Review Article
Print
Review Article
A critical review on cytogenetics of Cucurbitaceae with updates on Indian taxa
expand article infoBiplab Kumar Bhowmick, Sumita Jha§
‡ Scottish Church College, Kolkata, India
§ University of Calcutta, Kolkata, India
Open Access

Abstract

The cytogenetic relationships in the species of Cucurbitaceae are becoming immensely important to answer questions pertaining to genome evolution. Here, a simplified and updated data resource on cytogenetics of Cucurbitaceae is presented on the basis of foundational parameters (basic, zygotic and gametic chromosome numbers, ploidy, genome size, karyotype) and molecular cytogenetics. We have revised and collated our own findings on seven agriculturally important Indian cucurbit species in a comparative account with the globally published reports. Chromosome count (of around 19% species) shows nearly three-fold differences while genome size (of nearly 5% species) shows 5.84-fold differences across the species. There is no significant correlation between chromosome numbers and nuclear genome sizes. The possible trend of evolution is discussed here based on molecular cytogenetics data, especially the types and distribution of nucleolus organizer regions (NORs). The review supersedes the scopes of general chromosome databases and invites scopes for continuous updates. The offline resource serves as an exclusive toolkit for research and breeding communities across the globe and also opens scope for future establishment of web-database on Cucurbitaceae cytogenetics.

Keywords

chromosome, genome size, karyotype, NORs, ploidy

Introduction

The family Cucurbitaceae contains an extensive range of diversity consisting of about 1000 species spread over 96 genera (Renner and Schaefer 2017). The diversity of plant families is associated with variation in genome sizes and chromosome numbers as a result of enormous adaptive radiation (Soltis et al. 2004; Lysák and Schubert 2013). The viewpoint of evolution has been changed with the understanding of whole genome duplication (WGD) (Soltis et al. 2014) followed by core-eudicot hexaploidy (Wang et al. 2018). A cytogenetic database is essential to gain insights into evolution by supplementing phylogeny trees with chromosome number information (Mota et al. 2016) to upgrade knowledge on plant systematics (Soltis et al. 2014; Viruel et al. 2021). Cucurbitaceae, being the fourth most important and one of the earliest consumed vegetables yielding family, has coped with extreme climates, extensive human intervention and a huge domestication syndrome (Chomicki et al. 2020). Considerable advances have been made in molecular phylogeny (Renner and Schaefer 2016; Bellot et al. 2020; Chomicki et al. 2020; Guo et al. 2020) and genomics (CuGenDB, http://cucurbitgenomics.org) (Zheng et al. 2019). We had previously discussed about the gaps in cytogenetic studies (Bhowmick and Jha 2015b) which has been surmounted with the advent of molecular cytogenetics.

Currently, we have collated the cytogenetic reports of Cucurbitaceae globally and integrated our own findings for a collective interpretation. The review attempts to address i) the trend of chromosome evolution in specific tribes and species based on available information, ii) correlation between chromosome numbers and ploidy or genome size in the studied taxa and iii) the requirement of an exclusive cytogenetic catalogue for genome researchers, taxonomists and breeders working on Cucurbitaceae.

Methodological approaches

Data compilation

The data have been collated as per Schaefer and Renner (2011) after consultation of books, Chromosome atlases, research articles and public resources like Chromosome Counts Database (CCDB; http://ccdb.tau.ac.il/) (Rice et al. 2015), The Index to Plant Chromosome Numbers (IPCN, http://legacy.tropicos.org/Project/IPCN) (Goldblatt and Lowry 2011) and The Plant DNA C-values database (Pellicer and Leitch 2020) (https://cvalues.science.kew.org/).

Chromosome analysis in the Cucurbit species ocurring in India

Presently an enzymatic maceration and air drying (EMA) method followed by flurochrome banding has been employed as per our previous protocols (Bhowmick et al. 2012, 2016; Bhowmick and Jha 2015a, 2019, 2021) to represent fresh karyotypes of seven agriculturally important cucurbit species (Table 1) belonging to Benincaseae and Sicyoeae. Fresh and healthy roots were used from different sources (like germinating seeds, seedlings and underground root stocks). Roots were pretreated with 0.002 M hydroxyquinoline and fixed in 1:3 aceto-methanol solution. The standardization of EMA- fluorescence banding was conducted for the different species. In brief, fixed roots were digested in enzyme mixture [1% Cellulase (Onozuka RS), 0.75% Macerozyme (R-10), 0.15% Pectolyase (Y-23), 1 mM EDTA] for 40–45 min at 37 °C, macerated on slides, air-dried, stained with 2% Giemsa solution (Merck, Germany) and plates selected for karyotyping. After de-staining, slides were kept in McIlvaine buffer, stained with 0.1 µg mL-1 DAPI for 15–20 min in darkness. For CMA staining, slides were incubated in 0.1 mg mL-1 CMA for 15–25 min in darkness. For meiotic chromosomes, fixed anthers were digested in enzyme mixture for 5–8 min, macerated on slides and DAPI staining protocol was followed with minor modifications. All slides were mounted in non-fluorescent glycerol and chromosome plates were observed under a Zeiss Axioscop 2 fluorescence microscope (using UV and BV filter cassettes for DAPI and CMA stains, respectively). Images were captured using the attached ProgRes MFscan Jenoptik D07739 camera and ProgRes CapturePro 2.8.8 software.

Table 1.

Chromosome numbers and nature of fluorescent bands in some cucurbit species occurring in India.

Tribes Species (common name, status of cultivation/ wild) Collection site, Latitude/ Longitude Fruit image 2n CMA bands DAPI bands (Non-nucleolar)
Nucleolar Non-nucleolar
Sicyoeae Luffa acutangula Linnaeus, 1753 (ridged gourd, cultivated) Bhubaneswar, Odisha, 20.2960°N, 85.8245°E 26 11th , 12th, 13th 12th (centromeric) 1st to 13th (distal)
Luffa cylindrica aegyptiaca Miller, 1768 (sponge gourd, cultivated) Imphal, Manipur, 24.6637°N, 93.906°E 26 12th , 13th 1st , 2nd (distal) 0
Luffa echinata Roxburgh, 1814 (wild) Pantnagar, Uttarakhand, 30.0667°N, 79.019°E 26 11th , 12th , 13th 0 1st to 13th (distal)
Trichosanthes cucumerina Linnaeus, 1753 (wild) NBPGR, Thrissur, Kerala, 10.5276°N, 76.2144°E 22 10th , 11th 0 1st to 11th (distal)
Trichosanthes cucumerina ssp. cucumerina Anguina (snake gourd, cultivated) Bengaluru, 12.9716°N, 77.5946°E 22 10th , 11th 2nd (distal) 0
Trichosanthes dioica Roxburgh, 1832 (pointed gourd, cultivated) Bhagalpur, Bihar, 25.2414°N, 86.9924°E 22 (female) 0 7th , 8th , 10th (distal) 1st to 11th
22 (male) 0 0 1st to 11th
Benincaseae Benincasa hispida Thunberg, 1784 (ash gourd, cultivated) Imphal, Manipur 24.6637°N, 93.906°E 24 12th 9th (distal) 0
Coccinia grandis Linnaeus, 1767
(ivy gourd, restricted cultivation)
Nagpur, Maharashtra, 21.1458°N, 79.0881°E 24 (female) 8th, 12th * 1st to 5th, 8th to 12th (centromeric) 0
24 (male) 8th, 12th * 1st to 5th, 8th, 10th to 12th (centromeric) 0

