CompCytogen 16(2):93–125 (2022) doi: 10.3897/compcytogen.v16.i2.79033 https://compcytogen.pensoft.net

REVIEW ARTICLE

A critical review on cytogenetics of Cucurbitaceae with updates on Indian taxa

Biplab Kumar Bhowmick¹, Sumita Jha²

 Department of Botany, Scottish Church College, 1&3, Urquhart Square, Kolkata-700006, West Bengal, India 2 Plant Cytogenetics and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India

Corresponding author: Sumita Jha (sumitajha.cu@gmail.com)

Academic editor: Gennady Karlov Received 7 December 2021 Accepted 16 February 2022 Published 26 April 2022

Citation: Bhowmick BK, Jha S (2022) A critical review on cytogenetics of Cucurbitaceae with updates on Indian taxa. Comparative Cytogenetics 16(2): 93–125. https://doi.org/10.3897/compcytogen.v16.i2.79033

Abstract

The cytogenetic relationships in the species of Cucurbitaceae are becoming immensely important to answer questions pertaining to genome evolution. Here, a simplified and updated data resource on cytogenetics of Cucurbitaceae is presented on the basis of foundational parameters (basic, zygotic and gametic chromosome numbers, ploidy, genome size, karyotype) and molecular cytogenetics. We have revised and collated our own findings on seven agriculturally important Indian cucurbit species in a comparative account with the globally published reports. Chromosome count (of around 19% species) shows nearly three-fold differences while genome size (of nearly 5% species) shows 5.84-fold differences across the species. There is no significant correlation between chromosome numbers and nuclear genome sizes. The possible trend of evolution is discussed here based on molecular cytogenetics data, especially the types and distribution of nucleolus organizer regions (NORs). The review supersedes the scopes of general chromosome databases and invites scopes for continuous updates. The offline resource serves as an exclusive toolkit for research and breeding communities across the globe and also opens scope for future establishment of web-database on Cucurbitaceae cytogenetics.

Keywords

chromosome, genome size, karyotype, NORs, ploidy

Copyright Biplab Kumar Bhownick & Sumita Jha. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

The family Cucurbitaceae contains an extensive range of diversity consisting of about 1000 species spread over 96 genera (Renner and Schaefer 2017). The diversity of plant families is associated with variation in genome sizes and chromosome numbers as a result of enormous adaptive radiation (Soltis et al. 2004; Lysák and Schubert 2013). The viewpoint of evolution has been changed with the understanding of whole genome duplication (WGD) (Soltis et al. 2014) followed by core-eudicot hexaploidy (Wang et al. 2018). A cytogenetic database is essential to gain insights into evolution by supplementing phylogeny trees with chromosome number information (Mota et al. 2016) to upgrade knowledge on plant systematics (Soltis et al. 2014; Viruel et al. 2021). Cucurbitaceae, being the fourth most important and one of the earliest consumed vegetables yielding family, has coped with extreme climates, extensive human intervention and a huge domestication syndrome (Chomicki et al. 2020). Considerable advances have been made in molecular phylogeny (Renner and Schaefer 2016; Bellot et al. 2020; Chomicki et al. 2020; Guo et al. 2020) and genomics (CuGenDB, http://cucurbitgenomics.org) (Zheng et al. 2019). We had previously discussed about the gaps in cytogenetic studies (Bhowmick and Jha 2015b) which has been surmounted with the advent of molecular cytogenetics.

Currently, we have collated the cytogenetic reports of Cucurbitaceae globally and integrated our own findings for a collective interpretation. The review attempts to address i) the trend of chromosome evolution in specific tribes and species based on available information, ii) correlation between chromosome numbers and ploidy or genome size in the studied taxa and iii) the requirement of an exclusive cytogenetic catalogue for genome researchers, taxonomists and breeders working on Cucurbitaceae.

Methodological approaches

Data compilation

The data have been collated as per Schaefer and Renner (2011) after consultation of books, Chromosome atlases, research articles and public resources like Chromosome Counts Database (CCDB; http://ccdb.tau.ac.il/) (Rice et al. 2015), The Index to Plant Chromosome Numbers (IPCN, http://legacy.tropicos.org/Project/IPCN) (Goldblatt and Lowry 2011) and The Plant DNA C-values database (Pellicer and Leitch 2020) (https://cvalues.science.kew.org/).

Chromosome analysis in the Cucurbit species ocurring in India

Presently an enzymatic maceration and air drying (EMA) method followed by flurochrome banding has been employed as per our previous protocols (Bhowmick et al. 2012, 2016; Bhowmick and Jha 2015a, 2019, 2021) to represent fresh karyotypes of seven agriculturally important cucurbit species (Table 1) belonging to Benincaseae and Sicyoeae. Fresh and healthy roots were used from different sources (like germinating seeds, seedlings and underground root stocks). Roots were pretreated with 0.002 M hydroxyquinoline and fixed in 1:3 aceto-methanol solution. The standardization of EMA- fluorescence banding was conducted for the different species. In brief, fixed roots were digested in enzyme mixture [1% Cellulase (Onozuka RS), 0.75% Macerozyme (R-10), 0.15% Pectolyase (Y-23), 1 mM EDTA] for 40–45 min at 37 °C, macerated on slides, air-dried, stained with 2% Giemsa solution (Merck, Germany) and plates selected for karyotyping. After de-staining, slides were kept in McIlvaine buffer, stained with 0.1 μ g mL⁻¹ DAPI for 15–20 min in darkness. For CMA staining, slides were incubated in 0.1 mg mL⁻¹ CMA for 15–25 min in darkness. For meiotic chromosomes, fixed anthers were digested in enzyme mixture for 5–8 min, macerated on slides and DAPI staining protocol was followed with minor modifications. All slides

Tribes	Species (common	Collection	Fruit image	2n	CMA	bands	DAPI bands
	name, status of cultivation/ wild)	site, Latitude/ Longitude			Nucleolar	Non-nucleolar	(Non- nucleolar)
Sicyoeae	<i>Luffa acutangula</i> Linnaeus, 1753 (ridged gourd, cultivated)	Bhubaneswar, Odisha, 20.2960°N, 85.8245°E	L Bem	26	11 th , 12 th , 13 th	12 th (centromeric)	1 st to 13 th (distal)
	Luffa cylindrica aegyptiaca Miller, 1768 (sponge gourd, cultivated)	Imphal, Manipur, 24.6637°N, 93.906°E	10cm	26	$12^{\rm th}$, $13^{\rm th}$	1 st , 2 nd (distal)	0
	<i>Luffa echinata</i> Roxburgh, 1814 (wild)	Pantnagar, Uttarakhand, 30.0667°N, 79.019°E	Scm.	26	11 th , 12 th , 13 th	0	1st to 13th (distal)
	<i>Trichosanthes</i> <i>cucumerina</i> Linnaeus, 1753 (wild)	NBPGR, Thrissur, Kerala, 10.5276°N, 76.2144°E	<u>Som</u>	22	$10^{ m th}$, $11^{ m th}$	0	1 st to 11 th (distal)
	Trichosanthes cucumerina ssp. cucumerina Anguina (snake gourd, cultivated)	Bengaluru, 12.9716°N, 77.5946°E		22	10 th , 11 th	2 nd (distal)	0
	<i>Trichosanthes dioica</i> Roxburgh, 1832 (pointed gourd, cultivated)	Bhagalpur, Bihar, 25.2414°N, 86.9924°E	5cm	22 (female) 22 (mala)	0 0	7 th , 8 th , 10 th (distal) 0	1 st to 11 th 1 st to 11 th
Benincaseae	<i>Benincasa hispida</i> Thunberg, 1784 (ash gourd, cultivated)	Imphal, Manipur 24.6637°N, 93.906°E	_10m	24	12 th	9 th (distal)	0
	<i>Coccinia grandis</i> Linnaeus, 1767 (ivy gourd, restricted	Nagpur, Maharashtra, 21.1458°N,		24 (female)	8 th , 12 ^{th *}	1 st to 5 th , 8 th to 12 th (centromeric)	0
	cultivation)	79.0881°E	Tom	24 (male)	8 th , 12 ^{th *}	1 st to 5 th , 8 th , 10 th to 12 th (centromeric)	0

Table 1. Chromosome numbers and nature of fluorescent bands in some cucurbit species occurring in India.

were mounted in non-fluorescent glycerol and chromosome plates were observed under a Zeiss Axioscop 2 fluorescence microscope (using UV and BV filter cassettes for DAPI and CMA stains, respectively). Images were captured using the attached ProgRes MFscan Jenoptik D07739 camera and ProgRes CapturePro 2.8.8 software.

Statistical analyses

Statistical analysis involving foundational cytogenetic parameters have been demonstrated to imply significant knowledge on chromosomal evolution within a group (Winterfeld et al. 2020). Considering the lack of hypotheses, we have tested for correlation between the dependent variables (2C genome size, MCL and HCL) and predictor variables [chromosome number (2n) and ploidy level (pl)] and also calculated linear models for regression analysis using IBM SPSS (v23, free).

The modern cytogenetic catalogue of cucurbitaceae

Along with the global review, fresh EMA based somatic plates and idiograms (Figs 1–3) of Indian species are presented here. We retain the previous designation of 10 tribes as 'understudied' (Bhowmick and Jha 2015b), excluding Indofevilleeae, having no cytological reports.

Chromosome numbers

Currently, chromosome counts are available for 188 species (~19%) belonging to about 44 genera (~46%) of the 15 tribes, including the less attended 'understudied tribes'. Within the 'understudied tribes', chromosome counts are available for only 42 species (out of almost 310) belonging to 17 genera (out of nearly 44). The basal number ranges from x/n = 5 (Thladiantha Bunge, 1833) to x/n = 15 (Zanonia Linnaeus, 1753) in these tribes (Table 2). Polyploidy has been abundantly reported in Gomphogyneae. Momordiceae have almost 60 species (Schaefer and Renner 2011) of which reports are known in nearly 11 species. The dibasic condition is noticed in Momordica Linnaeus, 1753 (x = 11 and 14) (Table 3) while polyploidy is detected in *M. charantia* Linnaeus, 1753 and *M. dioica* Willdenow, 1805 (2n = 56). *M. cymbalaria* Hooker, 1871, has the lowest count (2n = 18). In Bryonieae the X-Y sex determination system has been analysed in Bryonia Linnaeus, 1753 as the model along with Echallium Richard, 1824 (Bhowmick and Jha 2015a). Chromosome counts are reported so far in 10 species of *Bryonia* (x =10) and its sister genus *Ecballium* (x = 12 or x = 9, Table 4). Polyploidy is frequent in Bryonia. Sicyoeae is largest in terms of species (~264–266 species) (Schaefer and Renner 2011) of which cytological reports are known in around 14% species belonging to 9 genera (Table 5). Sicyoeae species range from x = 8 to x = 14 (Table 5). Trichosanthes Linnaeus, 1753 and *Luffa* Miller, 1754 have x = 11 and x = 13, respectively (Table 1). The less prevalent numbers include x = 12, x = 8 and x = 9 (Table 5). The possibility of multiple base number is noted in *Frantzia* Pittier, 1910 (x = 12/14) and *Sicyos* Lin-

Figure I. Somatic metaphase chromosomes and idiograms of *Luffa* species (2n = 26) stained with Giemsa (**A**, **D**, **G**), DAPI (**B**, **E**, **H**) and CMA3 (**C**, **F**, **I**) **A–C** *L. acutangula* **D–F** *L. aegyptiaca cylindrica* **G–I** *L. echinata*. Arrows indicate satellited chromosomes in Giemsa plates and CMA^{+ve} signals in **C**, **F**, **I**. Corresponding somatic idiograms (haploid set) of: J *L. acutangula* **K** *L. aegyptiaca* **L** *L. echinata*, showing DAPI^{+ve} (blue) and CMA^{+ve} (golden yellow) bands. Scale Bars: 5 μm

Figure 2. Somatic metaphase chromosomes and idiograms of *Trichosanthes* species stained with Giemsa (**A**, **D**, **I**, **L**), DAPI (**C**, **E**, **J**, **M**) and CMA3 (**B**, **F**, **K**, **N**) **A–C** *T. cucumerina* ssp. *cucumerina* (2n = 22), **D–F** *Trichosanthes cucumerina* ssp. *cucumerina* 'Anguina' (2n = 22) **I–K** *T. dioica* (male, 2n = 22) **L–N** *T. dioica* (female, 2n = 22). Arrows indicate satellited chromosomes in Giemsa plates and CMA^{+ve} signals in **B**, **F**, **K**, **N**. Corresponding somatic idiograms (haploid set) of: **G** *T. cucumerina* ssp. *cucumerina* **H** *Trichosanthes cucumerina* 'Anguina' **O** *T. dioica* male plant **P** *T. dioica* female plant. Blue and golden yellow bands in idiograms indicate DAPI^{+ve} and CMA^{+ve} signals, respectively. Scale Bars: 5 μm

naeus, 1753 (x = 12/13/14). Natural tetraploids are known in two species of *Trichosanthes* while the majority are diploids. Benincaseae is the second largest tribe comprising of 204–214 species in 24 genera (Schaefer and Renner 2011). Cytological reports are known in around 35% species (76 species of which 41 belong to *Cucumis* Linnaeus, 1753) of 12 genera (Tables 6, 7). x = 12 is the prevalent condition in Benincaseae (Tables 1, 6, 7). Dual base numbers are noted in the widely studied *Cucumis* (x = 7, 12). *Coccinia* Wight et Arnott, 1834 (x = 12) may also possess dual base numbers (x = 10 in *C. trilobata* Cogniaux, 1895). Molecular cytogenetics of *Cucumis sativus* Linnaeus, 1753

Figure 3. Somatic metaphase chromosomes and idiograms of two Benincaseae species (2n = 24) stained with Giemsa (**A**, **D**, **G**), DAPI (**B**, **E**, **H**) and CMA3 (**C**, **F**, **I**) **A-C** *Benincasa hispida* **D-F** *Coccinia grandis* (female plant) **G-I** *Coccinia grandis* (male plant). Arrows indicate satellited chromosomes in Giemsa plates and distal CMA^{+ve} signals in **C**, **F**, **I**. Note the longest Y chromosome without any CMA band in **G-I** and centromeric CMA^{+ve} signals in **F**, **I**. Corresponding somatic idiograms (haploid set) of: **J** *Benincasa hispida* **K** *Coccinia grandis* (female plant) **L** *Coccinia grandis* (male plant) with CMA^{+ve} (golden yellow) bands. Note the X chromosome remaining indistinguishable in **L**. Scale Bars: 5 μm

