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Abstract
The genus Eigenmannia Jordan et Evermann,1896 includes electric fishes endemic to the Neotropical 
region with extensive karyotype variability and occurrence of different sex chromosome systems, however, 
cytogenetic studies within this group are restricted to few species. Here, we describe the karyotypes of 
Eigenmannia limbata (Schreiner et Miranda Ribeiro, 1903) and E. microstoma (Reinhardt, 1852) and the 
chromosomal locations of 5S and 18S rDNAs (ribosomal RNA genes) and U2 snDNA (small nuclear 
RNA gene). Among them, 18S rDNA sites were situated in only one chromosomal pair in both species, 
and co-localized with 5S rDNA in E. microstoma. On the other hand, 5S rDNA and U2 snRNA sites 
were observed on several chromosomes, with variation in the number of sites between species under study. 
These two repetitive DNAs were observed co-localized in one chromosomal pair in E. limbata and in four 
pairs in E. microstoma. Our study shows a new case of association of these two types of repetitive DNA in 
the genome of Gymnotiformes.
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Introduction

The order Gymnotiformes is an endemic freshwater group inhabiting the Neotropical 
region and consisting of species capable of emitting low voltage continuous electric 
discharges (Alves-Gomes 2001; Lavoué et al. 2012). Among them, Eigenmannia is the 
most species-rich genus of the family Sternopygidae (Gymnotiformes), with 27 recog-
nized species (Fricke et al. 2021). On the other hand, Eigenmannia is not a monophyl-
etic assembly, and it is considered taxonomically ambiguous due to little morphological 
variation between species, which makes it difficult to define species-specific diagnostic 
characters (Alves-Gomes 1998; Albert 2001; Peixoto and Ohara 2019).

In recent years, cytogenetic studies in Eigenmannia were mainly limited to some 
species and / or karyomorphs (i.e., different karyotype forms), revealing a variable 
karyotype macrostructure, with diploid chromosome numbers ranging from (2n) = 28 
to 46 chromosomes (Arai 2011; Silva et al. 2015b). In addition, different sex chromo-
some systems have been described, identifying standard systems such as XX/XY, ZZ/
ZW in E. virescens (Almeida-Toledo et al. 2001; Henning et al. 2011; Fernandes et 
al. 2020), derived ZZ/Z0 system in E. prope trilineata (Araya-Jaime et al. 2017b), 
and multiple sex chromosome system X1X1X2X2/X1X2Y in Eigenmannia sp2 (Almeida-
Toledo et al. 2000; Sene et al. 2014; Araya-Jaime et al. 2015), as well as species/kar-
yomorphs without heteromorphic sex chromosomes (de Almeida Toledo et al. 1984; 
Almeida-Toledo et al. 2000, 2001; Silva et al. 2009; Henning et al. 2011).

The physical mapping of repetitive sequences in gymnotiform species has provided 
important data on the structure and organization of the genome that has allowed us 
to understand the processes of karyotypic evolution that these species have experi-
enced, recognizing Robertsonian rearrangements as the most frequent mechanisms of 
chromosomal variability in Gymnotiformes (Milhomem et al. 2008; Giora and Fialho 
2009; Nagamachi et al. 2010; da Silva et al. 2014; Utsunomia et al. 2014, 2018; Suárez 
et al. 2017; Rodrigues et al. 2021). The mapping of ribosomal DNA genes (18S rDNA 
and 5S rDNA) has been widely used in molecular cytogenetics of Gymnotiformes, 
where the evidence provided by several studies has made it possible to establish two 
distribution patterns of these sequences: i) 18S rDNA loci located on a single chromo-
some pair and ii) 5S rDNA sites located in multiple chromosomal pairs, which may 
be associated with transposable elements or U2 snDNA (small nuclear RNA gene) 
sequences (Scacchetti et al. 2011, 2012; Utsunomia et al. 2014; da Silva et al. 2016; 
Araya-Jaime et al. 2017b; Sochorová et al. 2018; Rodrigues et al. 2021).