Statistical analyses

Statistical analysis involving foundational cytogenetic parameters have been demonstrated to imply significant knowledge on chromosomal evolution within a group (Winterfeld et al. 2020). Considering the lack of hypotheses, we have tested for correlation between the dependent variables (2C genome size, MCL and HCL) and predictor variables [chromosome number (2n) and ploidy level (pl)] and also calculated linear models for regression analysis using IBM SPSS (v23, free).

The modern cytogenetic catalogue of cucurbitaceae

Along with the global review, fresh EMA based somatic plates and idiograms (Figs 13) of Indian species are presented here. We retain the previous designation of 10 tribes as ‘understudied’ (Bhowmick and Jha 2015b), excluding Indofevilleeae, having no cytological reports.

Figure 1.

Somatic metaphase chromosomes and idiograms of Luffa species (2n = 26) stained with Giemsa (A, D, G), DAPI (B, E, H) and CMA3 (C, F, I) A–C L. acutangula D–F L. aegyptiaca cylindrica G–I L. echinata. Arrows indicate satellited chromosomes in Giemsa plates and CMA+ve signals in C, F, I. Corresponding somatic idiograms (haploid set) of: J L. acutangula K L. aegyptiaca L L. echinata, showing DAPI+ve (blue) and CMA+ve (golden yellow) bands. Scale Bars: 5 µm

Figure 2.

Somatic metaphase chromosomes and idiograms of Trichosanthes species stained with Giemsa (A, D, I, L), DAPI (C, E, J, M) and CMA3 (B, F, K, N) A–C T. cucumerina ssp. cucumerina (2n = 22), D–F Trichosanthes cucumerina ssp. cucumerina ‘Anguina’ (2n = 22) I–K T. dioica (male, 2n = 22) L–N T. dioica (female, 2n = 22). Arrows indicate satellited chromosomes in Giemsa plates and CMA+ve signals in B, F, K, N. Corresponding somatic idiograms (haploid set) of: G T. cucumerina ssp. cucumerina H Trichosanthes cucumerina ssp. cucumerina ‘Anguina’ O T. dioica male plant P T. dioica female plant. Blue and golden yellow bands in idiograms indicate DAPI+ve and CMA+ve signals, respectively. Scale Bars: 5 µm

Figure 3.

Somatic metaphase chromosomes and idiograms of two Benincaseae species (2n = 24) stained with Giemsa (A, D, G), DAPI (B, E, H) and CMA3 (C, F, I) A–C Benincasa hispida D–F Coccinia grandis (female plant) G–I Coccinia grandis (male plant). Arrows indicate satellited chromosomes in Giemsa plates and distal CMA+ve signals in C, F, I. Note the longest Y chromosome without any CMA band in G–I and centromeric CMA+ve signals in F, I. Corresponding somatic idiograms (haploid set) of: J Benincasa hispida K Coccinia grandis (female plant) L Coccinia grandis (male plant) with CMA+ve (golden yellow) bands. Note the X chromosome remaining indistinguishable in L. Scale Bars: 5 µm

Chromosome numbers

Currently, chromosome counts are available for 188 species (~19%) belonging to about 44 genera (~46%) of the 15 tribes, including the less attended ‘understudied tribes’. Within the ‘understudied tribes’, chromosome counts are available for only 42 species (out of almost 310) belonging to 17 genera (out of nearly 44). The basal number ranges from x/n = 5 (Thladiantha Bunge, 1833) to x/n = 15 (Zanonia Linnaeus, 1753) in these tribes (Table 2). Polyploidy has been abundantly reported in Gomphogyneae. Momordiceae have almost 60 species (Schaefer and Renner 2011) of which reports are known in nearly 11 species. The dibasic condition is noticed in Momordica Linnaeus, 1753 (x = 11 and 14) (Table 3) while polyploidy is detected in M. charantia Linnaeus, 1753 and M. dioica Willdenow, 1805 (2n = 56). M. cymbalaria Hooker, 1871, has the lowest count (2n = 18). In Bryonieae the X-Y sex determination system has been analysed in Bryonia Linnaeus, 1753 as the model along with Ecballium Richard, 1824 (Bhowmick and Jha 2015a). Chromosome counts are reported so far in 10 species of Bryonia (x = 10) and its sister genus Ecballium (x = 12 or x = 9, Table 4). Polyploidy is frequent in Bryonia. Sicyoeae is largest in terms of species (~264–266 species) (Schaefer and Renner 2011) of which cytological reports are known in around 14% species belonging to 9 genera (Table 5). Sicyoeae species range from x = 8 to x = 14 (Table 5). Trichosanthes Linnaeus, 1753 and Luffa Miller, 1754 have x = 11 and x = 13, respectively (Table 1). The less prevalent numbers include x = 12, x = 8 and x = 9 (Table 5). The possibility of multiple base number is noted in Frantzia Pittier, 1910 (x = 12/14) and Sicyos Linnaeus, 1753 (x = 12/13/14). Natural tetraploids are known in two species of Trichosanthes while the majority are diploids. Benincaseae is the second largest tribe comprising of 204–214 species in 24 genera (Schaefer and Renner 2011). Cytological reports are known in around 35% species (76 species of which 41 belong to Cucumis Linnaeus, 1753) of 12 genera (Tables 6, 7). x = 12 is the prevalent condition in Benincaseae (Tables 1, 6, 7). Dual base numbers are noted in the widely studied Cucumis (x = 7, 12). Coccinia Wight et Arnott, 1834 (x = 12) may also possess dual base numbers (x = 10 in C. trilobata Cogniaux, 1895). Molecular cytogenetics of Cucumis sativus Linnaeus, 1753 has demonstrated the evolution of x = 7 from x = 12 in Benincaseae. x = 11 has been confirmed in Citrullus Schrader, 1836 and Lagenaria. The base number of Melothria Linnaeus, 1753, Solena Loureiro, 1790 and Zehneria Endlicher, 1833 can be x = 11 or x = 12 or both (Table 6). Cases of natural polyploidy are noted only in four species of Cucumis (Table 7). Cytogenetic information is available for 17 species in three genera of Cucurbiteae with x = 10 and many polyploids (Table 8). The zygotic chromosome numbers of Luffa, Trichosanthes, Benincasa Savi, 1818 and Coccinia, corroborate the previous reports (Figs 13, Table 1).

