Review Article |
Corresponding author: Olesya G. Buleu ( buleu.olesya@mail.ru ) Corresponding author: Ilyas Y. Jetybayev ( jetybayev@mail.ru ) Corresponding author: Alexander G. Bugrov ( bugrov@fen.nsu.ru ) Academic editor: Snejana Grozeva
© 2017 Olesya G. Buleu, Ilyas Y. Jetybayev, Alexander G. Bugrov.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Buleu OG, Jetybayev IY, Bugrov AG (2017) Comparative analysis of chromosomal localization of ribosomal and telomeric DNA markers in three species of Pyrgomorphidae grasshoppers. Comparative Cytogenetics 11(4): 601-611. https://doi.org/10.3897/compcytogen.v11i4.14066
|
The karyotypes of three species of Pyrgomorphidae grasshoppers were studied: Zonocerus elegans (Thunberg, 1815), Pyrgomorpha guentheri (Burr, 1899) and Atractomorpha lata (Mochulsky, 1866). Data on karyotypes of P. guentheri and Z. elegans are reported here for the first time. All species have karyotypes consisting of 19 acrocentric chromosomes in males and 20 acrocentric chromosomes in females (2n♂=19, NF=19; 2n♀=20, NF=20) and X0/XX sex determination system. A comparative analysis of the localization of C-heterochromatin, clusters of ribosomal DNA, and telomere repeats revealed inter-species diversity in these cytogenetic markers. These differences indicate that the karyotype divergence in the species studied is not associated with structural chromosome rearrangements, but with the evolution of repeated DNA sequences.
Pyrgomorphidae grasshoppers, karyotype, C-banding, FISH, 28S rDNA, telomeric DNA
Orthoptera is undoubtedly one of the most well cytogenetically studied groups of insects. Even at an early stage of comparative cytogenetics, they became convenient research models for analysis of mitotic and meiotic chromosomes. It was through working on Orthoptera that
However, the karyotypic features of various Orthoptera groups have been studied extremely unevenly. Among Acridoidea and Pyrgomorphoidea, only the family Acrididae can be considered as well studied, whereas the karyotypes of Pyrgomorphidae, Pamphagidae, Lathiceridae, Lentulidae and some other families remain poorly investigated or not studied at all. Analysis of chromosome sets within such Orthoptera groups, which have never been studied before, in conjunction with the use of new techniques for chromosome research, may therefore potentially lead to many new insights. As an example, using molecular cytogenetic methods, in-depth research of the family Pamphagidae has recently revealed new evolutionary pathways of autosomes and sex chromosomes previously unknown in this family (
The basal chromosome set of the family Pyrgomorphidae (superfamily Pyrgomorphoidea) coincides with that of the family Pamphagidae (superfamily Acridoidea) and contains 19 acrocentric chromosomes in males, 20 in females (sex determination X0/XX) (
Molecular cytogenetic studies were previously performed for only one species of Pyrgomorphidae – Pyrgomorpha conica (
The aim of the present study, therefore, is to reveal new features of chromosome sets in as-yet unstudied species of Pyromorphidae grasshoppers. We used standard cytogenetic techniques, as well as molecular-cytogenetic methods, to find additional markers of linear chromosome differentiation. The fluorescence in situ hybridization (FISH) method was employed to localize functionally important regions in autosomes and the sex chromosomes, containing clusters of ribosomal DNA and telomeric (TTAGG)n repeats. The choice of these molecular markers was prompted by an awareness of their important functional role in the genome and chromosome localization of many insects including Pyrgomorphidae grasshoppers (
Three species belonging to Pyrgomorphidae were studied: 1) Zonocerus elegans (Thunberg, 1815) (Phymateini tribe) – six males of this species collected during February and March 2003 in South Africa, in vicinity of Springbok city; 2) Pyrgomorpha guentheri (Burr, 1899), (Pyrgomorphini tribe) – five males of this species collected in June 2007 in Armenia; 3) Atractomorpha lata (Mochulsky, 1866) (Atractomorphini tribe) – two males of this species collected in August, 2005 on Ishigaki island (Ryukyu Archipelago, Japan).
The collected insects were injected with 0.1% colchicine solution and, after 1.5–2.0 hours, their testes were dissected and placed into 0.9% solution of sodium citrate for 20 minutes, then fixed in 3:1 ethanol:glacial acetic acid for 15 minutes. The fixed material was rinsed and kept in 70% ethanol.
