CompCytogen 10(3): 347-369 (2016) COMPARATIVE  Asserreiensicre

doi: 10.3897/CompCytogen.v10i3.9672 \ # CytogCnCtICS

http://compcytogen.pensoft.net International Joarnal of Plant & Animal Cytogenetic,

yosystematics, and Molecular Systematics

Karyotype stability in the family Issidae (Hemiptera,
Auchenorrhyncha) revealed by chromosome
techniques and FISH with telomeric (TTAGG)n
and 18S rDNA probes

Anna Maryariska-Nadachowska', Boris A. Anokhin?,
Vladimir M. Gnezdilov?, Valentina G. Kuznetsova?

| Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Stawkowska 17, 30-016
Krakéw, Poland 2 Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St.
Petersburg, Russia

Corresponding author: Anna Maryariska-Nadachowska (maryanska@isez.pan.krakow.pl)

Academic editor: V. Gokhman | Received 24 Julne 2016 | Accepted 30 July 2016 | Published 31 August 2016

hitp://zoobank.org/B31AE30F-ABE6-452C-A07D-2E14F7F7C8CE

Citation: Maryariska-Nadachowska A, Anokhin BA, Gnezdilov VM, Kuznetsova VG (2016) Karyotype stability in the
family Issidae (Hemiptera, Auchenorrhyncha) revealed by chromosome techniques and FISH with telomeric (TTAGG)%
and 18S rDNA probes. Comparative Cytogenetics 10(3): 347-369. doi: 10.3897/CompCytogen.v10i3.9672

Abstract

We report several chromosomal traits in 11 species from 8 genera of the planthopper family Issidae, the
tribes Issini, Parahiraciini and Hemisphaeriini. All species present a 2n = 27, X(0) chromosome comple-
ment known to be ancestral for the family. The karyotype is conserved in structure and consists of a pair
of very large autosomes; the remaining chromosomes gradually decrease in size and the X chromosome is
one of the smallest in the complement. For selected species, analyses based on C-, AgNOR- and CMA
banding techniques were also carried out. By fluorescence in situ hybridization, the (TTAGG), probe
identified telomeres in all species, and the major rDNA loci were detected on the largest pair of auto-
somes. In most species, ribosomal loci were found in an interstitial position while in two species they were
located in telomeric regions suggesting that chromosomal rearrangements involving the rDNA segments
occurred in the evolution of the family Issidae. Furthermore, for 8 species the number of testicular follicles
is provided for the first time.
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Introduction

During the last decades, the worldwide planthopper family Issidae was comprehen-
sively revised based on morphological features (Emeljanov 1999, Gnezdilov 2003a,
b, 2007, 2012a, b, 2013a, b, ¢, Gnezdilov and Wilson 2006, Gnezdilov et al. 2014).
Several groups treated previously as Issidae subfamilies were upgraded to the fam-
ily rank (Caliscelidae and Acanaloniidae). The subfamilies Trienopinae and Tonginae
were transferred as tribes to the families Tropiduchidae and Nogodinidae respectively,
while the tribes Adenissini and Colpopterini were transferred to the Caliscelidae and
Nogodinidae, respectively. The term “issidoid group” has been suggested for group-
ing the families Issidae, Caliscelidae, Acanaloniidae, Tropiduchidae and Nogodinidae
(Gnezdilov 2013b, Gnezdilov et al. 2015).

As a result of these changes, the family Issidae sensu stricto is now considered to
comprise more than 1000 species and subspecies with around 170 genera classified
within the only nominatypical subfamily Issinae, including three tribes, Issini Spinola,
1839, Hemisphaeriini Melichar, 1906 and Parahiraciini Cheng & Yang, 1991 (Gn-
ezdilov 2013a, Bourgoin 2016). The largest tribe Issini exhibits worldwide distribution
while the two other tribes are mainly endemics of the Oriental Region (Gnezdilov
2013a, Gnezdilov et al. 2014).

Recent molecular data on the Issidae sensu lato using a partial sequence of the 18S
rDNA and the wingless gene (Sun et al. 2015) are not congruent in all cases with the
above classification resulted from morphological data. However, the monophyly of the
Issidae s. sz7. and the existence of three distinct phylogenetic lineages (tribes) were con-
firmed. The phylogenetic position of another tribe, the Tongini, might be an artifact
(Gnezdilov et al. 2015). Thus in our current paper we follow the morphology-based
classification.