Tribe and Genera	Species studied	Chro	mosome r		Ploidy, Genome size,	References
		x	2n	n	Chromosome features	
Gomphogyneae <i>Gomphogyne</i> Griffith, 1845	G. cissiformis Griffith, 1837		32ª	16 ^b	Tetraploid ^c , autopolyploid ^d ; 10 secondary constrictions, one pair satellited ^e ; II, III, IV in meiosis ^f	CCDB ^b ; Kumar and Subramaniam (1987) ^a , Singh (1990) ^{a,d} , Roy et al. (1991) ^{a,c,e,f}
<i>Hemsleya</i> F.B. Forbes et Hemsley, 1888	H. amabilis Diels, 1912, H. carnosiflora Wu et Chen, 1985, H. chinensis Forbes et Hemsley, 1888, H. emeiensis Shen et Chang, 1983, H. graciliflora Cogniaux, 1916, H. heterosperma Wallich, 1831, H. macrocarpa Cogniaux, 1916, H. panacis-scandem Wu et Chen, 1985, H. sphaerocarpa Kuang et Lu, 1982	7ª	28 ^b , 22 ^c , 24 ^d , 26 ^e , 32 ^f , 40 ^g , 42 ^h	14 ^h	Tetraploid ⁱ , aneuploids ⁱ	Samuel et al. (1995) ^{2-j} , Anmin et al. (2011) ^{b, h}
Gynostemma Blume,	G. cardiospermum Oliver, 1892	11ª	66 ^b		Hexaploid ^c	IPCN ^{a-c}
1825	G. guangxiense Chen et Qin, 1988		22ª		Diploid	IPCN ^{a,b}
	G. laxiflorum Wu et Chen, 1983		22ª		Diploid ^b	IPCN ^{a,b}
	G. longipes Wu et Chen, 1983		22ª, 44 ^b		Polyploid	IPCN ^{a-c}
	G. microspermum Wu et Chen, 1983		22ª		Diploid ^b	IPCN ^{a,b}
	<i>G. pedatum</i> Blume, 1825	12ª	24 ^b		Diploid	Roy et al. (1991) ^{a,b,c}
	G. pentagynum Wang, 1989		22ª		Diploid ^b	IPCN ^{a,b}
	G. pentaphyllum Thunberg, 1784		22ª, 24 ^b , 64 ^c , 66 ^d		Diploid ^e , triploid ^f , hexaploid ^g ; 2C (flow cytometry): 3.62pg ^h ; 17M+14sm+2st ¹ ; CSR: 2.16–4.09 μm ^j 5S (8), 45S (10) rDNA and telomeric signals ^k	IPCN ^{a,b,c,e,f} ; Zhang et al. (2013) ^h , Pellerin et al. (2018) ^{d,g,i,j,k}
	G. pentaphyllum var. dasycarpum Wu, 1983		22ª, 33 ^b , 44 ^c		Polyploid ^d	IPCN ^{a-d}
	<i>G. pentaphyllum</i> var. <i>pentaphyllum</i> Thunberg, 1784		22ª, 44 ^b , 66°, 88 ^d		Polyploid ^e	IPCN ^{a-e}
	G. yixingense Wang et Xie, 1981		88ª		Polyploid ^b	IPCN ^{a,b}
Triceratieae Fevillea Linnaeus, 1753		8ª			-	Roy et al. (1991) ^a
Zanonieae Zanonia Linnaeus, 1753	Z. indica Linnaeus, 1759	15ª	30 ^b	15°	Autoploid ^d ; Metacentric chromosomes ^e ; CSR: 1.10- 1.98 µm ^f	Lekhak et al. (2018) ^{a-f}
Actinostemmateae	<i>A. lobatum</i> (Maxim.) Maxim. ex Franch. & Sav.		16ª		-	IPCN ^a
Actinostemma Griffith, 1841	A. tenerum Griffith, 1837		16ª		$ \begin{array}{l} Diploid^{b}; 7M + 1 sm^{c}; CSR: \\ 2.88-4.02 \ \mu m^{d}; 45S \ (1) \ rDNA \\ and \ 45S+5S \ (1) \ rDNA \ adjacent \\ signal^{c}; telomeric \ repeat \ signals^{f} \end{array} $	Pellerin et al. (2018) ^{a-f}
Thladiantheae Thladiantha Bunge, 1833	T. calcanata Clarke, 1876, T. cordifolia Blume, 1826 T. davidii Franchet, 1886, T. dentata Cogniaux, 1916, T. lijiangensis Lu et Zhang, 1981, T. nudiflora Hemsley, 1887, T. pustulata Léveillé, 1916	3ª, 5 ^b , 9°	18 ^d	5°, 9 ^f	Diploid®	Darlington and Janaki Ammal (1945) ^c ; Roy et al. (1991) ^{a,b,d,cg} , IPCN ^{d,f}
	T. dubia Bunge, 1833		18ª, 22 ^b		Diploid ^c ; 7M+1sm+1st ^d ; CSR: 2.60-4.10 µm ^c ; 45S (4) and co-localized 45S+5S (1) rDNA signals ^f ; telomeric repeat signals ^g	Samuel et al. (1995) ^b , Pellerin et al. (2018) ^{a.c.d.e.f.g}
<i>Baijiania</i> Lu et Li, 1993	B. yunnanensis Lu et Zhang, 1984		32ª		-	IPCN ^a
Siraitieae <i>Siraitia</i> Merrill, 1934	S. grosvenorii Swingle, 1941		28ª		45S (6) and 5S (2) rDNA signals ^b	IPCNª, Li et al. (2007) ^b
Joliffieae <i>Telfairia</i> Hooker, 1827	T. occidentalis Hooker, 1871		22ª, 33 ^b , 44 ^c		Diploid ⁴ , aneuploid ^e , triploid ^f , Tetraploid ⁸ ; 1 B ^h	Uguru and Onovo (2011) ^{a-h}
	T. pedata Sims, 1826		22ª		-	Bhowmick and Jha (2015)ª

Table 2. Cytogenetic reports in the understudied tribes of Cucurbitaceae #.

Tribe and Genera	Species studied	Chrom	nosome	no.	Ploidy, Genome size,	References
		x	2n	n	Chromosome features	
Schizopeponeae Herpetospermum Hooker, 1867	H. pedunculosum Seringe, 1828			11ª	45S (14), 5S (2) rDNA signals ^b	Xie et al. (2019a) ^{a,b}
<i>Schizopepon</i> Maximowicz, 1859	S. bryoniifolius Maximowicz, 1859	10ª	20 ^b		-	Roy et al. (1991)ª, IPCN ^b
Coniandreae <i>Apodanthera</i> Arnott, 1841	A. undulata Gray, 1853	14ª			-	IPCN ^a
<i>Corallocarpus</i> Bentham et Hooker, 1867	C. epigaeus Rottler, 1803		26ª	13 ^b	-	Beevy and Kuriachan (1996) ^{a,b}
	C. welwitschii Naudin, 1863		72ª		-	Singh (1990) ^a
Ibervillea Greene, 1895		11ª, 12 ^b			-	Darlington and Janaki Ammal (1945) ^{a,b}
<i>Kedrostis</i> Medikus, 1791	K. africana Linnaeus, 1753		40ª		2C (feulgen densitometry): 0.8 pg ^b ; 2C (flow cytometry): 1674 Mbp ^c	Bennet et al. (1982) ^{a,b} , Plant C DNA Values Database ^c
	K. foetidissima Jacquin, 1788		26ª	13 ^b		Beevy and Kuriachan (1996) ^{a,b}
	K. rostrata Rottler, 1803	13ª	26 ^b	13°	-	IPCN ^{a-c}
<i>Seyrigia</i> Keraudren, 1960				13ª	-	IPCN ^a

x: base number; 2n: zygotic number; n: gametic number; CSR: chromosome size range; B: B chromosome; II: bivalents, III: trivalent, IV: tetravalent; superscripts correspond to references.

has demonstrated the evolution of x = 7 from x = 12 in Benincaseae. x = 11 has been confirmed in *Citrullus* Schrader, 1836 and *Lagenaria*. The base number of *Melothria* Linnaeus, 1753, *Solena* Loureiro, 1790 and *Zehneria* Endlicher, 1833 can be x = 11 or x = 12 or both (Table 6). Cases of natural polyploidy are noted only in four species of *Cucumis* (Table 7). Cytogenetic information is available for 17 species in three genera of Cucurbiteae with x = 10 and many polyploids (Table 8). The zygotic chromosome numbers of *Luffa*, *Trichosanthes*, *Benincasa* Savi, 1818 and *Coccinia*, corroborate the previous reports (Figs 1–3, Table 1).

Nuclear genome contents

Nuclear genome sizes are reported in 49 species (~5% of total species) belonging to 15 genera (~16% of total genera) of Cucurbitaceae. Among the understudied tribes, 2C genome content is known for one species each from Gomphogyneae and Coniandreae (Table 2). Within the Momordiceae species of India, significant interspecific genome size differences have been reported (Ghosh et al. 2021). The species differed 5.19-fold in their genome sizes (2C = 0.72-3.74 pg) (Table 3) (Ghosh et al. 2021). Interestingly, the species with lowest chromosome number (*M. cymbalaria*, 2n = 18) contained highest nuclear DNA content among the four *Momordica* species (Table 3). In Bryonieae, flow cytometric genome size of *Bryonia* shows a 2.2-fold increase than *Ecballium* (Table 4). In case of Sicyoeae, flow cytometric 2C DNA content ranges from 1.49–2.32 pg/2C, indicating 1.55-fold differences in genome size. *Echinocystis lobata* Michaux, 1803, in spite of tetraploid condition, shows lowest genome size (Table 5). There is no significant difference in genome size between the genders of *Trichosanthes dioica* Roxburgh, 1832

Species	Chrome	osome no.	Ploidy, Genome size, Chromosome features	References
I	2n	a	1	
M. balsamina Linnaeus, 1753	22ª		Diploid ^b ; two chromosomes with double constrictions ^c ; CSR:0.65–1.98µm ^d ; MCL:1.30µm ^c ; TCL: 28.61µm ^f	Bharathi et al. (2011) ^{a-f}
M. channtia	22ª	11	Diploid*, 2C (Feulgen densitometry): 4.10pg ⁴ , 2C (flow cytometry): 1.43pg ⁴ ; chromosomes mostly metacentric, few submetacentric and subfedecentric ² ; 2 chromosomes with satellites ¹ ; CSR: 1.26-1.81 µm ¹ ; 45S (4) and 5S (2) nDNA signals ⁴	Plant DNA C-Values Databasé; Bharathi et al. (2011) ¹⁴ ; Barow and Meister (2003); Lombello and Pinto-Maglio (2007) ^{4,hk} ; Bharathi et al. (2011); Waninal and Kim (2012) ^{5,a,hk} ; Kausar et al. (2015) ¹ ; Kialo et al. (2016) ^{4,h}
M. charantia var. charantia	22ª	11 ^b	Diploid'; 2C (flow cytometry): 0.72pg ⁴ ; NORs: 4'; nucleolar and centromeric CMA' bands'; CSR: 1.27-3.07µm ⁴ ; MCL: 1.97 µm ⁴ ; HCL: 21.77µm ¹	Ghosh et al. (2018) ^{af} ; Ghosh et al. (2021) ^{acd ghil}
<i>M. charantia</i> var. <i>muricata</i> Chakravarty, 1982	22ª	11 ^b	Diploid'; 2C (flow cytometry): 1.1 (bgd'; NORs: 6'; nucleolar and centromeric CMA' bands'; CSR: 1.64-3.13,1mf; MCL: 2.19,µm ¹ ; HCL: 24.19,µm ¹	Ghosh et al. (2018) ^{af} ; Ghosh et al. (2021) ^{acdghii}
<i>M. cochinchinensis</i> Loureiro, 1790	28ª	14^{b}	Diploid', 2C (flow cytometry): 2.64pg ⁴ , 6° chromosomes with secondary constrictions; CSR:1.16–2.03µm ⁴ /1.71-3.17µm ⁴ ; MCL: 2.27µm ⁴ ; HCL: 31.86µm ⁴ ; 45S (8) and 5S (2) rDNA signal ⁸	IPCN ^b ; Xie et al. (2019a) ⁴⁴ ; Bharathi et al. (2011) ³⁴⁵ ; Ghosh et al. (2021) ³⁴⁵ d@hi
M. cymbalaria	18ª	8 ^b , 9 ^c , 11 ^d	Diploid; 2C (flow cyrometry): 3.74 pgf. 2 ^{-4k} chromosomes with secondary constrictions; CSR: 2.71-4.57µm ^k	IPCNb; CCDB ^{bd} , Bharathi et al. (2011) ^{a.c.g.} , Ghosh et al. (2021) ^{a.c.f.bi.j.k}
M. denudata Clarke, 1879		14^{a}		$IPCN^{a}$
M. dioica Willdenow, 1805	28ª, 56 ^b		Diploid; 2C (flow cyrometry): 3.36 pg ⁴ . 2-12 ⁷ chromosomes with secondary constrictions. CSR: 2.04-3.58µm ^s , MCL: 2.75µm ^s ; HCL: 77.10µm; 455 (4) and 5S (2) rDNA signal ⁶	Bharathi et al. (2011) $^{\rm acc}$; Xie et al. (2019a) $^{\rm aj}$; Ghosh et al. (2021) $^{\rm bd,f_{\rm ch}}$
M. foetida Schumacher, 1827	44^a			Behera et al. $(2011)^{a}$
M. rostrata Zimmermann, 1922	22^{a}			Behera et al. $(2011)^a$
<i>M. sabyadric</i> a Kattukunnel et Antony, 2007	28ª		2 chromosomes with secondary constrictions ⁴ ; CSR: 0.73–1.83µm ⁵ ; TCL: 37.53µm ⁶ , MCL: 1.34µm ^c	Behera et al. $(2011)^{*c}$
<i>M. subangulata</i> Blume, 1826	56ª		2C (flow cytometry): 3.06pg/s 8 chromosomes with secondary constrictions'; CSR: 1.52-3.11 μm^4_1 HCL: 60.30 μm^2	Ghosh et al. (2021) ²⁴
<i>M. subangulata</i> subsp. <i>renigera</i> Don, 1834	56ª		4 chromosomes with secondary constrictions*, CSR: 0.52-1.26 μm° MCL: 0.93 μm° TCL 51.88 μm°	Bharathi et al. (2011)ª<
M. tuberosa Miquel, 1855	22ª	$11^{\rm b}$		IPCN ^{a,b} ; CCDB ^{a,b}

Table 3. Cytogenetic information in *Momordica* (Momordiceae)#.