Table 2.

Cytogenetic reports in the understudied tribes of Cucurbitaceae #.

Tribe and Genera Species studied Chromosome no. Ploidy, Genome size, Chromosome features References
x 2n n
Gomphogyneae
Gomphogyne Griffith, 1845
G. cissiformis Griffith, 1837 32a 16b Tetraploidc, autopolyploidd; 10 secondary constrictions, one pair satellitede; II, III, IV in meiosisf CCDB b; Kumar and Subramaniam (1987)a, Singh (1990)a,d, Roy et al. (1991)a,c,e,f
Hemsleya F.B. Forbes et Hemsley, 1888 H. amabilis Diels, 1912, H. carnosiflora Wu et Chen, 1985, H. chinensis Forbes et Hemsley, 1888, H. emeiensis Shen et Chang, 1983, H. graciliflora Cogniaux, 1916, H. heterosperma Wallich, 1831, H. macrocarpa Cogniaux, 1916, H. panacis-scandens Wu et Chen, 1985, H. sphaerocarpa Kuang et Lu, 1982 7a 28b, 22c, 24d, 26e, 32f, 40g, 42h 14h Tetraploidi, aneuploidsj Samuel et al. (1995) a-j, Anmin et al. (2011)b, h
Gynostemma Blume, 1825 G. cardiospermum Oliver, 1892 11a 66b Hexaploidc IPCN a-c
G. guangxiense Chen et Qin, 1988 22 a Diploid b IPCN a,b
G. laxiflorum Wu et Chen, 1983 22 a Diploid b IPCN a,b
G. longipes Wu et Chen, 1983 22a, 44b Polyploidc IPCN a-c
G. microspermum Wu et Chen, 1983 22a Diploid b IPCN a,b
G. pedatum Blume, 1825 12a 24b Diploidc Roy et al. (1991) a,b,c
G. pentagynum Wang, 1989 22a Diploid b IPCN a,b
G. pentaphyllum Thunberg, 1784 22a, 24b, 64c, 66d Diploide, triploidf, hexaploidg; 2C (flow cytometry): 3.62pgh; 17M+14sm+2sti; CSR: 2.16–4.09 µmj 5S (8), 45S (10) rDNA and telomeric signalsk IPCN a,b,c,e,f; Zhang et al. (2013)h, Pellerin et al. (2018)d,g,i,j,k
G. pentaphyllum var. dasycarpum Wu, 1983 22a, 33b, 44c Polyploidd IPCN a-d
G. pentaphyllum var. pentaphyllum Thunberg, 1784 22a, 44b, 66c, 88d Polyploide IPCN a-e
G. yixingense Wang et Xie, 1981 88a Polyploidb IPCN a,b
Triceratieae 8a - Roy et al. (1991) a
Fevillea Linnaeus, 1753
Zanonieae Zanonia Linnaeus, 1753 Z. indica Linnaeus, 1759 15a 30b 15c Autoploidd; Metacentric chromosomese; CSR: 1.10-1.98 μmf Lekhak et al. (2018) a-f
Actinostemmateae A. lobatum (Maxim.) Maxim. ex Franch. & Sav. 16a - IPCN a
Actinostemma Griffith, 1841 A. tenerum Griffith, 1837 16a Diploidb; 7M +1smc; CSR: 2.88–4.02 µmd; 45S (1) rDNA and 45S+5S (1) rDNA adjacent signale; telomeric repeat signalsf Pellerin et al. (2018) a-f
Thladiantheae T. calcarata Clarke, 1876, T. cordifolia Blume, 1826 T. davidii Franchet, 1886, T. dentata Cogniaux, 1916, T. lijiangensis Lu et Zhang, 1981, T. nudiflora Hemsley, 1887, T. pustulata Léveillé, 1916
Thladiantha Bunge, 1833 3a, 5b, 9c 18d 5e, 9f Diploidg Darlington and Janaki Ammal (1945) c; Roy et al. (1991)a,b,d,e,g, IPCNd,f
T. dubia Bunge, 1833 18a, 22b Diploidc; 7M+1sm+1std; CSR: 2.60–4.10 µme; 45S (4) and co-localized 45S+5S (1) rDNA signalsf; telomeric repeat signalsg Samuel et al. (1995) b, Pellerin et al. (2018)a,c,d,e,f,g
Baijiania Lu et Li, 1993 B. yunnanensis Lu et Zhang, 1984 32a - IPCN a
Siraitieae Siraitia Merrill, 1934 S. grosvenorii Swingle, 1941 28a 45S (6) and 5S (2) rDNA signalsb IPCN a, Li et al. (2007)b
Joliffieae Telfairia Hooker, 1827 T. occidentalis Hooker, 1871 22a, 33b, 44c Diploidd, aneuploide, triploidf, Tetraploidg; 1 Bh Uguru and Onovo (2011) a-h
T. pedata Sims, 1826 22a - Bhowmick and Jha (2015)a
Schizopeponeae Herpetospermum Hooker, 1867 H. pedunculosum Seringe, 1828 11a 45S (14), 5S (2) rDNA signalsb Xie et al. (2019a) a,b
Schizopepon Maximowicz, 1859 S. bryoniifolius Maximowicz, 1859 10a 20b - Roy et al. (1991) a, IPCNb
Coniandreae Apodanthera Arnott, 1841 A. undulata Gray, 1853 14a - IPCN a
Corallocarpus Bentham et Hooker, 1867 C. epigaeus Rottler, 1803 26a 13b - Beevy and Kuriachan (1996) a,b
C. welwitschii Naudin, 1863 72a - Singh (1990)a
Ibervillea Greene, 1895 11a, 12b - Darlington and Janaki Ammal (1945) a,b
Kedrostis Medikus, 1791 K. africana Linnaeus, 1753 40a 2C (feulgen densitometry): 0.8 pgb; 2C (flow cytometry): 1674 Mbpc Bennet et al. (1982)a,b, Plant C DNA Values Databasec
K. foetidissima Jacquin, 1788 26a 13b Beevy and Kuriachan (1996) a,b
K. rostrata Rottler, 1803 13a 26b 13c - IPCN a-c
Seyrigia Keraudren, 1960 13a - IPCN a
Table 3.

