genetic differentiation. The cytogenetical/
geographical approach suggest negative correlation between active migratory capac-
ity and cytogenetic divergence in marine fish. This genetic context could restrains 
evolutionary diversification and speciation, in the Carangidae, a clade in which 
many genera are monotypic or formed by a few species. As a whole, our data pro-
vide preliminary data of high gene flow in minimize chromosomal rearrangements 
in large oceanic spaces, highlighting new scenarios of the karyotype evolution in 
pelagic species.
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