C-banding of the chromosome preparations was performed according to the protocol of
Fluorescence in situ hybridization on meiotic chromosomes was carried out according to the protocol of Pinkel (1986) with modifications (
Name | Sequence | Amplicon size |
---|---|---|
28SrDNA1F | 5’-TGGACAATTTCACGACCCGTC-3’ | 600 bp |
28SrDNA1R | 5’-GCGTTTGGTTCATCCCACAG-3’ | |
28SrDNA2F | 5’-TGAACCAAACGCCGAGTTAAGG-3’ | 650 bp |
28SrDNA2R | 5’-ATTCCAGGGAACTCGAACGCTC-3’ | |
28SrDNA3F | 5’-TTCTGCATGAGCGTTCGAGTTC-3’ | 700 bp |
28SrDNA3R | 5’-TGGGCAGAAATCACATTGCGTC-3’ |
Chromosome counterstaining was preformed after FISH with 4´,6-diamidino-2-phenylindole (DAPI) using Vectashield antifade containing 200 ng/ml DAPI.
Microscopic analysis was performed at the Center for Microscopy of Biological Objects (Institute of Cytology and Genetics, Novosibirsk, Russia). Chromosomes were studied with an AxioImager M1 (Zeiss) fluorescence microscope equipped with filter sets #49, #46HE, #43HE (Zeiss) and a ProgRes MF (MetaSystems) CCD camera. The ISIS5 software package (MetaSystems GmbH, Germany) was used for image capture and analysis.
The nomenclature suggested for grasshoppers (
Data on karyotypes of P. guentheri and Z. elegans are reported for the first time. Karyotype of A. lata was described earlier (
Diploid sets (2n) of chromosomes in all species studied consisted of 19 (♂) and 20 (♀) acrocentric chromosomes. Sex determination was X0 male and XX female. The karyotype structure consists of three large (L1–L3), five medium (M4–M8) and one small (S9) pair of autosomes. The fundamental number of chromosome arms (FN) was 19 in male and 20 in female.
The large autosomes of Z. elegans and A. lata were distinctly different from each other, while the large chromosome pairs (L1–L3) of P. guentheri and A. lata were almost equal in size (Fig.
In the karyotype of Zonocerus elegans, C-banding revealed large paracentromeric C-blocks in all chromosomes of the set. Small terminal C-positive blocks were localized in M5, M6, M7 medium size autosome pairs and the X chromosome. The S9 autosome is megameric: multiple small C-heterochromatin blocks are located within the whole autosome length (Fig.
In Atractomorpha lata, medium sized pericentric C-blocks were revealed in the L1–L3, M7 and S9 autosome pairs. The rest of the medium sized autosomes (M4, M5, M6, M8) and X chromosome had small pericentric C-blocks. In L1, M4, M8 and S9 bivalents the pericentromeric C-blocks exhibited variation in size in homologous chromosomes. On one of the chromosomes in these bivalents pericentromeric C-block was large, while on the other chromosome it was small (Fig.
C-banding of Pyrgomorpha guentheri chromosomes revealed a medium sized pericentromeric C-block in all autosomes with the exception of the L3 pair, which had a small block. The pericentromeric C-block on the X chromosome was small. Medium sized terminal C-blocks were found in M4, M6, M7, M8, S9 chromosomes (Fig.
Analysis of fluorescence in situ hybridization of telomeric DNA-probes showed that in all the species studied, telomeric repeats were localized only in terminal areas of all chromosomes. In Atractomorpha lataFISH revealed difference in the size of telomeric cluster in a small pair (S9). Fluorescent signal was significantly stronger on one of the homologous chromosomes in S9 bivalent (Fig.
FISH of the 28S ribosomal DNA probe revealed interspecific variation of rDNA localization. In Zonocerus variegatus, clusters of rDNA were localized in the interstitial region of the S9 autosome (Fig.
C-banding (a–c) and fluorescence in situ hybridization of 28S ribosomal DNA (green) and telomere (TTAGG)n (red) probes (d–f) with chromosomes of: a, d Zonocerus elegans, metaphase I of meiosis b, e Atractomorpha lata, metaphase I of meiosis c, f Pyrgomorpha guentheri, metaphase I of meiosis Bar = 5 µm.