Cytogenetic information in Momordica (Momordiceae)#.

Species Chromosome no. Ploidy, Genome size, Chromosome features References
2n n
M. balsamina Linnaeus, 1753 22a Diploidb; two chromosomes with double constrictionsc; CSR:0.65–1.98µmd; MCL:1.30µme; TCL: 28.61µmf Bharathi et al. (2011) a-f
M. charantia 22a 11b Diploide, 2C (Feulgen densitometry): 4.10pg f, 2C (flow cytometry): 1.43pgg; chromosomes mostly metacentric, few submetacentric and subtelocentrich; 2 chromosomes with satellitesi; CSR: 1.26-1.81µmj; 45S (4) and 5S (2) rDNA signalsk Plant DNA C-Values Databasef; Bharathi et al. (2011)a,i ; Barow and Meister (2003)g; Lombello and Pinto-Maglio (2007)a,b,h; Bharathi et al. (2011); Waminal and Kim (2012)a,e,h,j,k; Kausar et al. (2015)a; Kido et al. (2016)a,i
M. charantia var. charantia 22a 11b Diploidc; 2C (flow cytometry): 0.72pgd; NORs: 4e; nucleolar and centromeric CMA+ bandsf ; CSR: 1.27-3.07µmg; MCL: 1.97 µmh; HCL: 21.77µmi Ghosh et al. (2018) a-f; Ghosh et al. (2021)a,c,d,g,h,i
M. charantia var. muricata Chakravarty, 1982 22a 11b Diploidc; 2C (flow cytometry): 1.16pgd; NORs: 6e; nucleolar and centromeric CMA+ bandsf; CSR: 1.64-3.13µmg; MCL: 2.19µmh; HCL: 24.19µmi Ghosh et al. (2018) a-f; Ghosh et al. (2021)a,c,d,g,h,i
M. cochinchinensis Loureiro, 1790 28a 14b Diploidc, 2C (flow cytometry): 2.64pgd, 6e chromosomes with secondary constrictions; CSR:1.16–2.03µmf /1.71-3.17μmg ; MCL: 2.27µmh; HCL: 31.86μmi; 45S (8) and 5S (2) rDNA signalsj IPCN b; Xie et al. (2019a)a,j; Bharathi et al. (2011)a,e,f; Ghosh et al. (2021)a,c,d,g,h,i
M. cymbalaria 18a 8b, 9c, 11d Diploide, 2C (flow cytometry): 3.74 pgf; 2g–4h chromosomes with secondary constrictions; CSR: 2.71-4.57μmi; MCL:3.75μmj; HCL: 33.79μmk IPCN b; CCDBb,d; Bharathi et al. (2011)a,c,e,g; Ghosh et al. (2021)a,e,f,h,i,j,k
M. denudata Clarke, 1879 14a - IPCN a
M. dioica Willdenow, 1805 28a, 56b Diploidc; 2C (flow cytometry): 3.36 pgd, 2e-12f chromosomes with secondary constrictions; CSR: 2.04-3.58μmg; MCL: 2.75µmh; HCL: 77.10μmi; 45S (4) and 5S (2) rDNA signalsj Bharathi et al. (2011) a,c,e; Xie et al. (2019a)a,j; Ghosh et al. (2021)b,d,f,g,h,i
M. foetida Schumacher, 1827 44a - Behera et al. (2011)a
M. rostrata Zimmermann, 1922 22a - Behera et al. (2011)a
M. sahyadrica Kattukunnel et Antony, 2007 28a 2 chromosomes with secondary constrictionsb; CSR: 0.73–1.83µmc; TCL: 37.53µmd, MCL: 1.34µme Behera et al. (2011)a-e
M. subangulata Blume, 1826 56a 2C (flow cytometry): 3.06pgb; 8 chromosomes with secondary constrictionsc; CSR: 1.52-3.11μmd; HCL: 60.30μme Ghosh et al. (2021) a-e
M. subangulata subsp. renigera Don, 1834 56a 4 chromosomes with secondary constrictionsb; CSR: 0.52-1.26µmc; MCL: 0.93µmd; TCL 51.88µme Bharathi et al. (2011) a-e
M. tuberosa Miquel, 1855 22a 11b - IPCN a,b; CCDBa,b
Table 4.

Chromosome number and genome size in Bryonieae#.

Genera Species studied Chromosome no. Genome size References
x 2n n
Bryonia 10a Darlington and Janaki Ammal (1945) a
B. alba Linnaeus, 1753 10a 20b 10c 2C (flow cytometry): 5827Mbpd CCDB d , Volz and Renner (2008) a,b,c
B. aspera Ledebour, 1843 10a 40b, 60c 20d, 10e - Kumar and Subramaniam (1987) c, Volz and Renner (2008)a,b,d,e
B . cretica Linnaeus, 1753 10a 60b 30c - Volz and Renner (2008) a,b,c
B. dioica Jacquin, 1774 10a 20b 10c 2C (microdensitometry): 4.01pgd; 2C (flow cytometry): 5522Mbpe CCDB d,e, Volz and Renner (2008)a,b,c
B. macrostylis Heilbronn et Bilge, 1954 10a - IPCN a
B . marmorata Petit, 1889 40a 20b - Volz and Renner (2008) a,b
B . monoica Aitchison et Hemsley, 1886 10a 20b - Volz and Renner (2008) a,b
B. multiflora Boissier et Heldreich, 1849 10a - Volz and Renner (2008) a
B. syriaca Boissier, 1856 10a 20b - Volz and Renner (2008) a,b
B. verrucosa Aiton, 1789 10a 20b 10c 2C (flow cytometry): 2.09pgd; 4504Mbpe CCDB d,e, Volz and Renner (2008)a–c
Ecballium 12a Darlington and Janaki Ammal (1945) a
E. elaterium Linnaeus, 1753 18a 12b 2C (flow cytometry): 2442Mbpc Veselý (2012)c , Volz and Renner (2008)b
E. elaterium subsp. dioicum Battandier, 1989 18a, 24b 9c, 12d - Volz and Renner (2008) a-d
E. elaterium Linnaeus, 1753 subsp. elaterium 18a 9b - Volz and Renner (2008) a,b
Table 5.

Cytogenetic information in Sicyoeae#.