Genera	Species studied	С	hromoso	me no.	Genome size	References
		x	2n	n		
Bryonia		10ª				Darlington and Janaki Ammal (1945) ^a
	B. alba Linnaeus, 1753	10ª	20 ^b	10 ^c	2C (flow cytometry): 5827Mbp ^d	CCDB^d , Volz and Renner (2008) a,b,c
	B. aspera Ledebour, 1843	10ª	40 ^b , 60 ^c	20 ^d , 10 ^e	-	Kumar and Subramaniam (1987) ^c , Volz and Renner (2008) ^{a,b,d,e}
	B. cretica Linnaeus, 1753	10ª	60 ^b	30°	-	Volz and Renner (2008) ^{a,b,c}
	B. dioica Jacquin, 1774	10ª	20 ^b	10 ^c	2C (microdensitometry): 4.01pg ^d ; 2C (flow cytometry): 5522Mbp ^e	$CCDB^{d,e}\!,$ Volz and Renner $(2008)^{a,b,c}$
	<i>B. macrostylis</i> Heilbronn et Bilge, 1954			10ª	-	IPCN ^a
	B. marmorata Petit, 1889		40ª	20 ^b	-	Volz and Renner (2008) ^{a,b}
	<i>B . monoica</i> Aitchison et Hemsley, 1886	10ª	20 ^b		-	Volz and Renner (2008) ^{a,b}
	<i>B. multiflora</i> Boissier et Heldreich, 1849	10ª			-	Volz and Renner (2008) ^a
	B. syriaca Boissier, 1856	10ª	20 ^b		-	Volz and Renner (2008) ^{a,b}
	B. verrucosa Aiton, 1789	10ª	20 ^b	10 ^c	2C (flow cytometry): 2.09pg ^d ; 4504Mbp ^e	CCDB ^{d,e} , Volz and Renner (2008) ^{a-c}
Ecballium		12ª			*	Darlington and Janaki Ammal (1945)ª
	E. elaterium Linnaeus, 1753		18ª	12 ^b	2C (flow cytometry): 2442Mbp ^c	Veselý (2012) ^c , Volz and Renner (2008) ^b
	<i>E. elaterium</i> subsp. <i>dioicum</i> Battandier, 1989		18ª, 24 ^b	9°, 12 ^d	-	Volz and Renner (2008) ^{a-d}
	<i>E. elaterium</i> Linnaeus, 1753 subsp. <i>elaterium</i>		18ª	9 ^b	-	Volz and Renner (2008) ^{a,b}

Table 4. Chromosome number and genome size in Bryonieae#.

2n: Zygotic chromosome number; n: gametic chromosome number.

(Table 5). Genome size estimates are known from 24 Benincaseae species of which 17 species belong to *Cucumis* (Tables 6, 7). Highest 2C nuclear genome is known in *Benincasa hispida* Thunberg, 1784 (1.97 pg) (Bhowmick and Jha 2015a) while the lowest is known in *Cucumis melo* var. *inodorus* Harz, 1885 (0.64 pg) (Karimzadeh et al. 2010). In case of *Cucumis*, there is yet no consensus on whether the taxa with different base numbers (x = 7, 12) have correspondingly dissimilar genome sizes since the researchers depended on diverse methods of genome size estimation. Lower 2C genome size was reported in *C. Coccinia grandis* Linnaeus, 1767 (2n = 24) while *C. trilobata* (2n = 20) had higher 2C DNA content (Table 6). The divergence in genome size between genders was found to be highest in dioecious *C. grandis* (Table 6), a sharp contrast to dioecious *Trichosanthes dioica* (Table 5). Benincaseae shows a 3.07-fold overall difference in genome size. Genome sizes are known in eight species of *Cucurbita* Jussieu, 1789. Flow cytometric genome size ranges from 0.686–0.933 pg/2C, indicating a 1.36-fold variation (Table 8). Despite polypoidy, the nuclear DNA content of *Cucurbita* species is comparable to many diploids.

Karyotypes, chromosome banding and molecular cytogenetics

Among the understudied tribes, information on chromosome morphology, size and karyotype are reported in very few taxa (Table 2). In *Gynostemma pentaphyllum* Thunberg, 1784, the number of rDNA loci was suggested to reduce during polyploidization (Pellerin et al. 2018). The *Actinostemma tenerum* Griffith, 1837, genome contained in-

	-	2				e F
Genera studied	Species studied	5	romosoi	me no.	Ploidy, Genome size, Chromosome features	Keterences
		х	2n	u		
Cyclanthera		83	20 27	ة بر	- - 2	Darlington and Janaki Ammal (1945) [*]
Lula, 10/0	C. pedata (L.) Schrader, 1851		16°, 32	×	Diploid	Koy et al. $(1991)^{4xx}$, Samuel et al. $(1995)^{9}$
Echinocystis Torrey		83		16^{t}		Bhowmick and Jha (2015b) ^b , Darlington and Janaki Ammal (1945) ^a
et Gray, 1840	E. lobata Michaux, 1803		$16^{a}, 32$	ę	Tetraploid ^c , 2C (flow cytometry):1.49pg ^d	IPCN ^{3,b} , Plant DNA C-Values Database ^{c.d}
	E. macrocarpa Greene, 1885		32ª		•	Whitaker (1950) ^a
<i>Echinopepon</i> Naudin, 1866	E. urightii Gray, 1853			12°	·	IPCN ⁶ , CCDB ^a
Frantzia				12^{a} 14 ^b		Schaefer and Renner (2011) ^{sla}
<i>Hodgsonia</i> Persson, 1953	<i>H. macrocarpa</i> var. <i>capniocarpa</i> Ridley, 1920		18^{a}			IPCN ⁵ , CCDB ^a
Luffa		13^{a}				Darlington and Janaki Ammal (1945) ^a
	L. acutangula	13^{a}	$26^{\rm b}$	13,	Diploid ⁴ ; CSR:1.39–3.20µm ⁴ ; 18m+2sm+6m.st ⁴ ; NORs.6 ⁶ ; distal DAPI and nucleolar CMA signals ⁴	Kumar and Subramaniam (1987) $^{\rm ab}_{\rm bAh}$ IPCNs, Bhowmick and Jha (2021) $^{\rm bAh}$
	L. acutangula var. acutangula			13^{4}		Beevy and Kuriachan (1996) ^a
	L. acutangula var. amara Clarke, 1879			13^{4}		Beevy and Kuriachan (1996) ^a
	L. aegyptiaca (syn L. cylindrica Roemer, 1846)	13^{a}	26 ^b	13	Diploid ⁴ (2 C (flow cytometry): 1.56 pg ² ; 2 C (Feulgen densitometry): 1.7pg ⁴ ; CSR: 1.60–2.06µm ⁴ ; 24M+1sm ⁴ ; 22m+ 4m.st ² ; NORs:2 ³ ; nucleolar and distal CMA signals ⁴ ; 45S (10) and 5S (2) rDNA signals ⁴	Bennet et al. (1982) ^{hdf} , Kumar and Subramaniam (1987) ^{hb} , Waminal and Kim (2012) ^{hdgAJ} , Bhowmick and Jha (2015a) ^{hzdaijk}
	L. echinata		26ª, 39 ¹ 52°	, 13 [,]	Diploid ^c ; CSR 2.44-3.96 µm ^c ; 16m+4sm+6m.sf ^c ; NORs: 6 ^c ; Distal and intercalary DAPI and nucleolar CMA signals ¹	Kumar and Subramaniam (1987)*<, Bhowmick and Jha (2021)** ¹
	L. graveolens Roxburgh, 1832	13^{a}				Kumar and Subramaniam (1987) ^a
	L. hermaphrodita Singh et Bhandari, 1963			13^{a}	,	IPCN ^a
	L. operculata Linnacus, 1759	13^{a}	$26^{\rm b}$	13°	,	Kumar and Subramaniam $(1987)^{ab}$, IPCN ^c
Sicyos (75,		12^{a}	$24^{\rm b}$			Darlington and Janaki Ammal (1945) ^{ab}
includes Sechium,	S. angulatus	$12^{\rm a}$	$24^{\rm b}$		Diploid ^c ; CSR: 1.9-4.6µm ^d ; 4 adjacent 45S+5S rDNA signals ^e	Waminal and Kim (2015)**; IPCN ^b
Microsechium)	S. australis Endlicher, 1833		$24^{a}, 26$	ą	12II ^c , 13II ^d	IPCN ^{a-d} , CCDB ^{a-d}
	S. edulis Jacquin, 1760 (syn of Sechium edule)	13ª	26 ^b , 28	e 12 ^d 13 ^e	Diploid! metacentric and submetaccentric chromosomes; CSR: 2.69– 5.38µm ^b ; 45S (6), 5S (2) rDNA and telomeric repeat signals (28)	Beevy and Kuriachan (1996) ^{abe} , Pellerin et al. (2018) ^{af@bi} , Ting et al. (2019) ^c , IPCN ^d , CCDB ^d
	S. nihoaensis St. John, 1970			12ª		IPCN ⁴ , CCDB ⁴
	Sechium compositum Smith, 1903 (syn. Microsechium compositum)			14^{3}	1	IPCN ⁶ , CCDB ⁶
	S. hintonii Wilson, 1958 (syn Microsechiun bintoniô	и		14^{3}		IPCN ^a , CCDB ^a

Table 5. Cytogenetic information in Sicyoeae#.

-		ξ				J.R.
Genera studied	opecies studied		2n	- uo.	rioidy, Genome size, Chromosome reatures	Kerences
Trichacanthac		112				Darlington and Ianali Ammal (1045) ²
11 000000000000000000000000000000000000		1				L'ALIIIBRUIT ATRI JAHAN FAHIHIAI (1777)
(100)	T. anaimalaiensis Beddome, 1864		22^{a}	11^{b}		Beevy and Kuriachan (1996) ^{ab}
	T. boninensis Nakai et Tuyama, 1928		22^{a}			IPCN ^a
	T bracteata Lamarck, 1797	11ª 2	22 ^b , 44 ^c , 66 ^d		,	Kumar and Subramaniam (1987) ^{ab} , Roy et al. (1991) ^{cd}
	T. bracteata var. bracteata			11ª, 22 ^b		Beevy and Kuriachan (1996) ^{ab}
	T. chingiana Handel-Mazzetti, 1936		22ª		•	IPCN ^a
	T. costata Blume, 1826 (syn Gymnopetalum chinense Loureiro, 1790)		22ª		Diploid's 45S (6) and 5S (4) rDNA signals ^e	Kumar and Subramaniam (1987) $^{\rm s}_{\rm s}$ Xie et al. (2019a) $^{\rm bc}$
	T. cucumerina		22ª	11^{b}	Diploid': 12m+4M+2sm+4sm.sr ⁴ ; CSR: 2.26-4.99µm°; 6 dnomosomes with double constrictions ⁶ ; NORs: 4 ^s nucleolar CMA and distal DAPI bands ⁴	Bhowmick and Jha (2019)* ⁴
	<i>T. cucumerina</i> ssp. <i>cucumerina</i> Anguina	1 1 a	22 ^b	11°, 22 ^d , 33 ^f	Diploid; 2C (Feulgen densitometry): 2.2pg; CSR: 2.77–5.01µm ^c ; 12m+4M+2sm-4sm.st [*] ; 6 chromosomes with double constrictions [†] NORs: 4 [°] ; nucleolar and distal CMA bands [°] ; 45S (6) and 5S (2) rDNA signal ⁴	Kumar and Subramaniam (1987)*, Bhowmick and Jha (2019) ^{bezeghluk} , Xie et al. (2012a) ^{bl} , JPCN ^{ef}
	T. divica	11ª	22 ^b	11°	Diploid ⁴ ; 2C (flow cyrometry): male-2.27 pg, female- 2.32 pg ⁴ ; 12m+68m +28t+28m.f; distal DAPI bands ⁵ ; distal CMA bands in females ⁵ ; 1 rod bivalent in meiosis ¹	Kumar and Subramaniam (1987), Guha et al. (2004) $^{\rm hdfl},$ Bhowmick and Jha (2015a) $^{\rm hodel, ehl}$
	T. dunniana Léveillé, 1911		22ª		Diploid ^b , $45S$ (6) and $5S$ (2) rDNA signals ^c	Xie et al. $(2019a)^{ac}$
	T. himalensis Clarke, 1879			11^{a}		Roy et al. (1991) ^a
	T. hupehensis Cheng et Yueh, 1974		22^{a}		1	IPCN ³ , CCDB ³
	T. kirilowii Maximowicz, 1859	0	60², 66°, 88°, 110 ^d		-lexa-, octa-, decaploid;CSR: 2.3-3.5 junf: 45S (4), 5S (4) and 45S +5S (6) adjacent rDNA signals ⁶	IPCN', CCDB', Waminal and Kim (2015) ^{8cdk-8}
	T. kirilowii var. japonica			11^{a}		Roy and Saran (1990) ^a
	T. lepiniana Naudin, 1868		44ª	$11^{\rm b}$	1 B°	Roy et al. (1991) ^{b,c} , IPCN ^b , CCDB ^a
	T. lobata Roxburgh, 1832	11^{a}		$11^{\rm b}$		Kumar and Subramaniam (1987) ^a , Beevy and Kuriachan (1996) ^b
	T. mianyangensis Yueh et. Liao, 1992		88ª		ı	IPCN ² , CCDB ^a
	T. nervifolia Linnaeus, 1753			11^{a}	1	Beevy and Kuriachan (1996) ^a
	T ovigera Blume, 1826		22ª		Diploid ^b ; 45S (10) and 5S (2) rDNA signals ^c	Xie et al. $(2019a)^{ac}$
	<i>T. palmata</i> Linnaeus, 1759	0	22ª, 44 ^b , 66 ^c	11 ^d		IPCN ^{₄d}
	T. pedata Merril et Chun, 1934		22 ^a			IPCN ⁵ , CCDB ⁴
	T. truncata Clarke, 1879		22^{a}		1	IPCN ³ , CCDB ²
	T. wallichiana Wight, 1840	$1 1^a$	$22^{\rm b}$		1	Kumar and Subramaniam (1987) ^{ab}
#v. hase number: 2	n: atmostic number n: mustic number: N(OD	dedar,	2002-0	D. D. L	