Up to now, studies on the Issidae s. str. karyotypes were performed on 36 spe-
cies (20 genera), all being from the tribe Issini (Maryariska-Nadachowska et al. 2006,
Kuznetsova et al. 2010). Pioneering karyological studies (Parida and Dalua 1981,
Tian et al. 2004) and later comparisons based on standard (Schiff-Giemsa) and dif-
ferential (Ag-NOR and DAPI/CMA) staining techniques (Maryariska-Nadachowska
et al. 2006, Kuznetsova et al. 2009, 2010) showed that issids are characterized by
a pronounced karyotypic conservatism. They have strikingly similar karyotypes with
only three male diploid chromosome numbers: 27, 26 and 25. The most common
karyotype of 2n = 27 (26 + X) is considered as phylogenetically ancestral in the family
(Kuznetsova et al. 2010) and appears similar in structure among the species studied.
It consists of a pair of very large autosomes; the remaining chromosomes gradually
decrease in size, and the X chromosome is among the small chromosomes of the set.
As revealed by CMA, staining and silver nitrate impregnation (AgNOR staining), the
largest autosomal pair bears nucleolus organizer regions (NORs) in all studied spe-
cies. In contrast to the above chromosome techniques, C-banding revealed differences
between species in the amount and distribution of heterochromatin, and its staining



Karyotype stability in the family Issidae (Hemiptera, Auchenorrhyncha)... 349

aflinity using DAPI and CMA, (Kuznetsova et al. 2009, 2010). Thus, despite the vast
variation within the Issidae, the cytogenetics of this group remains poorly explored and
no molecular cytogenetic techniques have previously been applied.

Recent publications dealing with karyotypes of the Issidae have additionally re-
ported some data on internal reproductive organs, mainly on the number of testicular
follicles (Maryariska-Nadachowska et al. 2006, Kuznetsova et al. 2010). Issids were
shown to be characterized by testes with rather numerous follicles, ranging from 4
(Palmallorcus punctulatus) to 30 (Zopherisca tendinosa) per testis, with a predominant
number of 10.

In this paper we report karyotypes of 11 species in 8 genera of the tribes Issini, Par-
ahiraciini and Hemisphaeriini, studied by several chromosome techniques, including
fluorescence in situ hybridization (FISH) with (TTAGG), telomeric and 18S rDNA
probes. We particularly focused on whether karyotypes with the same chromosome
number show different patterns if new molecular cytogenetic markers are applied. In
addition, we present, for the first time, the number of testicular follicles for 8 species,
including first observations on members of the tribes Parahiraciini and Hemispha-
eriini. All currently available data on the family Issidae are summarized and tabulated.

Material and methods

Details on the material analyzed, including the geographical location, number of speci-
mens, information about the authorship of the noted specific names, diploid (2n)
chromosome number, sex-determining mechanism in males, cytogenetic methods
used in karyotyping and the number of testicular follicles are given in Table 1. Moreo-
ver, Table 1 summarizes all species studied so far in respect to karyotype and reproduc-
tive system in the family Issidae.

Insects

All specimens were identified by V.M. Gnezdilov. Several species were identified only
to the genus level because of taxonomic difficulties in these genera. Only males were
used for chromosome analyses. In the field, males were collected with an insect net,
fixed alive in 3:1 fixative (96% ethanol: glacial acetic acid) and stored at +4 °C.

Slide preparation

Gonads of adult males were used for chromosome analysis. Testes were dissected in a
drop of 45% acetic acid and squashed. The coverslips were removed using dry ice. Prior
to staining, the preparations were examined by phase contrast microscopy.
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Conventional chromosome staining methods

All the conventional staining techniques used herein were described in detail by
Kuznetsova et al. (2009, 2010) for other issid species, i.e., Schiff-Giemsa staining,
C-banding, AgNOR-banding and CMA -banding. All species were studied using the
standard Schiff-Giemsa technique by Grozeva and Nokkala (1996), whereas the other
techniques were used only for selected species (Table 1).

Chromosome banding techniques contribute to the identification of specific chro-
mosomes within karyotypes. AgNOR-banding reveals chromosomal nucleolus organ-
izing regions (NORs) representing the sites for the tandemly arranged 18S and 28S
ribosomal RNA genes. The AgNOR-banding presumably differentiates only those
NORs which were metabolically active during the preceding interphase (Howell and
Black 1982). Some chromosome banding techniques, including C-banding and fluo-
rochrome banding, are strongly dependent on the amount of heterochromatin and
its distribution in chromosomes. Chromomycin A, (CMA)) reveals the presence of
GC-rich heterochromatin, which is usually associated with NOR regions, and thus
differentiates NORs regardless of their prior metabolic activity.