Recently, the mapping of genes belonging to the U snDNA family increased the 
knowledge about the dynamics of tandemly repeated multigene families in vertebrates. 
This multigene family harbors genes coding for nine types of non-coding RNAs; name-
ly U1, U2, U4, U4 atac, U5, U6, U6 atac, U11 and U12; which constitute a portion 
of the RNA-protein complex of the spliceosome (Valadkhan 2005; Matera and Wang 
2014). In fish cytogenetics, the use of these repetitive markers is relatively recent, with 
data being reported for several groups, including Characiformes (Silva et al. 2015a; 
Santos et al. 2017; Serrano et al. 2017), Batrachoidiformes (Ubeda-Manzanaro et al. 
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2010), Cyprinodontiformes (Araya-Jaime et al. 2017a), Gadiformes (García-Souto et 
al. 2015), Perciformes (Xu et al. 2017), Cypriniformes (Sember et al. 2018), among 
others. In gymnotiform fish genomes, the cytogenetic reports of these sequences are 
restricted to U2 snDNA, recognizing two general chromosomal patterns: i) grouped 
in a single pair of chromosomes or ii) scattered throughout the genome and, in some 
cases, associated with 5S rDNA (Utsunomia et al. 2014; Araya-Jaime et al. 2017b). In 
this way, the U snDNA sequences represent a good repetitive marker to provide infor-
mation on the evolutionary relations between closely related species, infer the homol-
ogy between certain chromosomes present in different lineages, and trace the origin 
and evolution of specific chromosomes, in the context of the great karyotype diversity 
found among Gymnotiformes.

With the aim of expanding our knowledge about the chromosomal structure and 
the dynamics of repetitive DNA sequences in the Eigenmannia genome, we present for 
the first time the karyotype and chromosomal location of three repetitive DNA classes 
(18S and 5S rDNA and U2 snDNA) in E. microstoma and E. limbata from the Sao 
Francisco and the Amazon River basin, respectively. Our results show a new case of 
physical association between the 5S rDNA and U2 snDNA in Gymnotiformes.

Material and methods

Twelve individuals of Eigenmannia limbata and eight of E. microstoma, from the Ama-
zon basin and the San Francisco River basin, respectively, were analyzed in this study 
(Fig. 1). After dissection, the specimens were fixed and preserved in 70% ethanol. 
Finally, these specimens were deposited in the fish collection of the Laboratório de 
Biologia e Genética de Peixes, UNESP, Botucatu-SP. The animals were collected in 
accordance with Brazilian environmental protection legislation (Collection Permission 
MMA/IBAMA/SISBIO-number 3245) and the procedures for fish sampling, mainte-
nance and analysis were performed in compliance with the Brazilian College of Animal 
Experimentation (COBEA) and approved (protocol 504) by the Bioscience Institute/
Unesp Ethics Committee on the use of Animals (CEUA).

