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Abstract
Next-generation sequencing data analysis on Triatoma infestans Klug, 1834 (Heteroptera, Cimicomor-
pha, Reduviidae) revealed the presence of the ancestral insect (TTAGG)n telomeric motif in its genome. 
Fluorescence in situ hybridization confirms that chromosomes bear this telomeric sequence in their chro-
mosomal ends. Furthermore, motif amount estimation was about 0.03% of the total genome, so that the 
average telomere length in each chromosomal end is almost 18 kb long. We also detected the presence 
of (TTAGG)n telomeric repeat in mitotic and meiotic chromosomes in other three species of Triatomi-
nae: Triatoma dimidiata Latreille, 1811, Dipetalogaster maxima Uhler, 1894, and Rhodnius prolixus Ståhl, 
1859. This is the first report of the (TTAGG)n telomeric repeat in the infraorder Cimicomorpha, contra-
dicting the currently accepted hypothesis that evolutionarily recent heteropterans lack this ancestral insect 
telomeric sequence.
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Introduction

Telomeres, the physical ends of eukaryote chromosomes, are defined as specialized 
DNA-protein structures essential for chromosome replication, meiotic pairing and 
chromosome stability. In most organisms, telomeric DNA is composed by simple 
G-rich sequences repeats that extend for tens of base pairs (bp) as much as 150 kb, 
depending on the organism. Although telomeric repeats are diverse in their DNA 
sequence composition among different organisms (Zakian 1995), several taxonomic 
groups possess highly conserved motifs. Vertebrates, including bony fishes, reptiles, 
amphibians, and mammals exhibit the (TTAGGG)n repeat (Meyne et al. 1989) while 
the (TTTAGGG)n sequence appears highly conserved in the plant kingdom (Watson 
and Riha 2010). Extensive studies in arthropods have revealed that the predominant 
telomeric sequence is a pentanucleotide sequence repeat (TTAGG)n, which has been 
considered as the ancestral telomeric motif in phylum Arthropoda, including insects 
(Sahara et al. 1999, Frydrychová et al. 2004, Vítková et al. 2005). However, numer-
ous studies contradict this claim. For example several insect groups do not exhibit 
this telomeric repeat, such as Diptera, Ephemeroptera, Odonata, Dermaptera, Sipho-
naptera, Mecoptera, Raphidioptera and parasitic Hymenoptera. In addition, Coleop-
tera, Neuroptera and Hemiptera orders include species with and without the ancestral 
(TTAGG)n telomeric motif (Frydrychová et al. 2004, Gokhman et al. 2014, Koran-
dová et al. 2014). In these insect groups, the ancestral telomeric motif is replaced by 
other alternative telomeric sequences such as (TCAGG)n in some coleopteran species 
(Mravinac et al. 2011), non-long terminal repeat (LTR) retrotransposons in Drosoph-
ila Fallén, 1823 (Mason et al. 2008), arrays of long satellite repeats in Culicomorpha 
dipteran (Walter et al. 2001), or by unknown sequences as in damselflies, mayflies and 
some aphid species (Frydrychová et al. 2004, Vítková et al. 2005). The most illustra-
tive example of the variability of the telomeric sequences was observed in Coleoptera 
where ancestral (TTAGG)n has been lost at least eight times during the evolution of 
this insect group (Frydrychová and Marec 2002, Mravinac et al. 2011).

Among Hemiptera, the ancestral motif is present in the suborder Sternorrhyncha 
(coccids and aphids with some exceptions) (Mohan et al. 2011, Monti et al. 2011, 
Novotná et al. 2011), in several genera of Auchenorrhyncha (Frydrychová et al. 2004, 
Maryańska-Nadachowska et al. 2013, Golub et al. 2014, Kuznetsova et al. 2015a) 
and Coleorrhyncha (Kuznetsova et al. 2015b) suborders. In the suborder Heteroptera, 
only two species of the basal infraorders Nepomorpha and Gerromorpha show the an-
cestral telomeric motif (Kuznetsova et al. 2012, Mason et al. 2016). On the contrary, 
the most derived and specious heteropteran infraorders (Cimicomorpha and Pentato-
momorpha) do not show the classic insect motif (for review see Grozeva et al. 2015, 
Mason et al. 2016). A recent survey of several sequenced genomes of these groups, 
including the triatomine Rhodnius prolixus, confirms the lack of the ancestral telomeric 
repeat and these groups are regarded as having a defective version of telomerase gene 
(Mason et al. 2016). Mason et al. (2016) have suggested the occurrence of a single loss 
event of the telomeric repeat, sometime before the Cimicomorpha and Pentatomo-
morpha divergence, and after their separation from Nepomorpha.
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Kissing bugs (Triatominae, Reduviidae) are included within the infraorder 
Cimicomorpha (Heteroptera), constituting a group of medical relevance because they 
act as vectors of Chagas disease, also known as American trypanosomiasis. This sub-
family includes 150 species, of which more than 80 have been cytogenetically studied 
(Panzera et al. 2010), having holocentric chromosomes. The current data, as above 
mentioned, suggest a high heterogeneity in insect telomere composition. One should 
also take into consideration that loss of the insect ancestral repeat in Cimicomorpha 
has been reported (Mason et al. 2016). For all these reasons it is important to explore 
for the first time in Triatominae the presence of (TTAGG)n motif, using next-gene
ration sequencing (NGS) analysis tools and fluorescence in situ hybridization (FISH) 
in four triatomine species from three different genera. The results presented in this 
paper are in clear contradiction to the loss of ancestral telomeric repeats hypothesis in 
evolutionarily advanced Heteroptera.