Genera studied Species studied Chromosome no. Ploidy, Genome size, Chromosome features References
x 2n n
Cyclanthera Lilja, 1870
8a Darlington and Janaki Ammal (1945) a
C. pedata (L.) Schrader, 1831 16a, 32b 8c Diploide Roy et al. (1991) a,c,e, Samuel et al. (1995)b
Echinocystis Torrey et Gray, 1840 8a 16b Bhowmick and Jha (2015b) b, Darlington and Janaki Ammal (1945)a
E. lobata Michaux, 1803 16a, 32b Tetraploidc; 2C (flow cytometry):1.49pgd IPCN a,b, Plant DNA C-Values Database c,d
E. macrocarpa Greene, 1885 32a - Whitaker (1950) a
Echinopepon Naudin, 1866 E. wrightii Gray, 1853 12a - IPCN a, CCDBa
Frantzia 12a, 14b - Schaefer and Renner (2011)a,b
Hodgsonia Persson, 1953 H. macrocarpa var. capniocarpa Ridley, 1920 18a - IPCN a, CCDBa
Luffa 13a Darlington and Janaki Ammal (1945) a
L. acutangula 13a 26b 13c Diploidd; CSR:1.39–3.20μme; 18m+2sm+6m.stf; NORs:6g; distal DAPI and nucleolar CMA signalsh Kumar and Subramaniam (1987) a,b, IPCNc, Bhowmick and Jha (2021)b,d-h
L. acutangula var. acutangula 13a - Beevy and Kuriachan (1996) a
L. acutangula var. amara Clarke, 1879 13a - Beevy and Kuriachan (1996) a
L. aegyptiaca (syn L. cylindrica Roemer, 1846) 13a 26b 13c Diploidd, 2C (flow cytometry): 1.56 pge; 2C (Feulgen densitometry): 1.7pgf; CSR: 1.60–2.06μmg; 24M+1smh; 22m+ 4m.sti; NORs:2j; nucleolar and distal CMA signalsk; 45S (10) and 5S (2) rDNA signalsl Bennet et al. (1982)b,d,f, Kumar and Subramaniam (1987)a,b, Waminal and Kim (2012)b,d,g,h,l, Bhowmick and Jha (2015a)b,c,d,e,i,j,k
L. echinata 26a, 39b, 52c 13d Diploide; CSR 2.44–3.96 μmf; 16m+4sm+6m.stg; NORs: 6h; Distal and intercalary DAPI and nucleolar CMA signalsi Kumar and Subramaniam (1987) a-e, Bhowmick and Jha (2021)a,e-i
L. graveolens Roxburgh, 1832 13a - Kumar and Subramaniam (1987) a
L. hermaphrodita Singh et Bhandari, 1963 13a - IPCN a
L. operculata Linnaeus, 1759 13a 26b 13c - Kumar and Subramaniam (1987) a,b, IPCNc
Sicyos (75, includes Sechium, Microsechium) 12a 24b - Darlington and Janaki Ammal (1945) a,b
S. angulatus 12a 24b Diploidc; CSR: 1.9-4.6µmd; 4 adjacent 45S+5S rDNA signalse Waminal and Kim (2015) a-e; IPCNb
S. australis Endlicher, 1833 24a, 26b 12IIc, 13IId IPCN a-d, CCDBa-d
S. edulis Jacquin, 1760 (syn of Sechium edule) 13a 26b, 28c 12d, 13e Diploidf; metacentric and submetaccentric chromosomesg; CSR: 2.69–5.38µmh; 45S (6), 5S (2) rDNA and telomeric repeat signals (28)i Beevy and Kuriachan (1996) a,b,e, Pellerin et al. (2018)c,f,g,h,i, Ting et al. (2019)c, IPCNd, CCDBd
S. nihoaensis St. John, 1970 12a - IPCN a, CCDBa
Sechium compositum Smith, 1903 (syn. Microsechium compositum) 14a - IPCN a, CCDBa
S. hintonii Wilson, 1958 (syn Microsechium hintonii) 14a - IPCN a, CCDBa
Trichosanthes (100) 11a Darlington and Janaki Ammal (1945) a
T. anaimalaiensis Beddome, 1864 22a 11b - Beevy and Kuriachan (1996) a,b
T. boninensis Nakai et Tuyama, 1928 22a - IPCN a
T. bracteata Lamarck, 1797 11a 22b, 44c, 66d - Kumar and Subramaniam (1987) a,b, Roy et al. (1991)c,d
T. bracteata var. bracteata 11a, 22b - Beevy and Kuriachan (1996) a,b
T. chingiana Handel-Mazzetti, 1936 22a - IPCN a
T. costata Blume, 1826 (syn Gymnopetalum chinense Loureiro, 1790) 22a Diploidb; 45S (6) and 5S (4) rDNA signalsc Kumar and Subramaniam (1987) a, Xie et al. (2019a)b,c
T. cucumerina 22a 11b Diploidc; 12m+4M+2sm+4sm.std; CSR: 2.26–4.99µme; 6 chromosomes with double constrictionsf; NORs: 4g; nucleolar CMA and distal DAPI bandsh Bhowmick and Jha (2019) a-h
T. cucumerina ssp. cucumerina Anguina 11a 22b 11c, 22d, 32e, 33f Diploide; 2C (Feulgen densitometry): 2.2pgf; CSR: 2.77–5.01μmg; 12m+4M+2sm+4sm.sth; 6 chromosomes with double constrictionsi; NORs: 4j; nucleolar and distal CMA bandsk; 45S (6) and 5S (2) rDNA signalsl Kumar and Subramaniam (1987) a, Bhowmick and Jha (2019)b,c,e,g,h,i,j,k, Xie et al. (2019a)b,l, IPCNc-f
T. dioica 11a 22b 11c Diploidd; 2C (flow cytometry): male-2.27pg, female- 2.32 pge; 12m+6Sm +2St+2Sm.tf; distal DAPI bandsg; distal CMA bands in femalesh; 1 rod bivalent in meiosisi Kumar and Subramaniam (1987) a, Guha et al. (2004)b,d,f,h, Bhowmick and Jha (2015a)b,c,d,e,f,g,h,i
T. dunniana Léveillé, 1911 22a Diploidb; 45S (6) and 5S (2) rDNA signalsc Xie et al. (2019a) a-c
T. himalensis Clarke, 1879 11a - Roy et al. (1991) a
T. hupehensis Cheng et Yueh, 1974 22a - IPCN a, CCDBa
T. kirilowii Maximowicz, 1859 60a, 66b, 88c, 110d Hexa-, octa-, decaploide;CSR: 2.3-3.5μmf; 45S (4), 5S (4) and 45S +5S (6) adjacent rDNA signalsg IPCN a, CCDBa, Waminal and Kim (2015)b,c,d,e-g
T. kirilowii var. japonica 11a - Roy and Saran (1990)a
T. lepiniana Naudin, 1868 44a 11b 1 Bc Roy et al. (1991) b,c, IPCNa, CCDBa
T. lobata Roxburgh, 1832 11a 11b - Kumar and Subramaniam (1987) a, Beevy and Kuriachan (1996)b
T. mianyangensis Yueh et. Liao, 1992 88a - IPCN a, CCDBa
T. nervifolia Linnaeus, 1753 11a - Beevy and Kuriachan (1996) a
T. ovigera Blume, 1826 22a Diploidb; 45S (10) and 5S (2) rDNA signalsc Xie et al. (2019a) a-c
T. palmata Linnaeus, 1759 22a, 44b, 66c 11d IPCN a-d
T. pedata Merril et Chun, 1934 22a - IPCN a, CCDBa
T. truncata Clarke, 1879 22a - IPCN a, CCDBa
T. wallichiana Wight, 1840 11a 22b - Kumar and Subramaniam (1987) a,b
Table 6.