Fluorescence in situ hybridization (FISH)

This method was applied for the first time in the family Issidae. We used FISH with a
(TTAGG), and 18S rDNA probes in 11 species from 8 genera; 9 species from Issini tribe
while that one species of the Parahiraciini and Hemisphaeriini tribes (Table 1). FISH with
both probes was applied as previously reported (Maryariska-Nadachowska et al. 2013, Gol-
ub etal. 2014, Kuznetsova et al. 2015b, ¢). In brief, chromosome preparations were treated
with 100 pg/ml RNase A, and 5 mg/ml Pepsin solution was used to remove excess RNA
and proteins. Chromosomes were denatured on a slide in a hybridization mixture with
biotinylated 18S rDNA probe from the genomic DNA of Pyrrhocoris apterus (Linnaeus,
1758) and rhodaminated (TTAGG), probe with addition of salmon sperm DNA and then
hybridized for 36 h. Hybridization signals were detected with NeutrAvidin-FITC.
Chromosomes were mounted in antifade medium (ProLong Gold antifade reagent
with DAPI; Invitrogen) and covered with a glass coverslip. Chromosome slides were an-
alyzed under a Leica DM 6000 B microscope. Images were taken with a Leica DFC 345
FX camera using Leica Application Suite 3.7 software with an Image Overlay module.

Results

Testicular and ovarian follicles

The testicular follicles were counted in 8 species (Table 1). The follicles were tubular
and their number ranged from 6 to 18 among the species studied (here and elsewhere
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numbers are given per testis) and occasionally varied among males and in different
testes of the same male, e.g. in Mycterodus drosopoulosi (2 males: 10/13, 17/18), He-
misphaerius sp. (2 males: 11/8, 12/12) and H. interclusus (4 males: 9/8, 11/11, 12/12,
12/12). In the only studied female of M. drosopoulosi, about 15 ovarian follicles were
counted in each gonad.

Conventional and differential chromosome techniques

Chromosome data on 10 species from 8 genera were obtained for the first time, in-
cluding first observations on members of the tribes Parahiraciini and Hemisphaeriini
(Table 1). Representative photographs of standard and sometimes also differentially
stained meiotic karyotypes are presented in Figs 1-10. All species showed holokinetic
chromosomes and the same chromosome number in males. In meiotic cells (diakine-
sis, metaphase I), there were 13 autosomal bivalents and a univalent X chromosome,
i.e.,, 2n = 26 + X. Also, the karyotype structure seemed to be uniform with a pair of
very large autosomes, 12 bivalents more or less gradually decreasing in size and the X
chromosome as one of the smaller chromosomes of the set. The largest bivalent had a
very large “secondary” constriction (a gap) in each homologue (Figs 1a, 2a, 7, 8a, 9).
This constriction divided the chromosome into two unequal parts, however it was not
always visible, especially when the chromosomes were more condensed (Figs 2b, 3,
4, 5a, 6a, 10). The silver staining technique used in Conosimus coelatus and Sarnus sp.
produced a precipitation of silver at these regions suggesting that they harbor NORs
(Figs 1b, 6b). In Thabena sp., the CMA,/DAPI staining showed homogeneous DAPI
staining (results not shown) and distinct patterns of GC-rich blocks (CMA,-positive)
in the NORs (Fig. 8b). The C-banded karyotype of Mycterodus sp. showed prominent
telomeric C-bands in the largest and one of the medium-sized bivalents (Fig. 5a, b).

Fluorescence in situ hybridization (FISH)

Detection of a tandem telomeric repeat sequence by FISH with a (TTAGG) probe.

The telomeric probe identified (I'TAGG), repeats on the chromosomal ends in the
nine species analyzed (Table 1), but not all telomeres were distinctly labeled in each
chromosome spread (Figs 11-21). Some chromosomes showed only faint hybridiza-
tion signals.