ž, 1 2 --in in iteration 20 de R 5 30 1) S C 2

Updates on Cucurbitaceae Cytogenetics

¢	-	C				U E
studied	opecies surgied	כ י כ	nomosome.		r lotay, Genome size, Caromosome reaures	Neterences
Renincaca	R fictulated	•	τ τ		Dinloidb. $\frac{d}{d}$ SS ($\frac{d}{d}$) and SS ($\frac{d}{d}$) eigenslet	1; of all (2016)abs
Dennum	D. Jistutou		17			
	B. hispida	12ª	24^{b}	12°	Diploid4', 2C (flow cytometry):1.97pgf, 2C (feulgen densitometry):2.1pg; CSR 2.54-4.59µm ^s , 16m+6Sm+2Sm.t [*] , NORs2'; distal CMA signals', 45S (2) and 45S+5S (2) adjacent rDNA signals ⁴	Plant DNA C-Values Database', Waminal et al. (2011) ^{bd@k} , Bhowmick and Iha (2015a) ^{bedachuli}
Citrullus		11 ^a				Darlington and Janaki Ammal (1945) ^a
	C. amarus (syn. C. lanatus var. citroides)	11ª	22 ^b		Diploid'; CSR: 3.1–4.7 μ m ⁴ ; 45S (2) and 5S (4) rDNA signals ^e	Reddy et al. (2013) ^{b-d} , Waminal and Kim (2015) a^{ac} , Renner et al. (2017) ^b
	C. colocynthis		22ª	11^{b}	Diploid'; 458 (2) and 458+58 (2) adjacent rDNA signals ⁴	Beevy and Kuriachan (1996) ^b , Reddy et al. (2013) ^{a.cd} , Li et al. (2016) ^{a.cd}
	C. ecirrhosus		22ª	$11^{\rm b}$	Diploid: 2 satellites detected in meiosisd: 45S (2) and 5S (4) rDNA signals': regular meiosisf	Li et al. $(2016)^{a,c,c}$, Renner et al. $(2017)^{a,b,c,d,f}$
	C. lanatus		22ª	$11^{\rm b}$	Diploid [*] ; CSR: 1.09µm-1.72µm ⁴ ; 14m+8sm ⁵ ; 45S (2) and 45S+5S (2) adjacent rDNA signals ⁴ ; linkage groups hybridized to chromosomes ⁶	Beevy and Kuriachan (1996) ^b , Waminal et al. (2011) ^{a.ed.ef} , Ren et al. (2012) ^{a.eg}
	C. lanatus subsp. lanatus		22ª		Diploid ^b ; 45S (2) and 5S (4) rDNA signals ^c	Li et al. (2016) ^{a-c}
	C. lanatus subsp. mucosospermus Fursa, 1972		22ª		Diploid ^b ; 458 (2) and 458+5S (2) adjacent rDNA signals ^c	Li et al. (2016) ^{ac}
	C. lanatus subsp. vulgaris Schrader, 1836		22ª		Diploid': 458 (2) and 458+58 (2) adjacent rDNA signals ^c	Li et al. $(2016)^{ac}$
	C. lanatus var. lanatus		22ª		Diploid ^b ; 45S (2) and 45S+5S (2) adjacent rDNA signals ^c	Reddy et al. $(2013)^{a-c}$
	C. naudinianus (syn Acanthosicwes naudinianus)		24^{a}		Diploid ¹ ; $45S(2)$ and co-localized $45S+5S(2)$ rDNA signals ^c	Li et al. (2016) ^{ab.c}
	C volvnii		27ª		Dinhoidb. 45S (2) and 5S (2) rDNA eignale ^c	Reddy et al (2013)** I i et al (2016)**
	C. vulgaris Schrader, 1836		22ª, 44 ^b	11°	Diploid ⁴ , 2C, 0.88/0.90 pc	IPCN ^{acd} , Arumuganathan and Earle (1991) ^e
Coccinia (30)	0	12ª			01	Darlington and Janaki Ammal $(1945)^{a}$
	<i>C. abysinica</i> Lamarck, 1753	12ª	$24^{\rm b}$			Kumar and Subramaniam $(1987)^{4}$, Roy et al. $(1991)^{b}$
	C. grandis	12ª	24	12°	Diploid ⁴ , 2C (Flow ortometry): male- 0.9437/0.92 ⁷ pg and female- 0.8494/0.73 ⁸ pg: CSR: 1.33-4.71 µm (male) and 1.35-226µm (female); 15m+4M+2sm+2m:sm+1m:st (Y) in male and 14m+6M+2sm+2m:st in female; NORs-25 ⁵ chromosomal C bands ¹ ; centromeric, nucleolar CMA bands ²⁷ , 45S (4) ⁿ rDNA signals adjacent to 5S ⁵ , GISH performed ⁵ , repetitive, organellar DNA hybitidized ⁵ ; centromere immunofluorescnece ⁵ ; heteromorphic sex duromosoms (largest Y) ⁵ ; X-Y bischent (meiosis) ⁵	Bhowmick et al. (2012) ^{bedkinner,} (2016) ^{bdikhikhar} , Sousa et al. (2013) ^{bdikeskkinnera,} Sousa et al. (2017) ^{bdiknopque} , Xie et al. (2019a) ^{bino}
	C. hirtella Cogniaux, 1896		24ª		Diploid*; 2C (flow cytometry): male-0.988pg ⁺ ; 45S (4) and 45S+5S (2) adjacent rDNA signals ⁴ , repetitive and organellar DNA hybridized ⁺ ; centromere immunofluorescence performed [†]	Sousa et al. $(2017)^{*f}$
	C. sessilifolia Sonder, 1881		24ª		Diploid*, 2C (Flow cyometry): male- 0.984pg, female- 0.998pg; 455 (4) and 455-5S (2) adjacent rDNA signals ⁴ ; repetitive and organellar DNA; centromere immunofluorescence performed ⁴	Li et al. $(2016)^{abd}$, Sousa et al. $(2017)^{a-f}$
	C. trilobata		20ª		Diploid ^a ; 2C (flow cytometry): male-1.265pg '; 45S (2) and 455+5S (2) adjæcent rDNA signals ⁴ , repetitive, organellar DNA sequence hybridized ^e	Sousa et al. $(2017)^{ae}$
<i>Ctenolepis</i> Hooker, 1867	<i>C. garcinii</i> Burman, 1768		24ª	12 ^b		Kumar and Subramaniam (1987) ^s , Beery and Kuriachan (1996) ^b

Table 6. Cytogenetic information on Benincaseae#.

ç			-			5 E
erudied	obectes stratter	,		. 10	r ioudy, denotine size, caronosonie reatures	Neterances
Diplocyclos Endlicher, 1833	D. palmatus	•	24ª	-	Diploid ^b , 45S (4) and 45S+5S (2) adjacent rDNA signals ^c	Li et al. (2016)**
Lagenaria Seringe, 1825	L. leucantha Rusby, 1896 L. leucantha var. clavata Makino. 1940		22ª 22ª	11 ^b		IPCN ^{ab} , CCDB ^{ab} CCDB ^a
	L. sicentia	11 %	22 ⁶	11 ^c	Diploid ⁴ , 2C (flow cytometry): 0.734pg ⁴ ; 2C (Feulgen densitometry):1.4pg ⁴ ; CSR: 0.56–1.06µm ⁴ ; metacentric and few sub-metacentric dhromosomes ⁴ ; 45S (2) and 45S+5S (2) adjacent rDNA signals ⁴	Darlingron and Janaki Ammal (1945) ¹ , Plant DNA C-Values Database', Beevy and Kuriachan (1996) ⁵ , Achigan-Dako et al. (2008) ⁴⁴ , Waminal and Kim (2012) ^{hde,bh} , Li et al. (2016) ^{hdi} , Xie et al. (2019a) ^{bdi}
	L. siceraria var. macrocarpa L. vulgaris Seringe, 1825		22ª 22ª	11 ^b	Diploid: 2C (Feulgen densitometry): 1.40pg ⁴	CCDB ^a Bennet et al. (1982) ^{a,b,c}
Melothria	2221	11ª, 12 ^b	вус			Darlington and Janaki Ammal (1945) ^{ab}
	M. pertutu LIIIIacus, 17 33 M. perpusilla Blume, 1826		-4-2 48ª		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	LI et al. (2010)
	M. scabra Naudin, 1866		24^{a}			CCDB ^a
<i>Peponium</i> Engler, 1897	P. betsiliense Keraudren, 1960		24^{a}			CCDB ^a
Solena	S. amplexicaulis Lamarck, 1785 (syn. S. heterophylla, Melothria heterophylla, Zehneria umbellata)		22ª, 24 ^b , 26 ^c , 36 ^d , 48 ^e	11^{f} , 12^{g} , 24^{h}	2-4 B ⁱ	Kumar and Subramaniam (1987) ^{aboce,} Roy et al. (1991) ^{d1,} Beevy and Kuriachan (1996) ^{bed} , IPCN ^{baceeb}
Zehneria	Z. capillacea Jeffrey, 1962 (syn. Melothria capillacea)		22ª			CCDB ²
	Z. indica Loureiro, 1790 (syn. Melothria japonica)	11 ^a	22 ^b	24°	Diploid*: 458 (2) and 458+58 (2) adjacent rDNA signals*	Waminal and Kim $(2015)^{abdac}$
	<i>Z. marlothi</i> i Cogniaux, 1962		24^{a}		Diploid ⁶ : 45S (2) and 45S+5S (2) adjacent rDNA signals ^c	Li et al. (2016) ^{abc}
	Z. maysorensis Wight et Arnott, 1834		48ª	$24^{\rm b}$	45S (2) and 5S (2) signals ^e	Beevy and Kuriachan (1996) ^{a,b} , Xie et al. (2019a) ^{a,c}
	Z. mucronata Blume, 1856		22ª	$12^{\rm b}$		Darlington et al. (1956) ^a , CCDB ^b
	(syn. <i>Metotiona mucronata</i>) Z. scabra Sonder, 1862 (svn. <i>Melothria punctata</i>)		24ª, 48 ^b			CCDB ^a , Kumar and Subramaniam (1987) ^b
	Z. thwaitesii Schweinfurth, 1868		44ª			CCDB ²
		-		-		

genera included other than Caramits x: base number; 2n: sygotic number; n: gametic number; NOR: nucleolar organizing region; B: B driomosome; II: bivalents; IPCN: Index to Plant Chromosome Number Reports; CCDB: Chromosome Counts Database; superscripts correspond to references.

Updates on Cucurbitaceae Cytogenetics

Species with subspecies/ varieties		Chromosom	e no.	Ploidy, Genome size, Chromosome features	References
	x	2n	u		
C. aculeatus Cogniaux, 1895		48ª		Allotetraploid ^b , 24II ^c	IPCN ^{a-c} , CCDB ^{a-c}
C. africanus Linnaeus, 1782	12ª	24 ^b , 48°	12^{d}	Diploid': 2C (Feulgen microdensitometry): 1.782pgf; 4 satellited chromosomes': 45S (4 ⁴ /6) rDNA signals, 2 co-localized 45S+5S signals ^j	IPCN ^{he} , Yadava et al. (1984) ^{hd} , Ramachandran and Narayan (1985) ^{he,f} Yagi et al. (2015) ^{Jab,gi} , Zhang et al. (2016) ^{he,hi}
C. angolensis Cogniaux, 1881.		24^{a}			IPCN ^a
<i>C. anguria</i> Linnaeus, 1753		24ª		Diploid ^b , majorly submetacentric and few nearly metacentric chromosomes ⁶ ; 1 pair satellited ⁴ , 458 (2) and co-localized 458-58 (2) rDNA signals ⁶ , SegCP enables chromosome identification ⁶ ; GISH reveals cross species relationships ⁶	Singh and Roy (1974)*4, Zhang et al. (2015)*6, (2016)*5, Li et al. (2018) ^{al}
C. anguria var. anguria	12ª	$24^{\rm b}$	12°	Diploidd: 4 satellited chromosomes ^e ; 45S (2) and co-localized 45S+5S (2) rDNA signals ^f	Yadava et al. (1984) ^{b,c} , Yagi et al. (2015) ^{ad,e,f}
C. anguria var. longipes		24ª	12 ^b	Diploid'; 2C (Feulgen microdensitometry): 1.587pg ⁴	Yadava et al. (1984) ^{a,b} , Ramachandran and Narayan (1985) ^{a,c,d}
C. anguria var. longaculeatus	12ª	12.5		Diploid: 4 satellited chromosomes ⁴ , 45S (2) and co-localized 45S+5S (2) rDNA signals ^e	Yagi et al. (2015)ªe
C. asper Cogniaux, 1901		24^{a}		Diploid ^b ; $45S$ (4) and $5S$ (2) signals detected ^c	IPCN ^a , Zhang et al. $(2016)^{ab,c}$
C. callosus Rottler, 1803		$14^{a}, 24^{b}$	12°	Diploid ⁴ ; 2C (Feulgen microdensitometry):1.590pg; 11m+1sm (haploid) ^f	Ramachandran and Narayan (1985) ade, Rajkumari et al. (2013) be, (2015) bed
C. cinereusCogniaux, 1901 (syn. Cucumella cinerea)				2C (Feulgen microdensitometry): 0.5pg*	Bennet et al. $(1982)^{a}$
C. diniae Raamsdonk et Visser, 1992		48^{a}			IPCN^a
C. dinteri Cogniaux, 1901		24^{a}		Diploid ^b ; 2C (Feulgen microdensitometry): 2.167pg ^e	IPCN¹, Ramachandran and Narayan (1985)⁴-∈
C. dipaceus Spach, 1838		24ª	12 ^b	Diploid [*] ; 2C (Feulgen microdensitometry): 2.448pg ⁴ ; 2m+8sm+2st (haploid) [*] ; 45S (2) and co- localized 45S+5S (2) rDNA signals ⁱ	Yadava et al. (1984) ^{4-b} , Ramachandran and Narayan (1985) ^{4-d} , Rajkumari et al. (2015) ^{4-d} , Zhang et al. (2016) ^{4-f}
C. ficifoliusRichard, 1847		$24^{a}, 48^{b}$	12°	$Diploid^4, 2C \ (Feulgen microdensitometry): 1.373 pg^{\circ}_{1}, 45S \ (2) \ and \ co-localized \ 45S+5S \ (2) \ rDNA \ signals^{\circ}_{1}$	Yadava et al. (1984) ^{a.c} , Ramachandran and Narayan (1985) ^{a.d.c} , Zhang et al. (2016) ^{b.f}
C. figarei Naudin, 1859		48ª, 72 ^b		Autoallopolyploid ^c ; 2C (Feulgen microdensitometry): 3.886pg ^c ; 361I ^f	IPCN ^{a-f} , Ramachandran and Narayan (1985) ^{a,ce}
C. heptadactylis Naudin, 1859		48ª	23 ^b , 24 ^c , 52 ^d	Autotetraploid': 2C (Feulgen microdensitometry): 2.225pg ⁴ ; 8 satellited chromosomes ⁴ ; 45S (8) rDNA signals ⁴ of which 4 co-localized to 5S signals ⁴ or separate 5S (4) rDNA signals ⁴ ; 10IV+4II ⁴ ; irregular meiosi ⁴	$\begin{split} IPCN &\stackrel{\mathrm{def}}{\to}, Yadava et al. (1984) &\stackrel{\mathrm{def}}{\to}, Ramachandran \\ and Narayan (1985) &\stackrel{\mathrm{def}}{\to}, Yagi et al. (2015) & \stackrel{\mathrm{def}}{\to}, \\ Zhang et al. (2016) &\stackrel{\mathrm{def}}{\to}, \end{split}$
C. hookeri Naudin, 1870		24^{a}	$12^{\rm b}$	Diploid ^e	Yadava et al. (1984) ^{a,b,c}
C. humifructus Stent, 1927		24^{a}		Diploid ^b ; 2C (Feulgen microdensitometry): 2.455 pg ^c	Ramachandran and Narayan (1985) ^{ab,c}
C. hystrix Chakravarty, 1952	12ª	$24^{\rm b}$		Diploid; $2m+10sm$ (haploid)', 458 (4) and co-localized 45S+58 (2) rDNA signals'; HSH with bulked oligo probe from cucumber chromosome $C7^{i}$ GISH reveals cross species relationships ⁶	Rajkumari et al. (2015) ^{b,c,d} , Han et al. (2015) ^f , Zhang et al. (2015) ^{b,g} , (2016) ^{a,b,c,e}
C. indicus Ghebretinsae et Thulin, 2007		20^{a}		Diploid ^b ; 4m+ 6sm (haploid) ^c	Rajkumari et al. (2015) ^{a-c}

Table 7. Cytogenetic features of Cucumis (Benincaseae)#.