Mitotic chromosomes were obtained by direct preparation from the cephalic 
kidney according to Foresti et al. (1993), and slides for conventional analysis were 
stained with 5% Giemsa solution in a phosphate buffer at pH 6.8. The constitutive 
het erochromatin (CH) was detected following Sumner (1972). Images were captured 
with a digital camera (Olympus DP90) in the Olympus BX6 epifluorescence photo-
microscope and acquired using cellSens Dimension (Olympus, Sapporo-Japan). Image 
treatment, optimization of brightness and contrast was performed using the Adobe 
Photoshop CS6 program. The arm ratio (Levan et al. 1964) was used to classify the 
chromosomes as metacentric (m), submetacentric (sm), subtelocentric (st), and ac-
rocentric (a). For counting the total number of chromosome arms or fundamental 
number (NF), chromosomes m, sm, st were considered bi-armed, while acrocentric 
chromosomes (or indistinguishable st/a) were classified as mono-armed chromosomes.
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Fluorescence in situ hybridization (FISH) procedure was performed according 
to Pinkel et al. (1986). The 18S, 5S rDNA and U2 snRNA gene probes were ob-
tained from the genomic DNA of E. microstoma which was extracted using Wizard 
Genomic DNA Purification Kit (PROMEGA, Madison, Wisconsin, USA). The 
rDNA probes were amplified by polymerase chain reaction (PCR), using the prim-
ers 18SF (5’ CCGCTTTGGTGACTCTTGAT 3’) and 18SR (5’ CCGAGGAC-
CTCACTAAACCA 3’) (White et al. 1990), 5SF (5’ TACGCCCGA TCTCGTC-
CGATC 3’) and 5SR (5’ CAGGCTGGTATGGCCGTAACG 3’) (Pendas et al. 
1994) and U2F (5’ ATCGCTTCTCGGCCTTATG 3’) and U2R (5’ TCCCG-
GCGGTACTGCAATA 3’) (Bueno et al. 2013). PCR products were verified 
in 1% agarose gel. 18S rDNA probe (600 pb long fragment) were labeled with 
biotin-14-dATP (Dig Nick Translation mix, Roche, Applied Science, Penzberg, 
Germany), while the U2 snRNA gene probe (150 bp) was labeled by PCR with 
biotin-16-dUTP (Roche). Hybridization signals were detected using FITC–avi-
din (conjugated fluorescein isothiocyanate–avidin; Sigma-Aldrich, St Louis, MO, 
USA). 5S rDNA probe (300 pb) was labeled with digoxigenin-11-dUTP (Biotin 
Nick Translation mix, Roche) and the hybridization signals were detected using anti-

Figure 1. Location of Eigenmannia species in the Amazon and São Francisco basins.
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digoxigenin-rhodamine (Roche). The chromosomes were counterstained with 0.2 
μg/mL of 4’, 6-diamidino-2-phenylindole (DAPI) in the Vectashield mounting me-
dium (Vector, Burlingame, CA).

Results

The diploid chromosome number (2n) of the E. microstoma was 38 chromosomes, with 
a karyotype composed of 8m + 10sm + 20a chromosomes (NF = 56), while E. limbata 
had 2n = 38 and karyotype composed of 8m + 4sm + 26a chromosomes (NF = 50). Mor-
phologically differentiated sex chromosomes were not found in either species (Table 1).

Table 1. Cytogenetic features and collection sites of Eigenmannia species.

Species (N) 2n Karyotype 
formula

Sample localities Hydrographic 
basin

Coordinates (DDM)

E. limbata (♂7, ♀5) 38 8m+4sm+26a Rio Branco-AC Amazonas 9°57'27.10"S, 67°46'55.40"W
E. microstoma (♂5, ♀3) 38 8m+10sm+20a Francisco 

Dumont-MG
São Francisco 17°18'57.80"S, 44°10'23.00"W

C-banding technique revealed significant differences in the patterns of CH distri-
bution between the analyzed species. Both species displayed pericentromeric regions of 
CH in all chromosomes and E. microstoma possessed additional interstitial blocks on 
several chromosomes (Fig. 2).

Figure 2. Chromosomes stained with Giemsa and C-banded a, b karyotype and C-banded metaphase of 
E. limbata c, d karyotype and C-banded metaphase of E. microstoma. Scale bar: 10 μm.



Cristian Andrés Araya-Jaime et al.  /  Comparative Cytogenetics 16(2): 127–142 (2022)132

The 18S rDNA site was located by FISH in a single chromosomal pair in both 
species, namely pair No. 10 in E. limbata and pair No. 14 in E. microstoma (Fig. 3). 
The 5S rDNA sites showed a considerable variation in the number and locations in 
analyzed species. These sites were detected in two chromosomal pairs in E. limbata and 
in 11 chromosomal pairs in E. microstoma (Fig. 3).

The distribution of the U2 snDNA sites was variable in terms of the number, chro-
mosomal location, and number of co-localized sites with 5S rDNA between species. 
U2 snDNA sites were placed on three chromosomal pairs (11, 12 and 14) in E. limbata 
and in the chromosome pairs Nos 10, 12, 16 and 17 in E. microstoma (Fig. 4). These 
sites were co-localized with the 5S rDNA sites in the pair No. 14 in E. limbata and in 
all pairs in E. microstoma (Fig. 4). The location of all repetitive DNAs mapped by FISH 
is summarized in the ideogram presented in Fig. 5.