Materials and methods

Material

Four species where analyzed, involving three different genera from the two principal 
tribes of the subfamily: Triatomini (Dipetalogaster maxima, Triatoma infestans, and 
T. dimidiata) and Rhodniini (Rhodnius prolixus). The last three species are the main 
vectors of Chagas disease. Origin and cytogenetic traits of each species are detailed 
in Table 1.

Telomere detection by genome sequencing

A Triatoma infestans (non-Andean lineage) specimen collected in Tacuarembó (Uru-
guay) was used for sequencing. Approximately 3 µg of genomic DNA were employed 
in a low coverage Illumina® Hiseq™ 2000 paired-end sequencing. Graph-based cluster-
ing analysis was carried out using RepeatExplorer (Novák et al. 2013), implemented 
within the Galaxy environment (http://repeatexplorer.umbr.cas.cz/) (Novák et al. 
2010). RepeatExplorer also allow quantifying the abundance of the repeated sequences 
in the genome in base to the number of reads in each cluster.

Telomere detection by FISH

Chromosome preparations for FISH analyses were obtained from male gonads. Testes 
were removed from live adult insects, fixed in an ethanol–glacial acetic acid mixture 
(3:1) and stored at -20°C. Squashes were made in a 50% acetic acid drop, coverslips 
were removed after freezing in liquid nitrogen and the slides were air dried and then 
stored a 4°C.

http://repeatexplorer.umbr.cas.cz/
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Table 1. Geographical origin and male diploid chromosome number in the four species here analyzed. 
A = autosomes.

Species Geographical origin Male diploid chromosome 
number (2n)

Tribe Rhodniini
Rhodnius prolixus Guatemala, Quezaltenango, Insectary CDC (USA) 22= 20A + XY
Tribe Triatomini
Dipetalogaster maxima Baja California, Mexico 22= 20A + XY
Triatoma dimidiata Jutiapa, Guatemala 23= 20A + X1X2Y
Triatoma infestans Tacuarembó, Uruguay 22= 20A + XY

Telomeric TTAGG probe generation and FISH assays were carried out following 
Lorite et al. (2002) and Mora et al. (2015). Telomeric probes were generated by PCR 
using the primers (TTAGG)6 and (TAACC)6, following a similar procedure as described 
by IJdo et al. (1991). PCR was performed in 100 µl using 100 pmol of each primer and 
2.5 units of Taq polymerase, in the absence of a template. PCRs were carried out using 
the following cycling profile: 30 cycles at 95°C (60 sec), 50°C (1 min), 72°C (3 min), 
with a final elongation step of 72°C for 10 min. PCR generated fragments (between 
200 bp and 1 kb) were purified and labeled with biotin-16-dUTP (Roche) out using 
the Nick Translation Kit (Roche), following manufacturer’s instructions. The labelled 
probe was precipitated and dissolved in 50% formamide.

Previously to hybridization, slides were treated with RNase A, pepsin and formal-
dehyde and dehydrated in 70%, 90% and 100% ethanol for 5 min each. Hybridization 
was performed applying 25 µl of DNA labelled solution to each slide, which was heated 
for 3 min at 80°C to denature the DNA, and immediately chilled on ice for 3 min. The 
hybridization mix consisted of (final concentrations) 50% formamide, 2xSSC, 50 mM 
sodium phosphate, 0.1 mg/ml sonicated salmon sperm DNA, 0.1 mg/ml yeast RNA, 
and 5 ng/ml labeled telomere probe. The slides were transferred to a moist chamber 
humidified with formamide (50%) and incubated overnight at 37°C. After incubation, 
the slides were washed in 50% formamide at 37°C, three times, 3 min each; followed by 
2xSSC, 0.05% Tween-20, pH 7.5, three times, 5 min each. Fluorescence immunologi-
cal detection was performed using the avidin-FICT/ anti-avidin-biotin system with four 
rounds of amplification. Slides were mounted with Vectashield (Vector). DAPI in the 
antifade solution was used to counterstain chromosomes.