Species with subspecies/ varieties	ľ	Chromosom	: no.	Ploidy, Genome size, Chromosome features	References
	x	2n	u		
C. javanicus Miquel, 1856 (syn. Melothria asamica)	a 12ª	24 ^b , 48°		· ·	Kumar and Subramaniam (1987) ^a , CCDB ^{bc}
C. leiospermus Wight et Arnott, 1834 (syn. Melothria leiosperma)		24^{a}			CCDB ^a
C. leptodermis Schweickerdt, 1933		24^{a}	$12^{\rm b}$		Yadava et al. (1984) ^{ab}
C. longipes Hooker, 1871		24^{a}			IPCN ^a
C. meeusei Jeffrey, 1965		48 ^b	22°, 24 ^d	Tetraploid': 2C- 3.203pg (Feulgen microdensitometry) ¹ ; 45S (6) and co-localized 45S+5S (2) rDNA signals ⁵	Yadava et al. (1984) ^{bed,} Ramachandran and Narayan (1985) ^{bef,} Zhang et al. (2016) ^{beg}
<i>C. melo</i> Linnaeus, 1753	12ª	20 ⁶ , 22 ^c , 24 ^d	12°	Diploidf: 2C (Feulgen photometry): 0.94-1.04pg/s, 1.90pg/; 2C (Flow cytometry): 1.05pg/; 14m+10st (2SAT); 7m+5sm (haploid)'; 4 satellites' or 2 satellites"; CSR1.0-2.1µm*; CMA bands detected; 45S (2) and co-localized 45s+5S (2) rDNA signals*; centromeric, telomeric, nulceolar and SSR probe hybridization reveals chromosomal relation'; SegCP applied for comparative chromosome rearrangement studywith C. arims*; FISH with bulked oligo probe from cucumber chromosome CP7; novel centromeric stellite DNA hybridized on chromosomes'; GISH reveals cross species relationship*; infraspecific positional differences in 45S (remninal and interstital) -5S (terminal, subterminal and interstitial) rDNA signals*	CCDB ^{bs} , Plant DNA C-Values Database ^b , Kumar and Subramaniam (1987) ^s , Arumuganathan and Eale(1991) ^s , Maire and Brown (1993) ^s , Zhang (2005) ^{44as} , (2015) ^{4s} , Song and Kim (2008) ^{44m} , Han et al. (2009) ⁴⁴⁵ , (2015) ⁵ , Liu et al. (2010) ^{44a} , Hoshi et al. (2013) ^{44s} , (2013) ^{44s} , Seiawan et al. (2018) ^{4s} , (2023) ^{44s} , Seiawan et al. (2018) ^{4s} , (2020) ^{44s}
C. melo subsp. melo	12^{a}	24^{b}		Diploid; 455 (4) and 55 (2) rDNA signals ^c	Zhang et al. (2016) ^{ac}
<i>C. melo</i> subsp. <i>agrestis</i> Naudin, 1859	12ª	24 ^b		Diploid: 458 (4) and 58 (2) rDNA signals ^c	Zhang et al. (2016)≠€
C. melo vai. agrestis	12ª	24 ^b	12°	Diploid ⁴ ; 2C (Feulgen microdensitometry): 2.483pg ² ; 10m+2sm (haploid) ⁵ ; 1 pair satellited ⁸	Singh and Roy (1974) ^{bdg} , Yadava et al. (1984) ^{s-4} , Ramachandran and Narayan (1985) ^{bda} , Beevy and Kuriachan (1996) ^{be} , Rajkumari et al. (2015) ^{bdd}
C. melo var. conomon Thunberg, 1780		24^{a}		$Diploid^b$; $7m+3sm+2st$ (haploid) ^c	Zhang et al. (2005) ^a , Rajkumari et al. (2015) ^{a.b.c}
C. melo var. flexuosus Linnaeus, 1763		24^{a}		•	IPCN ^a
C. <i>melo</i> var. <i>inodorus</i>]acquin, 1832		24^{a}		Diploid ^b : 2C (flow cytometry): 0.64 pg ^c	Karimzadeh et al. (2010)* ^c
C. melo var. melo		24^{a}	12 ^b	Diploid'; 4m+8sm (haploid) ^d	Beevy and Kuriachan (1996) ^{ab} , Rajkumari et al. (2015) ^{bead}
<i>C. melo</i> var. <i>momordica</i> Roxburgh, 1832		24^{a}	12 ^b	Diploid'; 2C (Feulgen microdensitometry): 2.291 pg ⁴ ; 6m+5sm+1st (haploid)*	Yadava et al. (1984) ¹⁴ b, Ramachandran and Narayan (1985) ^{16,ed} , Rajkumari et al. (2015) ^{16,e}
C. melo var. muskmelon	1	24^{a}	$12^{\rm b}$		Yadava et al. $(1984)^{ab}$
C. melo var. utilissimus Roxburgh, 1832		24^{a}	12 ^b	Diploid'; 2C (Feulgen densitometry): 2.358 pg ^d	Yadava et al. (1984) ^{a,b} ; Ramachandran and Narayan (1985) ^{a.e.d}
C. membranifolius Hooker, 1871		48ª	$24^{\rm b}$		Yadava et al. (1984) ^{ab}

Updates on Cucurbitaceae Cytogenetics

Caraciae with expression maintee			000	Dlaider Conomo eira Cheomacomo facturas	Dafaman can
	(x	2n	-		
C. menlifer Naudin, 1859 (syn. C. menliferus)		24^{a}	12 ^b	Diploid'; 2C (Fedlgen microdensitometry): 2.391 pg4 metacentric, subnetacentric, subtelocentric chromosomes'; CSR: 0.9–2.0 µmf 4 satellites'; nucleolar and centromeric CMA-DAPI bands ⁴ ; 455 (2) and co-localized 455+58 (2) rDNA signals', satellite sequences' and telomeric DNA ^k hybridized on chromosomes, SegCP applied for comparative chromosome rearrangement (studywird, <i>canine</i> ; GISH reveals cons species relationships ^m	Yadava et al. (1984) ^{abc} , Ramachandran and Narayan (1985) ^{aog} , Ramachandran and Narayan (1990) ^{aog} , Hoshi et al. (2013) ^{aoclefa} , Lou et al. 2014), Yagi et al. (2014) ^{aoclefa} , Li et al. (2016) ^{aocl} Zhang et al. (2015) ^{aocl} , (2016) ^{aocl}
C. myriocarpus		24^{a}	12^{b}	Diploid ^e ; 45S (24/4 [°]) and co-localized 45S+5S (2) [°] rDNA signals ⁴	CCDB ^a ; Zhang et al. (2016) ^{abcdd} , Yagi et al. (2015) ^{ad}
C. myriocarpus subsp. <i>leptodermis</i> Schweickerdt, 1933	12ª	$24^{\rm b}$		Diploid': 4 satellited chromosomes ⁴ , 45S $(3^{\circ}, 2^{\circ})$ and ∞ -localized 45S+5S (2°) rDNA signals	Yagi et al. (2015)™s
C. myriocarpus var. myriocarpus	12ª	48 ^b		Terraploid'; 8 satellited chromosomes ⁴ ; 45S (4) and co-localized 45S+5S (4) rDNA signals ⁴	Yagi et al. (2015)*e
C. prophetarum Linnaeus, 1755		24^{a}	12 ^b	Diploid', 2C (Feulgen Microdensitometry): 1.656 pg ⁴ 5m+7sm (haploid) ^e	kamachandran and Narayan (1985) ^{a.cd} , Rajkumari et al. (2013) ^{3,b} , (2015) ^{3.cce}
C. prophetarum subsp. zeyheri Sonder, 1862		48ª			IPCN ^a
C. pubescens Willdenow, 1805		24^{a}	$12^{\rm b}$		IPCN ^a ; Beevy and Kuriachan (1996) ^b
C. pustulatus Hooker, 1871		48ª, 72 ^b	24°	Hexaploid", 45S (8) and co-localized 458+5S (2) rDNA signals"; FISH with bulked oligo probe from cucumber chromosome $C7^{j}$	Yadava et al. (1984) ^*c, Han et al. (2015) ^f , Zhang et al. (2016) bde
C. ritchiei Clarke, 1879		24^{a}		Diploid⁵, 8m+4sm (haploid)⁵	Rajkumari et al. (2015) ^{ab.c}
C. sagittatus Peyritsch, 1860		24^{a}	12 ^b	Diploid ^c , 2C (Feulgen microdensitometry):1.571pg ^d	àdava et al. (1984)ª ^{à,} Ramachandran and Narayan (1985)ª ^{ac,d}
C. satitus Linnaeus, 1753	т <u>а</u>	14 ^b	۲¢	 Diploid⁴, 2C (flow cyrometry): 1.03pg⁷ /1.77pg⁴; 12 metacentric and 2 sub-metacentric chromosomes⁶; CSR: 0.83-1.01µm⁴, chromosomal C-bands⁴; centromeric 455 (10) and distal 55 (2) rDNA signals; FISH with centromeric and telomeric⁴ and SSR probe reveals chromosome evolution⁴; high resolution molecular cyrogenetic map⁴⁵, SegCP applied for cross species chromosome from mosome rearrangement study⁴⁷; FISH with bulked oligo probe from cucumber chromosome C7 in comparison with 5 <i>Cucumis</i> species⁴⁵, GISH reveals cross species relationships⁶ 	Kumar and Subramaniam (1987) ^{4b} , Marie and Brown (1993) ^f , Beevy and Kuriachan (1996) ^{be} , Holshi et al.(2008) ^{bad} , Brow and Meister (2003) ^{bad} , Han et al (2011) ^{bad,m} , Liut et al. (2010) ^{by} , Waminal and Kim (2012) ^{bad,m} , Lou et al. (2014) (2013) ^{bad} , Sun et al. (2013) ^{bad} , Lou et al. (2014) ^{abd} , Han et al. (2015) ^{bad} , Lou et al. (2014) ^{abd} , Han et al. (2015) ^{bad} , Lou et al. (2014)
C. sativus var. Hokutosei	7ª	$14^{\rm b}$		Diploid ^e , 12 metacentric, 2 sub-metacentric chromosomes ^d ; centromeric and telomeric signals ^e	Zhang et al. (2012) ^{a-e}
C. satipus var. hardwickii Royle, 1835	7ª	14^{b}		Diploid ⁴ ; 2C (Feugen Microdensitometry): 1.798pg ⁴ ; 6m+1sm (haploid ¹); centromeric 45S (6) and intercalary 5S (2) rDNA signals ⁴ , centromeric, relomeric and SSR probe hybridization ^{8h} ; molecular cytogenetic map ¹	(2011) ^{becle} , Yang et al. (2012) ^{bb,} Rajkumari et al. (2011) ^{becle} , Yang et al. (2012) ^{bb,} Rajkumari et al. (2015) ^{becle} , Zhang et al. (2016) ^{abecl}
C. sativus var. Long green	7ª	14^{b}		Diploid ⁶ , 12 metacentric, 2 sub-metacentric chromosomes ⁴ ; centromeric and telomeric sequence signals ⁶	Zhang et al. (2012) ^{a-e}
C. sativus var. sativus (CSS)	7ª	$14^{\rm b}$		Diploids, centromeric 45S (10) and intercalary 5S (2) rDNA signals ⁴ ; centromeric and distal repetitive sequence probes5; molecular cyrogenetic map ⁶	Zhao et al. (2011) ^{be,} Yang et al. (2012) ^{bf,} Zhang et al. (2016) ^{ad}

Species with subspecies/ varieties		Chromosor	ne no.	Ploidy, Genome size, Chromosome features	References
	×	2n	a		
C. sativus cv. Winter Long		14^{a}	дp	Diploid; C- banding ⁴ , DAPI banding ⁴ , 45S (6) and 5 S (2) rDNA signals ⁴ , repetitive sequence based molecular karyotype in somatic and pachytene chromosomes ⁶	Koo et al. (2002) ^{af} , (2005) ^{abg}
<i>C. sattivus</i> var. <i>xisbuangbannesis</i> Qi et Yuan Zhenzhen, 1983	7ª	14^{b}		Diploid ⁴ , centromeric 45S (10) and intercalary 5S (2) rDNA signals ⁴ , centromeric and telomeric signals ^e	Zhao et al. (2011) ^{h.c.} , Zhang et al. (2016) ^{s.d}
C. setosus Cogniaux, 1881		24^{a}	$12^{\rm b}$	Diploid ^c , 4m+5sm+3st (haploid) ^d	Rajkumari et al. (2013) ^{a-c} , (2015) ^{a.c.d}
<i>C. silentvalleyii</i> Manilal et Sabu et Mathew, 1985		24ª	$12^{\rm b}$		Rajkumari et al. (2013) ^{ab}
C. trigenus Roxb.		24^{a}	$12^{\rm b}$		Rajkumari et al. (2013) ^{ab}
<i>C. zambianus</i> Widrl., J.H.Kirkbr., Ghebret. and K.R.Reitsma	12ª	$24^{\rm b}$		Diploid'; 45S (2) and co-localized 45S+5S (2) signals ⁴	Zhang et al. (2016) ^{ad}
<i>C. zeyberi</i> Sond.		24ª, 48 ^b		Diploid ⁵ , Allotetraploid ⁴ ; 2C (Feulgen densitometry): 1.682/2.846 pg ⁵ ; 4 satellites ⁸ ; 45S (2) II and co-localized 45S+5S (2) rDNA signals ⁴ ; FISH with bulked oligo probe from cucumber schromosome C7 ⁵ ; 24II ¹ , 11II+2I ¹	PCN ^{45,61,64,} Ramachandran and Narayan (1985) ⁴⁴ , Han et al. (2015) ¹ , Yagi et al. (2015) ^{4,6,6,6}
Cucumella cinerea (Cogn.) C.Jeffrey				2C (Feulgen Microdensitometry): 0.50pg²	Bennet et al. (1982) ^a
Mukia maderaspatana (L.) M.Roem. (syn. Cucumis maderaspatanas and Melothria maderaspatana)	12ª	$24^{\rm b}$	11°, 12 ^d	,	CCDB ¹⁶ , Rajkumari et al. (2015) ^{16d}
Oreosyce africana Hook.f. (syn. Cucumis subsericeus)	12ª	48 ^b		Tetraploid's co-localized 45S and 5S rDNA signals (2)'t HSH with bulked oligo probe from cucumber chromosome C7'	Han et al. $(2015)^{\circ}$, Zhang et al. $(2016)^{3 \circ d}$
#x: base number; 2n: zygotic number; n: tetravalent; CCDB: Chromosome Counts	gametio Datab	c number; N ase; supersci	OR: nucleo ipts corresp	blar organizing region; SAT: satellite chromosome; ScgCP: Single-copy gene-based chromosome paint ond to reference.	ing (Lou et al. 2014); I: univalent, II: bivalent, IV:

Updates on Cucurbitaceae Cytogenetics

Genera studied	Species studied	Chro	mosome n	о.	Ploidy, Genome size,	References
	•	x	2n	n	Chromosome features	
<i>Cayaponia</i> Silva Manso, 1836	C. laciniosa Linnaeus, 1753		24ª		-	Kumar and Subramaniam (1987)ª
Cucurbita		10ª, 12 ^b			-	Darlington and Janaki Ammal (1945) ^{a,b}
	C. andreana Naudin, 1896		40ª			CCDB ^a
	C. argyrosperma Huber, 1867 (syn. C. mixta Pangalo, 1930)		40ª		2C (flow cytometry): 0.748 pg ^b	Sisko et al. (2003) ^{a,b}
	C. cylindrata Bailey, 1943		40ª	20 ^b	-	CCDB ^{a,b}
	C. digitata Gray, 1853	10ª, 12 ^b	40°	20 ^d	-	Darlington and Janaki Ammal (1945) ^{a,b} , CCDB ^{e,d}
	<i>C. ecuadorensis</i> Cutler et Whitaker, 1969				2C: 0.72pg ^a	Plant DNA C Value databaseª
	<i>C. ficifolia</i> Bouché, 1837 (syn. <i>C. melanosperma</i> Gasparrini, 1847)		40ª		2C (flow cytometry): 0.933pg ^b	Plant DNA C- Values Database ^{a,b}
	C. foetidissima Kunth, 1817	10ª, 12 ^b	40°, 42 ^d		2C (flow cytometry): 0.686pg ^e	Darlington and Janaki Ammal (1945) ^{a,b} , Plant DNA C- Values Database ^{c,e} , CCDB ^{c,d}
	C. indica (unresolved)		40ª		-	IPCN ^a
	C. lundelliana Bailey, 1943			20ª	2C (flow cytometry): 0.72pg ^b	CCDBª, Plant DNA C Value database ^b
	C. maxima Duchesne, 1786	20ª	24 ^b , 40 ^c , 44 ^d , 48 ^e	20 ^f		Kumar and Subramaniam (1987) ^{a.c.d.e} , Beevy and Kuriachan (1996) ^f , CCDB ^{c.f}
	C. moschata Duchesne, 1786	10ª, 12 ^b	24 ^c , 40 ^d , 44 ^e ,48 ^f		Diploid ⁸ ; 2C (Feulgen microdensitometry): 0.90pg ^h ; 2C (flow cytometry): 0.708 ¹ / 0.97 ¹ pg; 36 metacentric and 4 sub-metacentric chromosomes ⁴ ; CSR: 1.05- 1.78μm ¹ , 45S (10) and 5S (4) rDNA signals ^m	CCDB ^f , Plant DNA C- Values Database ^{k,j} , Kumar and Subramaniam (1987) ^{3rf} , Barrow and Meister (2003) ¹ , Xu et al. (2007) ^{d,m} , Waminal et al. (2011) ^{g,d,k,l,m}
	C. okeechobeensis ssp. martinezii Bailey, 1943		40ª		2C (flow cytometry): 0.74pg ^b	Plant DNA C- Values Database ^{a,b}
	C. palmata Watson, 1876	10ª, 12 ^b	40°, 42 ^d	20°	-	Kumar and Subramaniam (1987) ^{a,b} , CCDB ^{c,d,e}
	C. pedatifolia Bailey, 1943		40ª		-	CCDB ^a
	<i>C. pepo</i> Linnaeus, 1753	10ª, 12 ^b	22°, 24 ^d , 28°, 40 ^f , 42 ^g , 44 ^h , 46 ⁱ , 80 ^j	20 ^k	2C (flow cytometry): 0.74pgl; 0.864 ^m ; 1.109 pg-1.064 pg ⁿ ; 1.18pg ^o ; 45S (10) and 5S (4) rDNA signals ^p	Kumar and Subramaniam (1987) ^{2-j} , CCDB ^{Ek} , Marie and Brown (1993) ¹ , Barow and Meister (2003) ^o , Rayburn (2008) ⁿ , Plant DNA C- Values Database ^m , Xie et al. (2019) ^{1,6} ⁿ
Sicana Naudin, 1862	S. odorifera Vellozo, 1831		40ª	20 ^b	-	IPCN ^{a,b}

Table 8. Cytogenetic information in Cucurbiteae #.

x: base number; 2n: zygotic number; n: gametic number; CCDB: Chromosome Counts Database; superscripts correspond to references.

terstitial telomeric repeats which were suggested to be the result of chromosome fusion from ancestral genome. The co-localization of 45S and 5S rDNA loci in *A. tenerum* and *Thladiantha dubia* Bunge, 1833, have been thought to imply regional synteny and shared ancestral traits (Xie et al. 2019b). In the tribe Cucurbiteae, detailed karyotype analysis is known only in *Cucurbita moschata* Duchesne, 1786 and *C. pepo* Linnaeus, 1753, showing conserved 45S and 5S rDNA signals (non-co-localized) in independent analyses (Table 8).

Karyotypes and chromosome sizes are reported in ten species of Momordiceae (Table 3). Interspecific differences have been observed and found to correlate with phylogenetic

relationship within *Momordica* (Ghosh et al. 2021). Infraspecific delimitation of Indian *M. charantia* varieties was based on fluorochrome banding pattern and genome size divergence (Table 3), corresponding to infraspecific distinction reported in the Japanese bitter gourd cultivars (Kido et al. 2016). FISH in three *Momordica* species revealed 45S and 5S rDNA sites to be localised on different chromosomes (Table 3). In context of the genome sequence of bitter gourds (Matsumura et al. 2020), further scopes for cytogenetic and genomic investigation remain open.

Karyotype and chromosome size is reported in eight 8 species of Sicyoeae (Table 5). Fluorochrome banding pattern has facilitated comparative analysis in Luffa species occurring in India (Tables 1, 5) (Bhowmick and Jha 2015a, 2021). The cultivated ridged gourd (L. acutangula Linnaeus, 1753) showed three CMA⁺ satellite bearing pairs (Fig. 1A– C, J) as in the wild L. echinata Roxburgh, 1814 (Fig. 1G-I, L), while the sponge gourd (L. aegyptiaca Miller, 1768 has two satellited pairs (Fig. 1D-F, K). Luffa acutangula and L. echinata also showed up distal DAPI bands (Fig. 1J, L), absent in L. aegyptiaca (Fig. 1K). Trichosanthes species (2n = 22) have inter-specific differences (Fig. 2) as well as infraspecific distinction (*T. cucumerina* Linnaeus, 1753) in fluorochrome banding pattern (Tables 1, 5, Fig. 2A–H). The male and female plants of *T. dioica* show similar chromosome number, morphology and genome size but show differences in fluorochrome banding pattern (Fig. 2I-P, Table 5). The 11th, 12th and 13th pairs (CMA+) are marker chromosomes in Luffa (Fig. 1, Table 1) while the 10th and 11th pairs are conserved CMA+ satellited pairs in Trichosanthes (Fig. 2, Table 1). Eight species of Sicyoeae have been subjected to FISH (Table 5). The polyploid and diploid species have differences in the number of rDNA loci, showing separate localization of the 45S and 5S rDNA signals except Sicyos angulatus Linnaeus, 1753 and Trichosanthes kirilowii Maximowicz, 1859 (Table 5).

Benincaseae generally reveal two distal 45S rDNA loci of which at least one locus is either adjacent to 5S rDNA locus (Table 6) or co-localized in the same chromosome as in most of the *Cucumis* species (Table 7). Exceptionally, a wild species of *Benincasa* (*B. fistulosa* Stocks, 1851) has non-adjacent 45S and 5S signals (Li et al. 2016). GC rich satellites were observed in the 12th pair of chromosomes showing CMA⁺ bands in cultivated Indian ashgourd (*B. hispida*) (Fig. 3 A–C, J, Tables 1, 6). *Lagenaria siceraria* Molina, 1782 and *Cucumis melo* Linnaeus, 1753 are the other two genera having similarity in rDNA hybridization profile, agreeing with phylogenetic affinity (Li et al. 2016).

Citrullus colocynthis Linnaeus, 1753 and *C. lanatus* Thunberg, 1794 may share a common ancestor both having two 45S rDNA loci and one 5S locus. Loss of one 45S rDNA locus has given way to *C. rehmii* De Winter, 1990 while gain of one 5S rDNA locus has been proposed to lead to *C. ecirrhosus* Cogniaux, 1888 and *C. lanatus* var. *citroides* Bailey, 1930 (presently *C. amarus* Schrader, 1836) (Reddy et al. 2013; Li et al. 2016). GISH using *C. lanatus* var. *citroides* genome has revealed divergence from *C. lanatus* var. *lanatus* (Reddy et al. 2013).

The genus *Cucumis* is the largest in Benincaseae with 65 species of which 39 have been studied (Table 7). Among the *Cucumis* species with x = 12, co-localization rDNA loci (45S and 5S rDNA) have been documented in 14 species, including *C. melo* (Table 7). However, the number of 45S sites is generally four, which may be six or eight in some

cases (Table 7). rDNA hybridization data strongly corroborated with the 'fusion' theory for derivation of x = 7 (C. sativus) from x = 12 (C. melo) (Waminal and Kim 2012) which is substantiated by genomic studies (Li et al. 2011). There are ten pericentromeric/ centromeric 45S and two distal 5S rDNA sites in C. sativus while six 45S rDNA sites were reported in C. sativus var. hardwickii Royle, 1835 (Koo et al. 2005; Zhang et al. 2012). Comparative chromosome painting (Lou et al. 2014) and GISH (Zhang et al. 2015) proved high colinearity between cucumber and melon. Based on chloroplast and nuclear DNA (ITS) phylogeny, C. melo (melon) has been found to be sister to a clade comprising C. sativus and related genera (Dicaelospermum Clarke, 1879 and Mukia Arnott, 1840) (Renner et al. 2007). rDNA site co-localization was found to coincide with geographical origin of 12 *Cucumis* species (Zhang et al. 2016). The chromosomal affinity between C. metuliferus Schrader, 1838, C. anguira Linnaeus, 1753, C. zeyheri Sonder, 1862, C. myriocarpus Naudin, 1859 and polyploid C. heptadactylis Naudin, 1859 (dioecious) (Yagi et al. 2015) can be substantiated by their phylogenetic proximity based on chloroplast and nuclear DNA (ITS) sequences (Renner et al. 2007). rDNA distribution of C. metuliferus was also the reason to consider proximity with Citrullus naudinianus Sonder, 1862, (previously Acanthosicyos naudinianus Sonder, 1862) (Reddy et al. 2013). Infraspecific differences were documented in *Cucumis melo* on the basis of 45S-5S rDNA signals (linked or separated) which also possessed unique centromeric satellites (Setiawan et al. 2018, 2020). Moreover, chromosome painting method elucidated chromosomal rearrangement in some Cucumis species (Lou et al. 2014; Li et al. 2018).

The dramatic evolution of Y chromosome was validated in karyotypes (Fig. 3 D–I, K–L) of *Coccinia grandis* (Table 6). The 45S rDNA sites enabled confirmation of NORs in the 8th and 12th pair containing distal GC rich CMA⁺ signals in *C. grandis* (Fig. 3 D–I, K–L, Tables 1, 6). 45S and 5S rDNA hybridization pattern was similar in three other *Coccinia* species and *Diplocyclos palmatus* Linnaeus, 1753 (Table 6). The three closely related dioecious species of *Coccinia* accumulated Y chromosome repeats and displayed sex chromosome turnover (Sousa et al. 2017). Strong centromeric CMA bands (Fig. 3 D–I, K–L, Table 1) were observed in *C. grandis* except Y chromosome (Fig. 3 I, L), presenting a possibility that *CgCent* (CL1) is a feature of centromeres of dioecious *Coccinia* species (Sousa et al. 2017). In addition, non-nucleolar CMA⁺ heterochromatin might be associated with sexual differentiation of autosomes in dioecious *C. grandis* (Fig. 3) which is also a marker in *Trichosanthes dioica* (Fig. 2, Table 1), opening good scope for further study.

Distinct 45S rDNA sites are higher in number than 5S rDNA sites in Cucurbitaceae (Fig. 4) (Waminal and Kim 2012). The distal 45S rDNA loci are conserved genomic landmarks (Fig. 4) while 5S rDNA loci are relatively diverse (Fig. 4). Based on the literature reports, some NORs (Type I) included chromosomes showing noncolocalized 45S and 5S rDNA sites in seven species of Benincaseae, one species each from Cucurbiteae and Momordiceae and two species of Sicyoeae. The rearrangement of 45S rDNA site in *Cucumis sativus*, probes for chromosome number reduction which may be a consequence of diploidization. The second type (Type II) shows colocalised 45S and 5S rDNA loci, either adjacent or distant, but always on the same chromosome and found in one species each of Benincaseae, Sicyoeae and Actinostemmateae. The third type (Type III) was characterized by chromosomes with non-colocalized and

Figure 4. Types of chromosomes bearing the NORs as per available reports of rDNA hybridization in Cucurbitaceae. Type I: Chromosomes with only non-colocalised 45S and 5S rDNA sites, Type II: Chromosomes with colocalised 45S and 5S rDNA sites, Type III: Chromosomes with both non- colocalised and colocalised 45S and 5S rDNA sites. See text for explanation.

colocalised 45S and 5S rDNA loci, as in 14 species of Benincaseae and one species each of Sicyoeae and Thladiantheae. The rDNA sites of majority of *Cucumis* species were of non-adjacent type. Hence, type III NORs in majority of Benincaseae genera advocates conservation of the marker chromosomes having distal NOR (45S rDNA). *Gynostemma pentaphyllum* and some polyploid *Cucumis* reveal rDNA loci reduction after polyploidization (Zhang et al. 2016; Pellerin et al. 2018).