Detection of ribosomal genes revealed by FISH with an 18S rDNA probe

In all species, the major IDNA loci were located in the largest autosomal pair. In the
majority of species, the rDNA clusters were found in the interstitial position; however
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Figures 1-8. Meiotic analyses of species of the tribes Issini (Figures 1-7) and Parahiraciini (Figure 8), (n
= 13 bivalents + X) with different cytogenetic techniques. | Conosimus coelatus, a diakinesis with standard
and b AgNOR-staining. Arrows point to “secondary” constrictions (gaps) (a) and empty arrows NORs
(b) point to the largest autosomal pair 2 Kervillea scoleogramma, a diakinesis and b metaphase I with
standard staining. Arrows point to "secondary” constrictions on the largest autosomal pair (a) 3 Latema-
tium latifrons, metaphase I with standard staining 4 Mycterodus (Mycterodus) drosopoulosi, diakinesis with
standard staining 5 Mycterodus (Semirodus) sp., diakinesis with C-banding. a Arrows point to C-bands on
the largest and medium-sized bivalents. In the largest bivalent, C-bands are located at the terminal or b at
the proximal (chiasmate) parts of chromosomes. Short arrows point to C-bands 6 Sarnus sp., @ metaphase
I with standard staining and b diakinesis with AgNOR-banding. Arrows point to NORs on the largest
autosomal pair 7 Thionia obtusa, diakinesis with standard staining. Arrows point to “secondary” constric-
tions on the largest autosomal pair 8 7habena sp. a diakinesis with standard staining, and b diplotene
with CMA -banding. Arrows point to “secondary” constrictions (a) and asterisks mark CMA -positive,
GC-rich regions (b) of the largest autosomal pair. Scale bar =10 pm.
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Figures 9-10. Conventionally stained meiotic karyotypes of two species of the tribe Hemisphaeriini
(n = 13 bivalents + X). 9 Hemisphaerius interclusus, metaphase I with standard staining. Arrows point to
“secondary” constrictions in the largest autosomal pair 10 Hemisphaerius sp., metaphase I with standard

staining. Scale bar = 10 pm.

in Issus lauri and Zopherisca tendinosa they were clearly seen in the terminal regions
(Figs 13, 20). In some species, IDNA FISH revealed heteromorphism in size of IDNA
clusters (Figs 14, 13, 20).

Compilation of data on karyotypes and testis structure

We made a thorough compilation of all data reported so far in the family Issidae, in-
cluding the tribes Issini, Parahiraciini and Hemisphaeriini. Table 1 covers information
on a total of 44 species from 27 genera studied in respect to karyotypes and on 40 spe-
cies from 26 genera studied in respect to the number of testicular follicles.
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Figures |1-18. FISH with rDNA (green signals) and telomeric (TTAGG), (red signals) probes on male
meiotic karyotypes of eleven Issidae species (n = 13 bivalents + X). The rDNA clusters are seen on the largest

autosomal pair, located interstitially in all species with the exception of Issus lauri (Figure 13) and Zopherisca
tendinosa (Figure 20) with the terminal location of these clusters. || Agalmatium bilobum, metaphase I
12 A. flavescens, diplotene-diakinesis transition |3 Issus lauri, metaphase I 14 Kervillea basinger, metaphase I
|5 Mycterodus (Semirodus) pallens, metaphase I 16 Palaeolithium distinguendum, metaphase 1 1T Scorlupella
discolor, metaphase 1 18 7habena sp., metaphase I. Scale bar = 10 pm.

Discussion

Follicle number

The number of testicular follicles per testis, counted here in males of eight species, ranged
from 6 to 30, being the lowest in Sarnus sp. and the highest in Zopherisca tendinosa (both
from Issini). In some species, the number of follicles varies among males of the same spe-
cies and between testes of the same male. Specifically, variation was observed in Myctero-
dus drosopoulosi in which three examined males had testes with 17 and 18; 10 and 13;
and 15 and 15 follicles, respectively. As in other planthopper families, in Issidae testicular
follicles are of tubular shape. D’Urso et al. (2005) pointed out that Fulgoromorpha are
differentiated by this pattern from Cicadomorpha in which follicles are lobular.
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Figures 19-=21. FISH with rDNA (green signals) and telomeric (TTAGG), (red signals) probes on male
meiotic karyotypes of eleven Issidae species (n = 13 bivalents + X). The rDNA clusters are seen on the largest
autosomal pair, located interstitially in all species with the exception of Issus lauri (Figure 13) and Zopherisca
tendinosa (Figure 20) with the terminal location of these clusters. 19 Zopherisca penelopae, diakinesis-me-
taphase I transition 20 Z. tendinosa, metaphase I 21 Hemisphaerius sp., a and b diakinesis. Scale bar = 10 pm.