Cytogenetic information on Benincaseae#.

Genera studied Species studied Chromosome no. Ploidy, Genome size, Chromosome features References
x 2n n
Benincasa B. fistulosa 24a Diploidb; 45S (4) and 5S (4) signalsc Li et al. (2016) a,b,c
B. hispida 12a 24b 12c Diploidd; 2C (flow cytometry):1.97pge, 2C (feulgen densitometry):2.1pgf; CSR 2.54-4.59µmg; 16m+6Sm+2Sm.th; NORs:2i; distal CMA signalsj; 45S (2) and 45S+5S (2) adjacent rDNA signalsk Plant DNA C-Values Databasef, Waminal et al. (2011)b,d,g,k, Bhowmick and Jha (2015a)b,c,d,e,h,i,j
Citrullus 11a Darlington and Janaki Ammal (1945) a
C. amarus (syn. C. lanatus var. citroides) 11a 22b Diploidc; CSR: 3.1–4.7μmd; 45S (2) and 5S (4) rDNA signalse Reddy et al. (2013) b-d, Waminal and Kim (2015)a-e, Renner et al. (2017)b
C. colocynthis 22a 11b Diploidc; 45S (2) and 45S+5S (2) adjacent rDNA signalsd Beevy and Kuriachan (1996) b, Reddy et al. (2013)a,c,d, Li et al. (2016)a,c,d
C. ecirrhosus 22a 11b Diploidc; 2 satellites detected in meiosisd; 45S (2) and 5S (4) rDNA signalse; regular meiosisf Li et al. (2016) a,c,e, Renner et al. (2017)a,b,c,d,f
C. lanatus 22a 11b Diploidc; CSR: 1.09μm-1.72μmd; 14m+8sme; 45S (2) and 45S+5S (2) adjacent rDNA signalsf; linkage groups hybridized to chromosomesg Beevy and Kuriachan (1996) b, Waminal et al. (2011)a,c,d,e,f, Ren et al. (2012)a,c,g
C. lanatus subsp. lanatus 22a Diploidb; 45S (2) and 5S (4) rDNA signalsc Li et al. (2016) a-c
C. lanatus subsp. mucosospermus Fursa, 1972 22a Diploidb; 45S (2) and 45S+5S (2) adjacent rDNA signalsc Li et al. (2016) a-c
C. lanatus subsp. vulgaris Schrader, 1836 22a Diploidb; 45S (2) and 45S+5S (2) adjacent rDNA signalsc Li et al. (2016) a-c
C. lanatus var. lanatus 22a Diploidb; 45S (2) and 45S+5S (2) adjacent rDNA signalsc Reddy et al. (2013) a-c
C. naudinianus (syn Acanthosicyos naudinianus) 24a Diploidb; 45S (2) and co-localized 45S+5S (2) rDNA signalsc Li et al. (2016) a,b,c
C. rehmii 22a Diploidb; 45S (2) and 5S (2) rDNA signalsc Reddy et al. (2013) a-c, Li et al. (2016)a-c
C. vulgaris Schrader, 1836 22a, 44b 11c Diploidd; 2C: 0.88/0.90pge IPCN a,c,d, Arumuganathan and Earle (1991)e
Coccinia (30) 12a Darlington and Janaki Ammal (1945) a
C. abyssinica Lamarck, 1753 12a 24b - Kumar and Subramaniam (1987) a, Roy et al. (1991)b
C. grandis 12a 24b 12c Diploidd, 2C (Flow cytometry): male- 0.943e/0.92f pg and female- 0.849g/ 0.73h pg; CSR: 1.33-4.71μm (male) and 1.35-2.26µm (female)i; 15m+4M+2sm+2m:sm+1m:st (Y) in male and 14m+6M+2sm+2m:st in femalej; NORs-2k; chromosomal C bandsl; centromeric, nucleolar CMA bandsm; 45S (4)n rDNA signals, 2 signals adjacent to 5So; GISH performedp; repetitive, organellar DNA hybridizedq; centromere immunofluorescencer; heteromorphic sex chromosomes (largest Y)s; X-Y bivalent (meiosis)t Bhowmick et al. (2012) b,c,d,j,k,m,s,t, (2016) b,d,f,h,j,k,n,s, Sousa et al. (2013)b,d,e,g,i,k,l,n,o,r,s,t, Sousa et al. (2017)b,d,k,n,o,p,q,r,s, Xie et al. (2019a)b,n,o
C. hirtella Cogniaux, 1896 24a Diploidb; 2C (flow cytometry): male-0.988pgc; 45S (4) and 45S+5S (2) adjacent rDNA signalsd, repetitive and organellar DNA hybridizede; centromere immunofluorescence performedf Sousa et al. (2017) a-f
C. sessilifolia Sonder, 1881 24a Diploidb; 2C (Flow cytometry): male- 0.984pg, female- 0.998pgc; 45S (4) and 45S+5S (2) adjacent rDNA signalsd; repetitive and organellar DNAe; centromere immunofluorescence performedf Li et al. (2016) a,b,d, Sousa et al. (2017)a–f
C. trilobata 20a Diploidb; 2C (flow cytometry): male- 1.263pg c; 45S (2) and 45S+5S (2) adjacent rDNA signalsd, repetitive, organellar DNA sequence hybridizede Sousa et al. (2017) a-e
Ctenolepis Hooker, 1867 C. garcinii Burman, 1768 24a 12b - Kumar and Subramaniam (1987) a, Beevy and Kuriachan (1996)b
Diplocyclos Endlicher, 1833 D. palmatus 24a Diploidb; 45S (4) and 45S+5S (2) adjacent rDNA signalsc Li et al. (2016) a-c
Lagenaria Seringe, 1825 L. leucantha Rusby, 1896 22a 11b - IPCN a,b, CCDBa,b
L. leucantha var. clavata Makino, 1940 22a - CCDB a
L. siceraria 11a 22b 11c Diploidd, 2C (flow cytometry): 0.734pge; 2C (Feulgen densitometry):1.4pgf; CSR: 0.56–1.06μmg; metacentric and few sub-metacentric chromosomesh; 45S (2) and 45S+5S (2) adjacent rDNA signalsi Darlington and Janaki Ammal (1945) a, Plant DNA C-Values Databasef, Beevy and Kuriachan (1996)c, Achigan-Dako et al. (2008)d,e, Waminal and Kim (2012)b,d,g,h,i, Li et al. (2016)b,d,i, Xie et al. (2019a)b,i
L. siceraria var. macrocarpa 22a - CCDB a
L. vulgaris Seringe, 1825 22a 11b Diploidc; 2C (Feulgen densitometry): 1.40pgd Bennet et al. (1982)a,b,c
Melothria 11a, 12b Darlington and Janaki Ammal (1945) a,b
M. pendula Linnaeus, 1753 24a Diploidb; 45S (2) and 45S+5S (2) adjacent rDNA signalsc Li et al. (2016) a-c
M. perpusilla Blume, 1826 48a - Kumar and Subramaniam (1987) a
M. scabra Naudin, 1866 24a - CCDB a
Peponium Engler, 1897 P. betsiliense Keraudren, 1960 24a - CCDB a
Solena S. amplexicaulis Lamarck, 1785 (syn. S. heterophylla, Melothria heterophylla, Zehneria umbellata) 22a, 24b, 26c, 36d, 48e 11f, 12g, 24h 2-4 Bi Kumar and Subramaniam (1987) a,b,c,e, Roy et al. (1991)d,i, Beevy and Kuriachan (1996)b,g,h, IPCNb,d,e,f,g,h
Zehneria Z. capillacea Jeffrey, 1962 (syn. Melothria capillacea) 22a - CCDB a
Z. indica Loureiro, 1790 (syn. Melothria japonica) 11a 22b 24c Diploidd; 45S (2) and 45S+5S (2) adjacent rDNA signalse Waminal and Kim (2015) a,b,d,e
Z. marlothii Cogniaux, 1962 24a Diploidb; 45S (2) and 45S+5S (2) adjacent rDNA signalsc Li et al. (2016) a,b,c
Z. maysorensis Wight et Arnott, 1834 48a 24b 45S (2) and 5S (2) signalsc Beevy and Kuriachan (1996) a,b, Xie et al. (2019a)a,c
Z. mucronata Blume, 1856 (syn. Melothria mucronata) 22a 12b - Darlington et al. (1956)a, CCDBb
Z. scabra Sonder, 1862 (syn. Melothria punctata) 24a, 48b - CCDB a, Kumar and Subramaniam (1987)b
Z. thwaitesii Schweinfurth, 1868 44a - CCDB a
Table 7.