Discussion

The species E. limbata and E. microstoma were analyzed cytogenetically for the first 
time, showing the same 2n (38 chromosomes), but different NF and karyotypic 

Figure 3. Karyotypes of Eigenmannia species after FISH with 5S (red) and 18S (green) ri bosomal DNA 
probes and counterstained with DAPI. Scale bar: 10 μm.
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structure (Table 1). Previous cytogenetic studies in Eigenmannia have consistently re-
ported this same 2n (38 chromosomes), but there are wide variations in terms of the 
reported karyotypic formula, NF and sex chromosome system (Almeida Toledo et al. 
1984; Moysés et al. 2010; Henning et al. 2011; de Sene et al. 2014; Araya-Jaime et 
al. 2017b; Fernandes et al. 2020). These differences in karyotypic structure and NF 
can be explained by the occurrence of Robertsonian rearrangements, which may be 
participating as an important postzygotic reproductive isolation mechanism in Eigen-
mannia. This circumstance could be related to their low population sizes and low mo-
bility, which would facilitate the fixation of chromosomal polymorphisms (Moysés et 
al. 2005, 2010; Giora and Fialho 2009; Silva et al. 2009, 2015b).

A single chromosome pair carrying the NOR has been reported for most of 
the species of the Sternopygidae family, although the chromosomal location of the 
NOR varies between species and populations; therefore, a simple NOR phenotype 
can be an ancestral feature in the genome of Sternopygidae (de Almeida-Toledo et 
al. 2001; dos Santos Silva et al. 2008; de Sene et al. 2014; Araya-Jaime et al. 2017b; 
Fernandes et al. 2020; Rodrigues et al. 2021). However, within Gymnotidae, the 

Figure 4. Karyotypes of Eigenmannia species after FISH with 5S rDNA (red) and U2 snDNA (green) 
probes and counterstained with DAPI. Note that, the two repetitive DNAs are located adjacently on the 
same pair (14) in E. limbata and they are located adjacently on four chromosome pairs (10, 12, 16 and 
17) in E. microstoma. Scale bar: 10 μm.
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case of Gymonotus coatesi is reported as the only representative of this family with 
multiple 18S rDNA sites (Machado et al. 2017). Furthermore, a considerable 
variability has been observed in the size of the NOR region within Sternopygidae 
(dos Santos Silva et al. 2008; de Sene et al. 2014; Silva et al. 2015b; Fernandes 
et al. 2017; Rodrigues et al. 2021). Accordingly, we observed this NOR hetero-
morphism between E. limbata and E. microstoma, in which the NOR region of 
E. limbata is considerably larger than that of E. microstoma (Fig. 3). This could be a 
consequence of tandem duplication of ribosomal genes which could form through 
several mechanisms including unequal exchange of sister chromatids or unequal 
crossing over during meiosis (Charlesworth et al. 1994; Eickbush and Eickbush 
2007; Bianciardi et al. 2012).

On the other hand, multiple 5S rDNA sites observed in E. limbata and E. micro-
stoma (Fig. 3) appear to be a widely recognized feature within Gymnotiformes, with 
evidence in representatives of Gymnotus (da Silva et al. 2011; Scacchetti et al. 2011, 
2012; Utsunomia et al. 2014; da Silva et al. 2016, 2019), Eigenmannia (de Sene et 
al. 2014; Araya-Jaime et al. 2017b; Fernandes et al. 2020), Sternopygus (Fernandes 
et al. 2017) and Archolaemus (Rodrigues et al. 2021). Ribosomal DNA sites are 
considered as hot spots for chromosomal rearrangements due to their organization 