The evolutionary trends and the phylogenetic importance of the number of follicles in
Auchenorrhyncha were repeatedly discussed in the literature (e.g., Emeljanov and Kuznet-
sova 1983, Kirillova 1989, D’Urso et al. 2005, Kuznetsova et al. 2009, Gnezdilov 2013b).
In some groups variation in this character agrees with their taxonomy and phylogeny. For
instance, the number of follicles is conserved at the level of tribes and/or subfamilies within
the planthopper families Delphacidae and Dictyopharidae, with changes in this pattern
correlated with their overall morphological evolution (Kirillova 1989, Kuznetsova et al.
2009). However, studies of testis structure in the Issidae documented the lability of the fol-
licle number (Maryariska-Nadachowska et al. 2006, Kuznetsova et al. 2010). In 40 species
studied so far, a wide range of follicle numbers have been reported, from four (in Palmal-
lorcus punctulatus; but P. balearicus and P. nevadense have higher numbers, 10 or 11) and
six (in Scorlupella discolor and Sarnus sp.) to 30 (in Zopherisca skaloula). Noteworthy are the
unusually high numbers (24, 28 and 30) found in the three studied species of the genus
Zopherisca Emeljanov, 2001. Interestingly, the number of follicles varies between closely
related species (in the genera Kervillea Bergevin, 1918, Mycterodus Spinola, 1839, Palmal-
lorcus Gnezdilov, 2003, Zopherisca) and even within the same species (e.g. Palaeolithium
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distinguendum, Palmallorcus balearicus and Mycterodus drosopoulosi) suggesting that evolu-
tionary changes in the follicle number can be relatively rapid in the Issidae. In the opin-
ion of Gnezdilov (2013b), the polymerization of seminal follicles inherent in the Issidae
and also in other higher fulgoroid families, such as Nogodinidae, Recaniidae and Flatidae
(Kuznetsova et al. 1998), indicates that these families are relatively young in terms of evolu-
tion and that the testis structure has not yet been stabilized within their supraspecific taxa.

Although numbers between 9 and 18 and especially 10 (observed in one third of
the species) seem to be more typical for the Issidae, there is still no conclusive evidence
of the most characteristic number in this group. This problem can be resolved primar-
ily through improved taxon sampling,.

Karyotypes

The nine species of the Issidae studied here for the first time have broadly similar kar-
yotypes having the male diploid number (2n) of 27 chromosomes, including 13 auto-
somal pairs and an X(0) sex determination system. The karyotype includes a relatively
small X chromosome, one pair of very long autosomes and the remaining autosomes
which gradually decrease in size. Issidae, like other Auchenorrhyncha and Hemip-
tera, have holokinetic chromosomes. The largest bivalent is always NOR-bearing, and
NORs are interstitial in the majority of species. The exceptions are [ssus lauri and Zo-
pherisca tendinosa, in which the 18S rDNA cluster is located terminally; this particular
pattern probably resulted from inversions. GC-rich DNA segments labeled by CMA,
are associated with nucleolus organizer regions.

Our study confirms that Issidae are a group characterized by the high karyotypic con-
servatism, with the basic karyotype of 2n = 27 (26 + X) (Maryaniska-Nadachowska et al.
2006, Kuznetsova et al. 2010). At present, data on karyotypes are available for 44 species
(around 4.5 % of the described species) and 27 genera (around 16 % of the recognized
genera) in the three currently accepted tribes, Issini, Parahiraciini and Hemisphaeriini.
With the exception of Latilica maculipes and Brahmaloka sp., both with 2n = 24 + X, and
Falcidius limbatus with 2n = 24 + XY (the Issini), all species have 2n = 27 (26 + X). This
makes the monophyletic origin of the latter karyotype an attractive hypothesis and, indeed,
the ancestrality of this pattern has been inferred (Maryariska-Nadachowska et al. 2006,
Kuznetsova et al. 2010). Every other karyotype could thus have arisen by a single tandem
fusion, either between two pairs of autosomes (L. maculipes and Brahmaloka sp., 2n = 24
+ X) or between an autosome and the X chromosome (F. limbatus, 2n = 24 + XY), respec-
tively. Thus, the chromosome number decreased at least three times in the evolution of the
family Issidae. Sex chromosomes of F. limbatus are most likely of the neo-XY type. Nota-
bly, neo-sex chromosome systems derived via autosome-sex chromosome fusion have been
frequently reported in Auchenorrhyncha (see Kuznetsova and Aguin-Pombo 2015). This
mechanism, necessarily resulting in reduced chromosome numbers, was clearly involved
in sex chromosome diversification of the genus Falcidius Stil, 1866, in which the other
studied species, F. doriae, has the basic chromosome complement of 2n = 27 (26 + X).