Correlation between parameters

Chromsome numbers in Cucurbitaceae range from x = 5 to x = 16. The most prevalent number x = 12 (Fig. 5) is considered ancestral (Xie et al. 2019b), followed by x = 11, 13, 14 and 10 (Fig. 5). The present regression analyses for 41 taxa (including 16 Indian taxa) (Table 9) revealed significant linear correlation between 2n and HCL, between ploidy and genome size and between ploidy and HCL (Fig. 6). Therefore, an increase in ploidy/ 2n number is linked with increase in HCL. There was no significant correlation between 2C genome size and chromosome numbers. Cytogenetic parameters may not reflect residual evidence of CCT in Cucurbitraceae at present, as reasoned by Alix et al. (2017).

Figure 5. The types of different base numbers (x, based on published reports) or possible base numbers (x/n, based on reported haploid counts) in Cucurbitaceae. The numbers in brackets beside names of genera signify the number of species whose chromosome counts are reported. The % of genera and species with a particular chromosome number, is indicated at the end arrow (out of a total of 44 genera and 188 species with chromosome counts)

Species	2n Chromosome no.	Ploidy	2C genome size (pg)	MCL (µm)	HCL (um)	References
Gynostemma pentaphyllum	66	6	3.62		3 /	Zhang et al. (2013), Pellerin et al. (2018)
Zanonia indica	30	2		1.47	22.12	Lekhak et al. (2018)
Momordica balsamina	22	2		1.30	14.3#	Bharathi et al. (2011)
Momordica charantia var.	22	2	0.72	1.97	21.77	Ghosh et al. (2018)
charantia						
Momordica charantia var. muricata	22	2	1.16	2.19	24.19	Ghosh et al. (2018)
Momordica cochinchinensis	28	2	2.64	2.27	31.86	Ghosh et al. (2021)
Momordica cymbalaria	18	2	3.74	3.75	33.79	Ghosh et al. (2021)
Momordica dioica	56	4	3.36	2.75	77.1	Ghosh et al. (2021)
Momordica sahyadrica	28	2		1.34	18.76	Bharathi et al. (2011)
Momordica subangulata	56	4	3.06	2.15	60.3	Ghosh et al. (2021)
Luffa acutangula	26	2		2.20	28.63	this study
Luffa cylindrica	26	2	1.56	2.98	38.77	Bhowmick and Jha (2015a),
I uffa echinata	26	2		3.17	41.26	this study
Trichosanthes cucumerina	20	2		3.47	37 855	Bhowmick and Iba (2019)
	22	2		5.47	37.055	this study
Trichosanthes cucumerina subsp.	22	2		3.43	37.74	Bhowmick and Jha (2019),
	22	2	2.27	2.71	40.93	This study
Tricnosantnes atotca Iviale	22	2	2.2/	5./1	40.82	this study
Trichosanthes dioica Female	22	2	2.32	3.71	40.82	Bhowmick and Jha (2015a), this study
Benincasa hispida	24	2	1.97	3.17	38.08	Bhowmick and Jha (2015a), this study
Citrullus lanatus	22	2		1.33#	14.67	Waminal et al. (2011)
Coccinia grandis male	24	2	0.92	1.80	20.32	Bhowmick et al. (2012, 2016), this study
Coccinia grandis female	24	2	0.73	1.86	19.85	Bhowmick et al. (2012, 2016), this study
Coccinia hirtella	24	2	0.988			Sousa et al. (2017)
Coccinia sessilifolia Male	24	2	0.984			Sousa et al. (2017)
Coccinia sessilifolia Female	24	2	0.998			Sousa et al. (2017)
Coccinia trilohata	20	2	1 263			Sousa et al. (2017)
Lagenaria siceraria	20	2	0 734	1 79	20.06	Achigan-Dako et al. (2008)
Cucumis africanus	24	2	00,01	2.08	25.045	Yagi et al. (2015)
Cucumis anduria var anduria	24	2		2.13	25.6	Vagi et al. (2015)
Cucumis anguria var longaculeatus	24	2		2.10	25 195	Yagi et al. (2015)
Cucumis heptadactulus	48	4		2.10	50 225	Vagi et al. (2015)
Cucumis mela	24	2	1.05	1.50	17.8#	Marie and Brown (1993)
		-			-,	Hoshi et al. (2013)
Cucumis melo var. inodorus	24	2	0.64			Karimzadeh et al. (2010)
Cucumis myriocarpus var. leptodermis	24	2		1.93	23.19	Yagi et al. (2015)
<i>Cucumis myriocarpus</i> var.	48	4		2.25	53.985	Yagi et al. (2015)
myriocarpus	24	2		2.20	2750	V (2015)
Cucumis zeyneri	24	2	1.02 1.77##	2.50	2/.30	Parrow and Maister (2003)
Cucumis sativus	14	2	1.03, 1.//##	2.0/#	14.50	Marie and Brown (1993), Warnial and Kim (2012)
Cucurbita argyrosperma	40		0.748			Roy et al. (1991), Sisko et al. (2003)
Cucurbita ecuadorensis	40		0.933			Sisko et al. (2003)
Cucurbita foetidissima	40		0.686			Sisko et al. (2003)
Cucurbita moschata	40	2	0.708, 0.97##	1.26#	25.19	Sisko et al. (2003), Barrow and Meister (2003), Waminal et
Cucurbita okeechobeensis ssp. martinezii	40		0.74			al. (2011) Sisko et al. (2003)

Table 9. Data on fundamental cytogenetic parameters utilized for statistical analysis.

calculated from chromosome measurements reported in publications, ## different entries for same taxa were taken from different reports

Figure 6. Scatter plots of 2n chromosome number and ploidy level (predictor variables) versus 2C genome size, MCL (mean chromosome length) and HCL (total length of haploid chromosome set) in Cucurbitace-ae taxa. Symbols below plots depict regression analysis parameters; square: adjusted R square, circle: stand-ard error of the estimate, triangle: Pearson Correlation, star: 2-tailed significance of Pearson Correlation. Regular lines indicate significant linear regression and dotted lines indicate not significant linear regress

Future directions

Chromosome number and genome size information in the basal clades (understudied tribes) should be given attention to infer ancient base numbers. The parameters of fundamental and molecular cytogenetics are inevitable for genomic interpretation (Weiss-Schneeweiss and Schneeweiss 2013; Deakin et al. 2019) and hence relevant to spot genetic resources and relationships with wild relatives. The current review is not exhaustive but supersedes the scopes of general web resources and brings an offline resource exclusive for Cucurbitaceae.

Acknowledgements

SJ is thankful to the National Academy of Sciences (NASI, Allahabad, India) for the NASI Senior Scientist Fellowship award. BKB gratefully acknowledges Principal, Scottish Church College, India for continuous support and encouragement in research activities.

References

- Achigan-Dako EG, Fuchs J, Ahanchede A, Blattner FR (2008) Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Systematics and Evolution 276: e9. https://doi.org/10.1007/ s00606-008-0075-2
- Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany 120: 183–194. https://doi.org/10.1093/aob/mcx079
- Anmin L, Luqi H, Shukun C, Jeffrey C (2011) Flora of China 19. http://www.efloras.org/ flora_page.aspx?flora_id=2
- Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208–218. https://doi.org/10.1007/BF02672069
- Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant, Cell & Environment 26: 571–584. https:// doi.org/10.1046/j.1365-3040.2003.00988.x
- Beevy SS, Kuriachan PH (1996) Chromosome numbers of south Indian Cucurbitaceae and a note on the cytological evolution in the family. Journal of Cytology and Genetics 31: 65–71.
- Bellot S, Mitchell TC, Schaefer H (2020) Phylogenetic informativeness analyses to clarify past diversification processes in Cucurbitaceae. Scientific Reports 10: 1–13. https://doi. org/10.1038/s41598-019-57249-2
- Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Proceedings of the Royal Society of London – Series B, Biological Sciences 216: 179–199. https://doi.org/10.1098/rspb.1982.0069
- Bharathi LK, Munshi AD, Vinod SC, Behera TK, Das AB, John KJ, Vishalnath (2011) Cytotaxonomical analysis of *Momordica* L. (Cucurbitaceae) species of Indian occurrence. Journal of Genetics 90: 21–30. https://doi.org/10.1007/s12041-011-0026-5
- Bhowmick BK, Jha S (2015a) Differential heterochromatin distribution, flow cytometric genome size and meiotic behavior of chromosomes in three Cucurbitaceae species. Scientia Horticulturae 193: 322–329. https://doi.org/10.1016/j.scienta.2015.07.006
- Bhowmick BK, Jha S (2015b) Dynamics of sex expression and chromosome diversity in Cucurbitaceae: A story in the making. Journal of Genetics 94: 793–808. https://doi.org/10.1007/ s12041-015-0562-5
- Bhowmick BK, Jha S (2019) Differences in karyotype and fluorochrome banding patterns among variations of *Trichosanthes cucumerina* with different fruit size. Cytologia 84: 237– 245. https://doi.org/10.1508/cytologia.84.237

- Bhowmick BK, Jha S (2021) A comparative account of fluorescent banding pattern in the karyotypes of two Indian *Luffa* species. Cytologia 86: 35–39. https://doi.org/10.1508/ cytologia.86.35
- Bhowmick BK, Jha TB, Jha S (2012) Chromosome analysis in the dioecious cucurbit *Coccinia* grandis (L.) Voigt. Chromosome Science 15: 9–15.
- Bhowmick BK, Yamamoto M, Jha S (2016) Chromosomal localization of 45S rDNA, sex specific C values and heterochromatin distribution in *Coccinia grandis* (L.) Voigt. Protoplasma 253: 201–209. https://doi.org/10.1007/s00709-015-0797-2
- Chomicki G, Schaefer H, Renner SS (2020) Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytologist 226: 1240–1255. https://doi.org/10.1111/nph.16015
- Darlington CD, Janaki Ammal EK (1945) Chromosome atlas of cultivated plants. George Allen and Unwin LTD, London.
- De Donato M, Cequea H (1994) A cytogenetic study of six cultivars of the chayote, *Sechium edule* Sw. (Cucurbitaceae). Journal of Heredity 85: 238–241. https://doi.org/10.1093/oxfordjournals.jhered.a111444
- Deakin JE, Potter S, O'Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MD, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes 10: e627. https://doi.org/10.3390/genes10080627
- Ghosh I, Bhowmick BK, Jha S (2018) Cytogenetics of two Indian varieties of *Momordica charantia* L. (bittergourd). Scientia Horticulturae 240: 333–343. https://doi.org/10.1016/j. scienta.2018.06.027
- Ghosh I, Saha PS, Bhowmick BK, Jha S (2021) A phylogenetic analysis of *Momordica* (Cucurbitaceae) in India based on karyo-morphology, nuclear DNA content and rDNA ITS1–5.8S– ITS2 sequences. Protoplasma 258: 347–60. https://doi.org/10.1007/s00709-020-01576-z
- Goldblatt P, Lowry PP (2011) The Index to Plant Chromosome Numbers (IPCN): three decades of publication by the Missouri Botanical Garden come to an end. Annals of the Missouri Botanical Garden 98: 226–227. https://doi.org/10.3417/2011027
- Guo J, Xu W, Hu Y, Huang J, Zhao Y, Zhang L, Huang CH, Ma H (2020) Phylotranscriptomics in cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Molecular Plant 13: 1117–1133. https://doi.org/10.1016/j. molp.2020.05.011
- Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics: 200(3): 771–779. https://doi. org/10.1534/genetics.115.177642
- Han Y, Zhang Z, Huang S, Jin W (2011) An integrated molecular cytogenetic map of *Cucumis sativus* L. chromosome 2. BMC Genetics 12: e18. https://doi.org/10.1186/1471-2156-12-18
- Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proceedings of the National Academy of Sciences 106: 14937–14941. https://doi. org/10.1073/pnas.0904833106
- Hoshi Y, Kido M, Yagi K, Tagashira N, Morikawa A, Nagano K (2013) Somatic chromosome differentiation in *Cucumis melo* L. and *C. metuliferus* E. Mey. ex Naudin. Chromosome Botany 8: 7–12. https://doi.org/10.3199/iscb.8.7

- Hoshi Y, Mori M, Matoba H, Tagashira N, Murata T, Plader W, Malepszy S (2008) Chromosomal polymorphism of two pickling cucumbers (*Cucumis sativus* L.) revealed by fluorescent staining with CMA and DAPI. Cytologia 73: 41–48. https://doi.org/10.1508/cytologia.73.41
- Jha (2021) Karyotype diversity in cultivated and wild Indian rice through EMA-based chromosome analysis. Journal of Genetics 100: 1–15. https://doi.org/10.1007/s12041-021-01332-z
- Karimzadeh G, Mousavi SH, Jafarkhani-Kermani M, Jalali-Javaran M (2010) Karyological and nuclear DNA variation in Iranian endemic muskmelon (*Cucumis melo* var. *inodorus*). Cytologia 75: 451–461. https://doi.org/10.1017/S147926211400077X
- Kausar N, Yousaf Z, Younas A, Ahmed HS, Rasheed M, Arif A, Rehman HA (2015) Karyological analysis of bitter gourd (*Momordica charantia* L., Cucurbitaceae) from Southeast Asian countries. Plant Genetic Resources 13: 180–182. https://doi.org/10.1017/ S147926211400077X
- Kido M, Morikawa A, Saetiew K, Hoshi Y (2016) A cytogenetic study of three Japanese cultivars of *Momordica charantia* L. Cytologia 81:7–12. https://doi.org/10.1508/cytologia.81.7
- Koo DH, Hur Y, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (*Cucumis sativus* L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Molecules and Cells 13: 413–418.
- Koo DH, Choi HW, Cho J, Hur Y, Bang JW (2005) A high-resolution karyotype of cucumber (*Cucumis sativus* L. 'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48: 534–540. https://doi.org/10.1139/g04-128
- Kumar V, Subramaniam B (1987) Chromosome atlas of flowering plants of the Indian subcontinent. Vol 1 and 2. Botanical Survey of India.
- Lekhak MM, Yadav PB, Attar UA, Rajput KS, Ghane SG (2018) Cytopalynological studies in Zanonia indica (Cucurbitaceae), a monotypic genus. The Nucleus 61: 105–109. https:// doi.org/10.1007/s13237-018-0234-y
- Li D, H Cuevas E, Yang L, Li Y, Garcia-Mas J, Zalapa J, J Staub E, Luan F, Reddy U, He X, Gong Z, Weng Y (2011) Syntenic relationships between cucumber (*Cucumis sativus* L.) and melon (*C. melo* L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12: e396. https://doi.org/10.1186/1471-2164-12-396
- Li K, Wang H, Wang J, Sun J, Li Z, Han Y (2016) Divergence between C. melo and african Cucumis species identified by chromosome painting and rDNA distribution pattern. Cytogenetic and Genome Research 150: 150–155. https://doi.org/10.1159/000453520
- Li Q, Ma L, Huang J, Li LJ (2007) Chromosomal localization of ribosomal DNA Sites and karyotype analysis in three species of Cucurbitaceae. Journal-Wuhan University Natural Sciences Edition 53: e449.
- Li Z, Bi Y, Wang X, Wang Y, Yang S, Zhang Z, Chen J, Lou Q (2018) Chromosome identification in *Cucumis anguria* revealed by cross-species single-copy gene FISH. Genome 61: 397–404. https://doi.org/10.1139/gen-2017-0235
- Liu C, Liu J, Li H, Zhang Z, Han Y, Huang S, Jin W (2010) Karyotyping in melon (*Cucumis melo* L.) by cross-species fosmid fluorescence *in situ* hybridization. Cytogenetic and Genome Research 129: 241–249. https://doi.org/10.1159/000314343
- Lombello RA, Pinto-Maglio CAF (2007) Cytomolecular Studies in *Momordica charantia* L. (Cucurbitaceae), a potential medicinal plant. Cytologia 72: 415–418. https://doi. org/10.1508/cytologia.72.415

