Research Article |
Corresponding author: Paulo Roberto Affonso ( paulomelloaffonso@yahoo.com.br ) Academic editor: Grazyna Furgala-Selezniow
© 2015 Leandro Argôlo, Paulo Roberto Affonso.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Argôlo LA, Affonso PRAM (2015) First cytogenetic report in Cichlasoma sanctifranciscense Kullander, 1983 (Perciformes, Cichlidae) from northeastern Brazil with inferences on chromosomal evolution of Cichlasomatini. Comparative Cytogenetics 9(4): 671-681. https://doi.org/10.3897/CompCytogen.v9i4.5562
|
Even though genetic aspects of some cichlids have been widely studied over the last decades, little is known about the genomic structure of Cichlidae when compared to the large number of species in the family. In this paper, the first chromosomal data for Cichlasoma sanctifranciscense Kullander, 1983 are presented and discussed based on cytotaxonomic and karyoevolutionary inferences on Cichlasomatini. All individuals shared a diploid number of 2n=48 distributed as 10sm+28st+10a and Ag-NORs on short arms of a submetacentric pair. Heterochromatin was detected at pericentromeric regions of most chromosomes and at terminal sites of a few pairs. GC-rich regions were observed on short arms of two biarmed pairs, including the pair bearing Ag-NORs. Double-FISH with ribosomal probes revealed 18S rDNA clusters coincident with GC-rich regions in two biarmed pairs and 5S rDNA at interstitial location of an acrocentric pair. C. sanctifranciscense shares some symplesiomorphic traits described in Cichlidae (2n=48 and pericentromeric C-bands) while other chromosomal features diverge from the common trend reported in Cichlasomatini, such as multiple 18S rDNA sites combined with high FN values. Finally, the present results are useful to support taxonomic identification once species-specific markers have been provided in C. sanctifranciscense.
Chromosomes, Cichlasomatini , Cytotaxonomy, Ichthyofauna
Cichlids are one of the largest families within vertebrates, including more than 1600 species (
Because of their explosive adaptive radiation (
A compilation of the chromosomal dataset in this family revealed that more than 60% of karyotypes in Cichlidae follow the plesiomorphic condition proposed for the order Perciformes, i.e. 48 chromosomes, mostly acrocentric (
A relatively high number of cytogenetic reports is available in cichlids of the tribe Cichlasomatini (35 species). These data (see Suppl. material
Therefore, cytogenetic studies based on distinct banding methodologies and mapping of ribosomal genes were performed in populations of Cichlasoma sanctifranciscense Kullander, 1983 along isolated hydrographic basins in northeastern Brazil. Besides increasing the chromosomal data in Cichlidae, these results have proved to be informative to evolutionary and cytotaxonomic inferences in Cichlasomatini.
Twenty-one specimens of Cichlasoma sanctifranciscense were collected along three rivers from two large coastal hydrographic basins in Bahia, northeastern Brazil. The sampled rivers were: Contas River (eight males, three females and three juveniles) and Preto do Crisciúma River (two males), both within the Contas River Basin; and Itapicuru-mirim River (four females and one male) in the Itapicuru River basin (Fig.
Map of state of Bahia, northeastern Brazil indicating the collection sites in Itapicuru-mirim (a), Contas (b) and Preto do Crisciúma (c) rivers of Cichlasoma sanctifranciscense specimens (d).
Direct metaphase preparations were obtained from kidney cells (
C-banding (
Fluorescence in situ hybridization using simultaneous 18S and 5S rDNA probes (double-FISH) followed the procedure reported by
The hybridization mix comprised 1 µg of each DNA probe, 10 mg/ml dextran sulfate, 2xSSC, and 50% formamide to a final volume of 30 µl. The mix was dropped onto previously denaturated chromosomes in 70% formamide/2xSSC. Hybridization was carried out overnight at 37 °C in a dark moist chamber. The hybridization signal of 18S and 5S rDNA probes was detected with fluorescein isothiocyanate-avidin conjugate (Sigma-Aldrich®) and anti-digoxigenin-Rhodamine conjugate (Roche®), respectively. Chromosomes were counterstained using DAPI (0.2 mg/mL) in Vectashield Mounting Medium (Vector®) and slides were stored in a dark chamber up to analyses.
All metaphases were photographed by using an Olympus BX-51 epifluorescence microscope equipped with digital camera. Chromosomal images were digitalized in the software IMAGE-PRO PLUS® 6.2.
All specimens of C. sanctifranciscense shared similar chromosomal features independently of collection sites or hydrographic basins. Both males and females presented a modal diploid number of 2n=48 with a karyotype formula of 10sm+28st+10a and a fundamental arm number of FN=86 (Fig.
Giemsa-stained karyotype (a) and metaphases of Cichlasoma sanctifranciscense after C-banding highlighting some non-pericentromeric heterochromatic segments (b), silver nitrate staining with single Ag-NORs (c), base-specific fluorochrome staining with four CMA3+ sites (d) and FISH with 18S rDNA (green) and 5S rDNA (pink) probes (e), as indicated by arrows.
On the other hand, GC-rich regions, i.e. repetitive sequences positively stained by CMA3 and negatively stained by DAPI, were identified at terminal regions on short arms of four chromosomes, including the sm pair bearing active NORs and a st pair (Fig.
Furthermore, the simultaneous hybridization of 18S and 5S rDNA probes showed that 5S rRNA genes are non-syntenic to NORs, occupying the interstitial region of two large acrocentric chromosomes (probably pair 20) (Fig.
The modal number (2n=48) in C. sanctifranciscense follows the plesiomorphic pattern reported in the majority of studied cichlids (
Another chromosomal peculiarity of C. sanctifranciscense refers to 18S rDNA cistrons, since multiple sites were observed by FISH (Fig.
It should be pointed out that most cytogenetic reports in cichlids describe only silver-stained NORs (e.g.
Furthermore, the CMA3+/DAPI signals observed in C. sanctifranciscense were coincident to 18S rDNA sites, reinforcing that NORs in fishes are usually associated with GC-rich heterochromatin (
Differently from 18S cistrons, the 5S rDNA seems to be highly conserved in Cichlidae being primarily located at interstitial region of a single chromosomal pair and non-syntenic to NORs (
In addition to cytogenetic results, this is the first report about the presence of C. sanctifranciscense in the Contas River and Itapicuru River basins. Initially, this species was described as endemic to the São Francisco River basin but further studies reported populations of this species in other basins such as Parnaíba, Capivara (
In conclusion, we provide the first cytogenetic report in Cichlasoma sanctifranciscense, adding new data about the trends of chromosomal evolution of Cichlidae. The present results are also useful to cytotaxonomic studies since peculiar species-specific cytogenetic features combined with absence of interpopulation differences are described. Based on the available karyotypic data in Cichlasomatini, which includes structural and numerical rearrangements as well as dynamic organization of ribosomal cistrons, this tribe can be characterized by high chromosomal evolutionary rates. This evidence, as corroborated by recent reports (
We are grateful to FAPESB (process PNE0019/2011 and RED0009/2013) for the financial support and ICMBio/SISBIO for the license (number 26752-1) to collect the samples used in this work. All procedures were approved by the Committee of Animal Ethics (CEUA/UESB) from Universidade Estadual do Sudoeste da Bahia (32/2013).
Table S1. Cytogenetic data in Cichlasomatini
Data type: cytogenetic data