Karyotype stability in the family Issidae (Hemiptera, Auchenorrhyncha)... 363

The basic karyotype appears conservative in structure within the Issidae, at least as
regards the very large pair of autosomes, present in all the studied species. Based on a
variety of observations (Giemsa-negative “secondary” constrictions, CMA,, AgNOR
and rDNA FISH patterns), the largest chromosomes are the NOR-bearing pair in the
issid karyotypes.

C- banding has revealed unsuspected patterns of variation in the amount and distri-
bution of constitutive heterochromatin in auchenorrhynchan karyotypes (see Kuznetsova
and Aguin-Pombo 2015), and this is also true of Issidae. For example, Hysteropterum
albaceticum was shown to have several bivalents easily distinguishable in meiotic cells by
characteristic banding patterns (Kuznetsova et al. 2009). In the same paper, Agalmatinm
bilobum was shown to have C-bands on the largest and three medium-sized bivalents.
Closely related species occasionally share the same or similar patterns as in Mycterodus
colossicus and Mycterodus sp. (present study), both having telomeric C-bands on the largest
and one of the medium-sized bivalents. On the other hand, Falcidium doriae and F. lim-
batus were demonstrated to differ extensively in their C-band pattern (Kuznetsova et al.
2010). Some additional examples can be found in Kuznetsova et al. (2010). Based on the
data obtained, it can be stated that the gain and loss of heterochromatin is an important
source of karyotype diversification in the Issidae.

Chromosomal mapping of repeated DNAs by fluorescence iz situ hybridization
(FISH)

Over the past decades, the FISH technique revolutionized the cytogenetic analysis
providing significant advances on evolution of different insect groups with holoki-
netic chromosomes. At present, telomeres and the major rDNA loci are the most
widely documented chromosomal regions in insects, including the order Hemiptera
(e.g. Blackman et al. 2000, Manicardi et al. 2002, Monti et al. 2011a, b, Grozeva et
al. 2011, 2014, Panzera et al. 2012, Chirino et al. 2013, Maryariska-Nadachowska et
al. 2013, Pita et al. 2013, Bardella et al. 2013, Golub et al. 2014, 2015, Kuznetsova
et al. 2012, 2015a). In addition, recent publications have shown that the number
and chromosomal locations of the major rDNA multigene families are useful for the
study of karyotype evolution in other insect groups (e.g. Grzywacz et al. 2011: Or-
thoptera; Gokhman et al. 2014: Hymenoptera; Vershinina et al. 2015: Lepidoptera;
Lachowska-Cierlik et al. 2015: Mantophasmatodea; Mora et al. 2015: Coleoptera).

In Auchenorrhyncha, most cytogenetic studies were carried out by standard
staining and conventional chromosome banding techniques. In this large hemipteran
(= homopteran) group, FISH with rDNA and conserved insect telomeric (TTAGG),
repeats has so far been applied to 25 species, including 8 species of the genus Philae-
nus Stal, 1864 from the froghopper family Aphrophoridae (Maryariska-Nadachowska
et al. 2013, Kuznetsova et al. 2015¢); Mapuchea chilensis (Nielson, 1996) from the
leathopper family Myerslopiidae (Golub et al. 2014); 5 species of the genus Alebra
Fieber, 1872 from the leathopper family Cicadellidae (Kuznetsova et al. 2015b); and
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11 species of the planthopper family Issidae (present paper). In addition, Frydrycho-
vé et al. (2004) reported on telomeric sequences in Calligypona pellucida (Fabricius,
1794) from the planthopper family Delphacidae. In all examined species, including
those studied here, the presence of the (TTAGG), telomeric repeat, known as the
ancestral insect DNA motif of telomeres (Frydrychovd et al. 2004), was detected.