Figure 5. Idiogram of Eigenmannia species showing the location of repetitive DNAs.
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into long stretches of conserved tandemly repeated sequences and their high tran-
scription activity, which means they are susceptible to chromosomal breakage and/
or non-allelic homologous recombination, increasing thus the probability of oc-
currence of chromosomal rearrangements, such as fusions, fissions and inversions 
(Rosa et al. 2012; Barros et al. 2017; Potapova and Gerton 2019; Warmerdam and 
Wolthuis 2019; Deon et al. 2020). Furthermore, the rDNA dynamics has been also 
correlated with the insertion of transposable elements, or other repetitive DNAs, 
into non-transcribed spacers (NTS) of 5S rDNA units, as has been observed in the 
genomes of G. inaequilabiatus (Scacchetti et al. 2012), G. paraguensis (da Silva et al. 
2011) and G. mamiraua (da Silva et al. 2016). Thus, both mentioned mechanisms 
could explain the chromosomal dynamics of these sequences in gymnotiform ge-
nomes (de Sene et al. 2014; da Silva et al. 2016; Araya-Jaime et al. 2017b; Fer-
nandes et al. 2017). In our case, given that 5S rDNA probe was prepared from the 
genomic DNA of E. microstomata in which we then revealed 22 signals, and that 
only four signals were evidenced in E. limbata, a possible explanation may be that 
the 300 bp long 5S rDNA fragment contains inserts of other repeats in its NTS re-
gion which might have promoted spreading of 5S rDNA clusters and/or generated 
additional non-5S rDNA signals in E. microstomata. In that case, only four signals 
in E. limbata might mean that the signal pattern is much less affected by the ac-
tion and/or additional accumulation of the associated repeat(s). Although a single 
consistent PCR amplification product was obtained to be a template for the FISH 
probe preparation, thereby evidencing a lack of detectable amounts of 5S rDNA 
sequence variants or truncated copies, we cannot directly evaluate the possible pres-
ence and contribution of other repeats as we did not sequence the 5S rDNA frag-
ment and consequently weren’t looking for admixed repetitive sequences. We may, 
however, conclude that the chromosomal behavior of the 5S rDNA sites observed 
in this work is congruent with the patterns previously reported for Eigenmannia, 
such as the number of variable sites and their association with 18S rDNA and U2 
snDNA clusters (de Sene et al. 2014; Araya-Jaime et al. 2017b).

The results presented here, for E. limbata and E. microstoma, represent the first 
case, within Eigenmannia, of multiple sites for U2 snDNA (Fig. 4), highlighting 
in E. microstoma the presence of three chromosomal pairs carrying U2 snDNA 
sites, where one of them (pair No 14) is co-localized with 5S rDNA, while in E. 
limbata, the four chromosomal pairs carrying U2 snRNA genes are co-localized 
with 5S rDNA. The previous report by Araya-Jaime et al. (2017b) described the 
karyotype of E. aff trilineata with a single U2 snDNA site being co-localized with 
5S rDNA. These results reinforce the dynamic nature of these sequences and show 
that the 5S rDNA / U2 snRNA association would be a characteristic feature of the 
Eigenmannia genome. In other Gymnotiformes, six Gymnotus species are reported 
with a single U2 snRNA carrier pair, while only in G. pantal and Archolaemus 
janae, multiple sites for U2 snRNA have been reported (Utsunomia et al. 2014; 
Rodrigues et al. 2021). None of the species mentioned above exhibits co-localiza-
tion between U2 snDNA with other sequences been reported.
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Conclusion

In the present work, the cytogenetic analysis carried out in the species E. limbata 
and E. microstoma reinforced the chromosomal variability reported for the genus, 
evidencing the occurrence of notable differences between the karyotypes of the 
species / karyomorphs studied up to here, even though the 2n mostly observed 
is 2n = 38 chromosomes. The chromosomal location of the 5S and 18S rDNA 
clusters observed in the species studied here followed the same pattern observed in 
Gymnotiformes with a single NOR-bearing pair and multiple sites for 5S rDNA. 
On the other hand, the dynamic nature of the U2 snRNA sites stands out, to-
gether with the co-localization with 5S rDNA genes, as a characteristic feature of 
the Eigenmannia genome. Finally, the results presented here reinforce the postulate 
that cytogenetic features (conventional and molecular) could be considered as im-
portant markers for taxonomic diagnosis and for the description and characteriza-
tion of the existing biodiversity in Gymnotiformes.
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