Cytogenetic features of Cucumis (Benincaseae)#.

Species with subspecies/ varieties Chromosome no. Ploidy, Genome size, Chromosome features References
x 2n n
C. aculeatus Cogniaux, 1895 48a Allotetraploidb; 24IIc IPCN a-c, CCDBa-c
C. africanus Linnaeus, 1782 12a 24b, 48c 12d Diploide; 2C (Feulgen microdensitometry): 1.782pgf; 4 satellited chromosomesg; 45S (4h/6i) rDNA signals, 2 co-localized 45S+5S signalsj IPCN b,c, Yadava et al. (1984)b,d, Ramachandran and Narayan (1985)b,e,f, Yagi et al. (2015)a,b,g,i,j, Zhang et al. (2016)b,e,h,j
C. angolensis Cogniaux, 1881. 24a IPCN a
C. anguria Linnaeus, 1753 24a Diploidb; majorly submetacentric and few nearly metacentric chromosomesc; 1 pair satellitedd; 45S (2) and co-localized 45S+5S (2) rDNA signalse, ScgCP enables chromosome identificationf; GISH reveals cross species relationshipsg Singh and Roy (1974)a-d, Zhang et al. (2015)a,g, (2016)b,e, Li et al. (2018)a,f
C. anguria var. anguria 12a 24b 12c Diploidd; 4 satellited chromosomese; 45S (2) and co-localized 45S+5S (2) rDNA signalsf Yadava et al. (1984) b,c, Yagi et al. (2015)a,d,e,f
C. anguria var. longipes 24a 12b Diploidc; 2C (Feulgen microdensitometry): 1.587pgd Yadava et al. (1984) a,b, Ramachandran and Narayan (1985)a,c,d
C. anguria var. longaculeatus 12a 12.5 Diploidc; 4 satellited chromosomesd; 45S (2) and co-localized 45S+5S (2) rDNA signalse Yagi et al. (2015) a-e
C. asper Cogniaux, 1901 24a Diploidb; 45S (4) and 5S (2) signals detectedc IPCN a, Zhang et al. (2016)a,b,c
C. callosus Rottler, 1803 14a, 24b 12c Diploidd; 2C (Feulgen microdensitometry):1.590pge; 11m+1sm (haploid)f Ramachandran and Narayan (1985) a,d,e, Rajkumari et al. (2013)b,c, (2015)b,c,f
C. cinereusCogniaux, 1901 (syn. Cucumella cinerea) 2C (Feulgen microdensitometry): 0.5pga Bennet et al. (1982)a
C. diniae Raamsdonk et Visser, 1992 48a - IPCN a
C. dinteri Cogniaux, 1901 24a Diploidb; 2C (Feulgen microdensitometry): 2.167pgc IPCN a, Ramachandran and Narayan (1985)a-c
C. dipsaceus Spach, 1838 24a 12b Diploidc; 2C (Feulgen microdensitometry): 2.448pgd; 2m+8sm+2st (haploid)e; 45S (2) and co-localized 45S+5S (2) rDNA signalsf Yadava et al. (1984) a,b, Ramachandran and Narayan (1985)a,c,d, Rajkumari et al. (2015)a,c,e, Zhang et al. (2016)a,c,f
C. ficifoliusRichard, 1847 24a, 48b 12c Diploidd; 2C (Feulgen microdensitometry):1.373pge; 45S (2) and co-localized 45S+5S (2) rDNA signalsf Yadava et al. (1984) a,c, Ramachandran and Narayan (1985)a,d,e, Zhang et al. (2016)b,f
C. figarei Naudin, 1859 48a, 72b Autoallopolyploidc; 2C (Feulgen microdensitometry): 3.886pge; 36IIf IPCN a-f, Ramachandran and Narayan (1985)a,c,e
C. heptadactylis Naudin, 1859 48a 23b, 24c, 52d Autotetraploide; 2C (Feulgen microdensitometry): 2.225pgf; 8 satellited chromosomesg; 45S (8) rDNA signalsh of which 4 co-localized to 5S signalsi or separate 5S (4) rDNA signalsj; 10IV+4IIk; irregular meiosisl IPCN a,e,k, Yadava et al. (1984)a,b,d,e,l, Ramachandran and Narayan (1985)a,e,f, Yagi et al. (2015) a,e,g,h,i, Zhang et al. (2016)a,e,h,j
C. hookeri Naudin, 1870 24a 12b Diploidc Yadava et al. (1984) a,b,c
C. humifructus Stent, 1927 24a Diploidb; 2C (Feulgen microdensitometry): 2.455 pgc Ramachandran and Narayan (1985) a,b,c
C. hystrix Chakravarty, 1952 12a 24b Diploidc; 2m+10sm (haploid)d; 45S (4) and co-localized 45S+5S (2) rDNA signalse; FISH with bulked oligo probe from cucumber chromosome C7f, GISH reveals cross species relationshipsg Rajkumari et al. (2015) b,c,d, Han et al. (2015)f, Zhang et al. (2015)b,g, (2016)a,b,c,e
C. indicus Ghebretinsae et Thulin, 2007 20a Diploidb; 4m+ 6sm (haploid)c Rajkumari et al. (2015) a-c