The major rDNA loci were shown to vary in number (1 or 2 per haploid set)
and chromosome location (autosomes, sex chromosomes or both; terminally or
interstitially) in different species of Auchenorrhyncha. For example, in Mapuchea
chilensis 2n = 16 +XY), the 18S rDNA clusters were present on a medium-sized
pair of autosomes. In the karyotypically uniform genus Alebra (2n = 22 + X), they
seem conserved and located on the largest pair of autosomes. In the genus Philaenus,
which includes species with different chromosome numbers and karyotype struc-
ture, variation in number (1 or 2 per haploid set) and location (autosomes, sex
chromosomes or both) of ribosomal genes was observed suggesting plasticity of the
genomic organization within the genus. In the all species (11) of the Issidae from 8
genera and the three tribes, the 18S rDNA clusters were only detected in the largest
autosomal pair. Basically, IDNA loci were located in an interstitial position, while
in Issus lauri and Zopherisca tendinosa they were found at chromosomal ends suggest-
ing that chromosomal rearrangements involving rDNA sequences occurred in the
evolution of these unrelated species. In several karyotypes, FISH demonstrated size
heteromorphism of IDNA clusters, suggesting that it can be attributed to differences
in the number of ribosomal cistrons.

A brief comparison between families of the “issidoid group”

Among the families Caliscelidae, Acanaloniidae, Tropiduchidae and Nogodini-
dae, which are phylogenetically related to the Issidae, data on karyotypes and the
number of follicles are still very scarce (Kuznetsova et al. 1998, 2010, Maryariska-
Nadachowska et al. 2006), while molecular cytogenetic data are not yet available.

Follicle number

The “issidoid” families Caliscelidae, Acanaloniidae, Tropiduchidae and Nogodi-
nidae taken together have currently only 11 species with known testis structure
(Kuznetsova et al. 1998, Maryariska-Nadachowska et al. 2006). The relatively high
and variable follicle numbers of the Issidae resemble the situation in the families
Nogodinidae and Acanaloniidae, but not in the families Caliscelidae and Tropi-
duchidae, which share low and relatively stable numbers. In the four studied No-
godinidae species, numbers 5, 9 and 24 were observed, with the latter value found in
two unrelated species, Biolleyana pictifrons Stil, 1864 and Pisacha sp. (Kuznetsova et
al. 1998), whereas in the family Acanaloniidae, the only examined species, Acanolonia
bivittata (Say, 1825), has 13 follicles per testis (Maryariska-Nadachowska et al. 2006).



Karyotype stability in the family Issidae (Hemiptera, Auchenorrhyncha)... 365

In the Tropiduchidae, the three studied species have either 6 or 3 follicles (Kuznetsova
et al. 1998), while each of the three studied species of Caliscelidae has 6 follicles per
testis (Maryaniska-Nadachowska et al. 20006).

Karyotype

The currently available data on the families Tropiduchidae, Nogodinidae, Caliscelidae
and Acanaloniidae concern just 13 species (Kuznetsova et al. 1998, 2010, Maryanska-
Nadachowska et al. 2006). The 2n = 26 + X and secondarily derived 2n = 24 + XY chro-
mosome complements are shared by Issidae and Nogodinidae. In the latter family, Bladina
magnifrons Walker, 1858 and Biolleyana pictifrons have 2n = 26 + X, whereas Mindura
subfasciata kotoshonis Matsumura, 1941 and Pisacha sp. share 2n = 24 + XY (Kuznetsova et
al. 1998). In the Tropiduchidae, Achilorma ?bicincta Spinola, 1838 was found to have 2n
= 26 + X, whereas the three other studied species have different karyotypes, i.e., 2n = 24
+ X in Tambinia bizonata (Matsumura, 1914) and Barunoides albosignata Distant, 1912,
while 2n = 28 + X in Varma distanti Melichar, 1914 (Kuznetsova et al. 1998). Putative
ancestral issid karyotype of 2n = 26 + X (Kuznetsova et al. 2010), has not yet been found
in the families Caliscelidae and Acanaloniidae (Maryariska-Nadachowska et al. 2000).

Concluding remarks

Based on the currently available data, which are still highly insufficient, we can infer
that Issidae are characterized by 10 follicles per testis as the most frequent number, the
presence of canonical insect telomeric repeats (I'TAGG) , a stable karyotype constitu-
tion with the predominant karyotype of 2n = 26 + X(0), and the major rRNA gene
clusters located on the largest pair of autosomes. A much broader taxonomic coverage
is necessary to discuss possible implications of the above characters for the taxonomy
and phylogeny of the Issidae.
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