- Lou Q, Zhang Y, He Y, Li J, Jia L, Cheng C, Guan W, Yang S, Chen J (2014) Single-copy genebased chromosome painting in cucumber and its application for chromosome rearrangement analysis in *Cucumis*. The Plant Journal 78: 169–179. https://doi.org/10.1111/tpj.12453
- Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In: Greilhuber J, Dolezel J, Wendel JF (Eds) Plant genome diversity volume 2: Physical structure, behaviour and evolution of plant genomes. Springer, Vienna, 137–147. https://doi.org/10.1007/978-3-7091-1160-4_9
- Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41–51. https://doi.org/10.1016/0248-4900(93)90113-S
- Matsumura H, Hsiao MC, Lin YP, Toyoda A, Taniai N, Tarora K, Lee CR (2020) Long-read bitter gourd (*Momordica charantia*) genome and the genomic architecture of nonclassic domestication. Proceedings of the National Academy of Sciences 117: 14543–14551. https:// doi.org/10.1073/pnas.1921016117
- Mota L, Torices R, Loureiro J (2016) The evolution of haploid chromosome numbers in the sunflower family. Genome Biology and Evolution 8: 3516–3528. https://doi.org/10.1093/ gbe/evw251
- Pellerin RJ, Waminal NE, Kim HH (2018) Triple-color FISH karyotype analysis of four korean wild Cucurbitaceae species. Horticultural Science and Technology 36: 98–107. https://doi. org/10.12972/kjhst.20180011
- Pellicer J, Leitch IJ (2020) The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301–305. https://doi.org/10.1111/nph.16261
- Rajkumari K, Joseph John K, Yadav SR, Bhat KV, Rao SR (2013) Comparative male meiotic studies in some Indian representative species of *Cucumis* L. (Cucurbitaceae) Caryologia 66: 313–320. https://doi.org/10.1080/00087114.2013.854613
- Rajkumari K, Joseph John K., Yadav SR, Bhat K V, Shamurailatpam A, Rao SR (2015) Cytogenetical treatise of Indian representative species of *Cucumis*. A karyotypic approach. Cytology and Genetics 49: 388–396. https://doi.org/10.3103/S0095452715060079
- Rayburn AL, Kushad MM, Wannarat W (2008) Intraspecific genome size variation in pumpkin (*Cucurbita pepo* subsp. *pepo*). Horticultural Science 43: 949–951. https://doi. org/10.21273/HORTSCI.43.3.949
- Ramachandran C, Narayan RKJ (1985) Chromosomal DNA variation in *Cucumis*. Theoretical and Applied Genetics 69: 497–502. https://doi.org/10.1007/BF00251092
- Ramachandran C, Narayan RKJ (1990) Satellite DNA specific to knob heterochromatin in *Cucumis metuliferus* (Cucurbitaceae). Genetica 80: 129–138. https://doi.org/10.1007/ BF00127133
- Reddy UK, Aryal N, Islam-Faridi N, Tomason YR, Levi A, Nimmakayala P (2013) Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genetic Resources and Crop Evolution 60: 2091–2100. https://doi. org/10.1007/s10722-013-9976-1
- Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PloS ONE 7: e1. https://doi.org/10.1371/journal.pone.0029453

- Renner SS, Schaefer H (2017) Phylogeny and evolution of the Cucurbitaceae. In: Grumet R, Katzir N, Garcia-Mas J (Eds) Genetics and genomics of Cucurbitaceae. Springer, Cham, 13–23. https://doi.org/10.1007/7397_2016_14
- Renner SS., Schaefer H, Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (*C. sativus*) belongs in an Asian/Australian clade far from melon (*C. melo*). BMC Evolutionary Biology 7: 1–11. https://doi.org/10.1186/1471-2148-7-1
- Renner SS, Sousa A, Chomicki G (2017) Chromosome numbers, Sudanese wild forms, and classification of the watermelon genus *Citrullus*, with 50 names allocated to seven biological species. Taxon 66: 1393–1405. https://doi.org/10.12705/666.7
- Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The Chromosome Counts Database (CCDB)–a community resource of plant chromosome numbers. New Phytologist 206: 19–26. https://doi.org/10.1111/nph.13191
- Roy RP, Saran S, Dutt B (1991) Cytogenetics of the Cucurbitaceae. In: Tsuchiya T, Gupta PK (Eds) Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier Science Publishers BV, Amsterdam, The Netherlands, 181–200. https://doi.org/10.1016/ B978-0-444-88260-8.50015-X
- Samuel R, Balasubramaniam S, Morawetz W (1995) The karyology of some cultivated Cucurbitaceae of Srilanka. Ceylon Journal of Science (Biological Sciences) 24: 17–22.
- Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T (2018) Cytogenetic variation among Cucumis accessions revealed by fluorescence in situ hybridization using ribosomal RNA genes as the probes. Chromosome Science 21: 67–73.
- Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T (2020) Centromeres of *Cucumis melo* L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189. PloS ONE 15(1): e0227578. https://doi.org/10.1371/journal.pone.0227578
- Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytologist 161: 173–191. https://doi.org/10.1046/j.1469-8137.2003.00948.x
- Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then and now: Stebbins revisited. American Journal of Botany 101: 1057–1078. https://doi.org/10.3732/ ajb.1400178
- Song K, Kim HH (2008) Chromosome compositions of four cultivated Cucurbitaceae species. Journal of Life Sciences 18: 1019–1022. https://doi.org/10.5352/JLS.2008.18.7.1019
- Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of *Coccinia grandis*: A ca. 3 myr-old species of Cucurbitaceae with the largest Y/Autosome divergence in flowering plants. Cytogenetic and Genome Research 139: 107–118. https://doi.org/10.1159/000345370
- Sousa A, Fuchs J, Renner SS (2017) Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in *Coccinia* (Cucurbitaceae) points to sex chromosome turnover. Chromosome Research 25: 191–200 https://doi.org/10.1007/s10577-017-9555-y
- Soza VL, Haworth KL, Di Stilio VS (2013) Timing and consequences of recurrent polyploidy in meadow-rues (*Thalictrum*, Ranunculaceae). Molecular Biology and Evolution 30: 1940–1954. https://doi.org/10.1093/molbev/mst101
- Ting Y, Ya W, Su-qin Z, Guang-dong GENG (2019) Chromosomal karyotype analysis of *Sechium edule* Swartz. Hubei Agricultural Sciences 58: 215.

- Uguru MI, Onovo JC (2011) Evidence of polyploidy in fluted pumpkin (*Telfairia occidentalis* Hook F.). African Journal of Plant Science 5: 287–290.
- Viruel J, Kantar MB, Gargiulo R, Hesketh-Prichard P, Leong N, Cockel C, Forest F, Gravendeel B, Pérez-Barrales R, Leitch IJ, Wilkin P (2021) Crop wild phylorelatives (CWPs): Phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Botanical Journal of the Linnean Society 195: 1–33. https://doi.org/10.1093/botlinnean/boaa064
- Volz SM, Renner SS (2008) Hybridization, polyploidy and evolutionary transitions between monoecy and dioecy in *Bryonia* (Cucurbitaceae). American Journal of Botany 95: 1297– 1306. https://doi.org/10.3732/ajb.0800187
- Wang J, Sun P, Li Y, Liu Y, Yang N, Yu J, Ma X, Sun S, Xia R, Liu X, Ge D, Luo S, Liu Y, Kong Y, Cui X, Lei T, Wang L, Wang Z, Ge W, Zhang L, Song X, Yuan M, Guo D, Jin D, Chen W, Pan Y, Liu T, Yang G, Xiao Y, Sun J, Zhang C, Li Z, Xu H, Duan X, Shen S, Zhang Z, Huang S, Wang X (2018) An overlooked paleotetraploidization in Cucurbitaceae. Molecular Biology and Evolution 35: 16–26. https://doi.org/10.1093/molbev/msx242
- Waminal NE, Kim HH (2012) Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species. Horticulture, Environment, and Biotechnology 53: 49–56 .https://doi.org/10.1007/s13580-012-0105-4
- Waminal NE, Kim HH (2015) FISH karyotype analysis of four wild cucurbitaceae species using 5S and 45S rDNA probes and the emergence of new polyploids in *Trichosanthes* kirilowii Maxim. Korean Journal of Horticultural Science and Technology 33: 869–876. https://doi.org/10.7235/hort.2015.15101
- Waminal NE, Kim NS, Kim HH (2011) Dual-color FISH karyotype analyses using rDNAs in three Cucurbitaceae species. Genes and Genomics 33: 521–528. https://doi.org/10.1007/ s13258-011-0046-9
- Winterfeld G, Ley A, Hoffmann MH, Paule J, Röser M (2020) Dysploidy and polyploidy trigger strong variation of chromosome numbers in the prayer-plant family (Marantaceae). Plant Systematics and Evolution 306: 1–7. https://doi.org/10.1007/s00606-020-01663-x
- Whitaker TW (1950) Polyploidy in *Echinocystis*. Madrono 10: 209-10.
- Xie W, Huang J, Ma X (2019a) Localization of 45S and 5S rDNA sequences on chromosomes of 20 species of Cucurbitaceous plants. Journal of South China Agricultural University 40: 74–81.
- Xie D, Xu Y, Wang J, Liu W, Zhou Q, Luo S, Huang W, He X, Li Q, Peng Q, Yang X, Yuan J, Yu J, Wang X, Lucas WJ, Huang S, Jiang B, Zhang Z (2019b) The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications 10: 1–12. https://doi.org/10.1038/s41467-019-13185-3
- Xu YH, Yang F, Cheng YL, Ma L, Wang J-B, Li L-J (2007) Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Yi Chuan Hereditas 29(5): 614–620. https://doi.org/10.1360/yc-007-0614
- Yadava KS, Singh AK, Arya HC (1984) Cytogenetic investigation in *Cucumis* L. I. Meiotic analysis in twenty four *Cucumis* species. Cytologia 49: 1–9. https://doi.org/10.1508/cytologia.49.1
- Yagi K, Siedlecka E, Pawełkowicz M, Wojcieszek M, Przybecki Z, Tagashira N, Hoshi Y, Malepszy S, Pląder W (2014) Karyotype analysis and chromosomal distribution of repetitive

DNA sequences of *Cucumis metuliferus* using fluorescence *in situ* hybridization. Cytogenetic and Genome Research 144: 237–242. https://doi.org/10.1159/000369183

- Yagi K, Pawełkowicz M, Osipowski P, Siedlecka E, Przybecki Z, Tagashira N, Hoshi Y, Malepszy S, Pląder W (2015) Molecular cytogenetic analysis of *Cucumis* wild species distributed in southern Africa: physical mapping of 5S and 45S rDNA with DAPI. Cytogenetic and Genome Research 146: 80–87. https://doi.org/10.1159/000433572
- Yang L,Koo D-H,Li Y,Zhang X,Luan F, Havey MJ, Jiang J,Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. The Plant Journal 71: 895–906. https://doi.org/10.1111/j.1365-313X.2012.05017.x
- Zhang L, Cao B, Bai C (2013) New reports of nuclear DNA content for 66 traditional Chinese medicinal plant taxa in China. Caryologia 66: 375–383. https://doi.org/10.1080/000871 14.2013.859443
- Zhao X, Lu J, Zhang Z, Hu J, Huang S, Jin WW (2011) Comparison of the distribution of the repetitive DNA sequences in three variants of *Cucumis sativus* reveals their phylogenetic relationships. Journal of Genetics and Genomics 38: 39–45. https://doi.org/10.1016/j. jcg.2010.12.005
- Zhang C, Kikuchi S, Koba T (2012) Karyotype comparison of Indian and Japanese cucumber cultivars by fluorescence *in situ* hybridization probed with tandem repeat sequences. Chromosome Science 15: 17–21.
- Zhang Y, Chen J, Yi H, Feng J, Wu M (2005) Staining and slide-preparing technique of mitotic chromosomes and its use in karyotype determination of *Cucumis melo* L. Acta Botanica Boreali-Occidentalia Sinica 25: 1735–1739.
- Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, Chen J, Lou Q (2015) Chromosomal structures and repetitive sequences divergence in *Cucumis* species revealed by comparative cytogenetic mapping. BMC Genomics 16: 1–3. https://doi.org/10.1186/s12864-015-1877-6
- Zheng Y, Wu S, Bai Y, Sun H, Jiao C, Guo S, Zhao K, Blanca J, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, Reddy UK, Ando K, McCreight JD, Schaffer AA, Burger J, Tadmor Y, Katzir N, Tang X, Liu Y, Giovannoni JJ, Kai-Ling S, Wechter WP, Levi A, Garcia-Mas J, Grumet R, Fei Z (2019) Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research 47(D1): D1128–D1136. https://doi.org/10.1093/nar/gky944
- Zhang Z-T, Yang S-Q, Li Z-A, Zhang Y-X, Wang Y-Z, Cheng C-Y, J Li, Chen J-F, Lou Q-F (2016) Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in *Cucumis*. Genome 59: 449–457. https://doi.org/10.1139/gen-2015-0207

ORCID

Biplab Kumar Bhowmick https://orcid.org/0000-0001-6029-1098 Sumita Jha https://orcid.org/0000-0002-1375-2768