Comparative analysis of karyotypes of three species of Pyrgomorphidae grasshoppers from the Ethiopian, Mediterranean and East Asian regions confirms that 2n♂=19 (NF=19), 2n♀=20 (NF=20) (X0/XX sex determination) is the basal chromosome set in this group. However, differences from the basal chromosomal set were also observed. Some species exhibit one (Sphenarium mexicanum, 2n♂=17), three (Pyrgomorpha granulata, 2n♂=13) or four (Pyrgomorpha rugosa, 2n♂=11) Robertsonian translocations (
Searching for new karyotype variants in this poorly studied group holds the potential to turn up interesting findings. For instance, recently, a new model of the Y-chromosome evolution was proposed based on studies in Pamphagidae grasshoppers. It was shown that in Pamphagidae grasshoppers centric fusion of the X chromosome and autosome occurred independently in two phylogenetic branches, and due to further evolution the neo-Y chromosome exhibited different stages of degradation process (
The Pyrgomorphidae and Pamphagidae both have NF♂=19, NF♀=20, while Acridoidea has NF♂=23, NF♀=24. This gives rise to a question about the monophyly or homoplasy of Pyrgomorphidae and Pamphagidae. However, further detailed analysis of linear chromosome differentiation in these families is needed to shed light on this issue.
The present study revealed the difference in size and localization of C-positive blocks of chromosomes between the species studied. Furthermore, in A. lata and P. guentheri the difference observed on homologous chromosomes suggests the presence of the polymorphism in population of these species. A high level of interpopulation polymorphism of C-positive regions was previously reported for three Pyrgomorphidae species from Australia, Papua-New Guinea and Indonesia (
Such diversity in terms of the size and localization of C-positive blocks within different species of Pyrgomorphidae grasshoppers indicates that the evolution of repeated DNA sequences plays an important role in the divergence of karyotypes in this group.
However, molecular cytogenetic studies of repetitive sequences in chromosomes of Pyrgomorphidae grasshoppers were carried out only in Pyrgomorpha conica (
The current study represents comparative analysis of localization of 28S rDNA and telomeric (TTAGG)n sequences in this group. Telomeric repeats exhibited very conservative localization, only in terminal areas of all chromosomes, and no interstitial telomeric sites. This may indicate that the karyotype evolution of these species did not include chromosome structural reorganizations involving terminal regions of chromosomes (for example pericentric inversions). However, interstitial telomeric sequences have previously been reported for Acrididae grasshoppers; such localization of clusters of telomeric DNA may be the result of such chromosomal reorganizations (
Fluorescence hybridization in situ (FISH) of the rDNA fragment revealed a consistent pattern of rDNA distribution in chromosomes of the Pyrgomorphidae family. Ribosomal DNA clusters may be found in one pair (S9 in Z. elegans), two pairs (M7, S9, in A. lata) or in all chromosomes (the pericentric regions of chromosomes in P. guentheri). However, in P. guentheri most of the rDNA clusters were very small and only clusters on the chromosomes M7, M8 and S9 were significantly larger. This might be the result of a recent expansion of rDNA repeats in pericentric heterochromatin and the newly arisen rDNA clusters may be silent (
The diversity in the rDNA distribution itself apparently reflects the degree of divergence in the species studied, which belong to different tribes of Pyrgomorphidae. Comparing the patterns of rDNA distribution in the karyotypes of the species studied here with known data on rDNA distribution in karyotypes of other Orthoptera, we may suggest that Pyrgomorphidae are close to the Acrididae family of Orthoptera. In this family, distribution of rDNA is basically limited to one or two pairs of chromosomes in the karyotype (
The authors are grateful to the Center for Microscopy of Biological Objects (Institute of Cytology and Genetics, Novosibirsk, Russia). The authors are also grateful to Master of Biology Aleksejs Cernihs (Riga, Latvia) for the translation of the Russian version of this manuscript into English. The authors would like to thank Dr. František Marec and the anonymous reviewer for their valuable comments and helpful suggestions for the manuscript.
Funding
This work was funded by the research grants from the Russian Foundation for Basic Research #15-04-04816-aproject and the project #0324-2016-0003 of the Federal Research Center Institute of Cytology and Genetics SB RAS.