Results and discussion

The data obtained from the T. infestans genome sequencing were analyzed with Repeat-
Explorer (Novák et al. 2013). One of the obtained clusters was formed by a telomeric 
sequence TTAGG array. In order to test if this repeat represents the putative telomere, 
FISH was carried out using the TTAGG repeat as probe. Hybridization signals were 
clearly seen at the ends of the mitotic chromosomes (Fig. 1A), revealing that telom-
eres in this species are really composed by this ancestral insect motif. The cluster of 
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the (TTAGG)n sequences was estimated for about 0.0266% of the total genome size, 
i.e. 395.5 kb. Considering that the haploid genome content in T. infestans is 1.52 pg 
(1.487 Mb) (Panzera et al. 2007, 2010) and that the chromosome number is 2n=22, 
the average telomeres length motifs in each chromosome end would be almost 18 kb 
long. This value is in the range of the telomere length observed in other insects with 
the ancestral motif or a variant of this repeat such as Tenebrio molitor Linnaeus, 1758 
(15 kb) (Richards et al. 2008) but higher than the observed in other species with holo-
centric chromosomes as lepidopteran species (6-9 kb) (Okazaki et al. 1993, Mandrioli 
2002), or in the homopteran coccid Planococcus lilacinus Cockerell, 1905 (6.4 kb) 
(Mohan et al. 2011).

Furthermore, we tested the telomeric motif presence by FISH in other three tri-
atomine species with (TTAGG)n probe. Hybridization signals were clearly seen on the 
chromosomal ends of mitotic and meiotic chromosomes (Fig. 1B–D), revealing that 
Triatominae telomeres are composed by the ancestral insect motif. FISH technique in 
triatomines is highly sensitive to material fixation conditions. Cytoplasmic remnants 
in the slides represent the greatest challenge because it hinders the access of the telom-
eric probes to the chromosomes. This can be partially avoided using recently extracted 
gonads. In addition, access of the telomeric probes to the chromosome and its visu-
alization are very sensitive to the chromosomes being on the same plane. As a result, 
differences in hybridization signals can be observed in the same slide or even within 
chromosomes of the same cell (Fig. 1).

Given our positive FISH hybridization results on R. prolixus chromosomes, we ad-
ditionally conducted a BLAST search of telomeric sequences in the published genome 
of this species, available at https://www.vectorbase.org/. Similar as reported by Mason 
et al. (2016), we did not find (TTAGG)n repeats, so that these tandem sequences 
and probably others repeated sequences are not included in the published genome of 
R. prolixus (Mesquita et al. 2015). This reveals the difficulty of the repetitive DNA 
fraction assembly, as has been reported in different organisms including the well-stud-
ied human genome, making that many repetitive sequences have been omitted from 
the reference assembly and from most genome-wide analyses (Altemose et al. 2014).

Heteroptera or true bugs are a hemipteran suborder comprising seven infraorders 
and 40,000 species. All phylogenetic studies agreed that the infraorders Cimicomorpha 
and Pentatomomorpha are the most evolutionarily derived groups, with a common an-
cestor and involving about 80% of heteropteran species (Weirauch and Schuh 2011). 
Until now, the detection by FISH, Southern and/or dot-blot hybridization of telomeric 
repeat motif (TTAGG)n in Heteroptera has been unsuccessful in nine genera from 
five families of the infraorders Cimicomorpha and Pentatomomorpha (Sahara et al. 
1999, Kuznetsova et al. 2011, Frydrychová et al. 2004, Grozeva et al. 2011, Golub et 
al. 2015). Only two heteropteran species from the basal infraorders Nepomorpha and 
Gerromorpha exhibit the ancestral telomeric motif (Kuznetsova et al. 2012, Mason et 
al. 2016). The (TTAGG)n motif was suggested to be lost in the early evolution being 
and secondarily replaced by another motif or an alternative telomerase-independent 
mechanism of telomere maintenance (Frydrychová et al. 2004, Lukhtanov and Kuznet-
sova 2010). Although several authors have suggested the loss of TTAGG repeat in all 

https://www.vectorbase.org/
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Figure 1. Fluorescence in situ hybridization with (TTAGG)n telomeric probe (green signals) on mitotic 
and meiotic chromosomes (counterstained with DAPI in blue) of four Triatominae species. A Triatoma 
infestans (2n=22), spermatogonial prometaphase B Triatoma dimidiata (2n=23), spermatogonial prometa-
phase C Dipetalogaster maxima (2n=22), pachytene stage D Rhodnius prolixus (2n=22), first meiotic divi-
sion showing 10 bivalents and two sex chromosomes (X and Y). Scale bar: 5 µm.

Cimicomorpha species (Grozeva et al. 2015, Mason et al. 2016), the results presented 
here clearly contradict this hypothesis. According to the most comprehensive phylog-
eny of assassin bugs, the subfamily Triatominae is the youngest within Reduviidae, hav-
ing evolved in the Oligocene, approximately 32 million years ago (24–38 Ma) (Hwang 
and Weirauch 2012). Whereas, a new acquisition of telomeric repeat in this recent evo-
lutionary group seems unlikely, probably this lack of detection in Cimicomorpha and 
Pentatomomorpha is due to a methodological problem of the telomeric probe rather 
than a loss process during their evolution. Detailed analyses of the genomes repetitive 
fraction as well as exhaustive bioinformatics search on genomic databases might clarify 
the existence of these repeat sequences in other heteropteran groups.
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