C. javanicus Miquel, 1856 (syn. Melothria assamica) 12a 24b, 48c - Kumar and Subramaniam (1987) a, CCDBb,c
C. leiospermus Wight et Arnott, 1834 (syn. Melothria leiosperma) 24a - CCDB a
C. leptodermis Schweickerdt, 1933 24a 12b - Yadava et al. (1984) a,b
C. longipes Hooker, 1871 24a - IPCN a
C. meeusei Jeffrey, 1965 48b 22c, 24d Tetraploide; 2C- 3.203pg (Feulgen microdensitometry)f; 45S (6) and co-localized 45S+5S (2) rDNA signalsg Yadava et al. (1984) b,c,d, Ramachandran and Narayan (1985)b,e,f, Zhang et al. (2016)b,e,g
C. melo Linnaeus, 1753 12a 20b, 22c, 24d 12e Diploidf; 2C (Feulgen photometry) : 0.94-1.04pgg, 1.90pgh; 2C (Flow cytometry): 1.05pgi; 14m+10st (2SAT)j; 7m+5sm (haploid)k; 4 satellitesl or 2 satellitesm; CSR1.0-2.1μmn; CMA bands detectedo; 45S (2) and co-localized 45S+5S (2) rDNA signalsp; centromeric, telomeric, nulceolar and SSR probe hybridization reveals chromosomal relationq; ScgCP applied for comparative chromosome rearrangement studywith C. sativusr; FISH with bulked oligo probe from cucumber chromosome C7s; novel centromeric satellite DNA hybridized on chromosomest; GISH reveals cross species relationshipsu; infraspecific positional differences in 45S (terminal and interstitial) -5S (terminal, subterminal and interstitial) rDNA signalsv CCDB b,c, Plant DNA C-Values Databaseh, Kumar and Subramaniam (1987)a, Arumuganathan and Earle (1991)g, Marie and Brown (1993)i, Zhang (2005)d,f,j,u, (2015)d,t, Song and Kim (2008)d,f,m, Han et al. (2009)d,e,f,q, (2015)s, Liu et al. (2010)d,f,q, Hoshi et al. (2013)d,f,l,n,o,p, Lou et al. (2014)r, Rajkumari et al. (2013)d,e, (2015)d,f,k, Setiawan et al. (2018)d,v, (2020)d,t
C. melo subsp. melo 12a 24b Diploid; 45S (4) and 5S (2) rDNA signalsc Zhang et al. (2016) a-c
C. melo subsp. agrestis Naudin, 1859 12a 24b Diploid; 45S (4) and 5S (2) rDNA signalsc Zhang et al. (2016) a-c
C. melo var. agrestis 12a 24b 12c Diploidd; 2C (Feulgen microdensitometry): 2.483pge; 10m+2sm (haploid)f; 1 pair satellitedg Singh and Roy (1974)b,d,g, Yadava et al. (1984)a-d, Ramachandran and Narayan (1985)b,d,e, Beevy and Kuriachan (1996)b,c, Rajkumari et al. (2015)b,d,f
C. melo var. conomon Thunberg, 1780 24a Diploidb; 7m+3sm+2st (haploid)c Zhang et al. (2005) a, Rajkumari et al. (2015)a,b,c
C. melo var. flexuosus Linnaeus, 1763 24a - IPCN a
C. melo var. inodorus Jacquin, 1832 24a Diploidb; 2C (flow cytometry): 0.64pgc Karimzadeh et al. (2010) a-c
C. melo var. melo 24a 12b Diploidc; 4m+8sm (haploid)d Beevy and Kuriachan (1996) a,b, Rajkumari et al. (2015)b,c,d
C. melo var. momordica Roxburgh, 1832 24a 12b Diploidc; 2C (Feulgen microdensitometry): 2.291pgd; 6m+5sm+1st (haploid)e Yadava et al. (1984) a,b, Ramachandran and Narayan (1985)a,c,d, Rajkumari et al. (2015)a,c,e
C. melo var. muskmelon 24a 12b Yadava et al. (1984) a,b
C. melo var. utilissimus Roxburgh, 1832 24a 12b Diploidc; 2C (Feulgen densitometry): 2.358 pgd Yadava et al. (1984) a,b; Ramachandran and Narayan (1985)a,c,d
C. membranifolius Hooker, 1871 48a 24b - Yadava et al. (1984) a,b
C. metulifer Naudin, 1859 (syn. C. metuliferus) 24a 12b Diploidc; 2C (Feulgen microdensitometry): 2.391pgd; metacentric, submetacentric, subtelocentric chromosomese; CSR: 0.9–2.0 μmf; 4 satellitesg; nucleolar and centromeric CMA-DAPI bandsh; 45S (2) and co-localized 45S+5S (2) rDNA signalsi, satellite sequencesj and telomeric DNAk hybridized on chromosomes; ScgCP applied for comparative chromosome rearrangement studywith C. sativusl; GISH reveals cross species relationshipsm Yadava et al. (1984) a,b,c, Ramachandran and Narayan (1985)a,c,g, Ramachandran and Narayan (1990)a,c,i, Hoshi et al. (2013)a,c,e,f,g,h, Lou et al. (2014)l, Yagi et al. (2014)a,c,g,h,i,j,k, Li et al. (2016)a,c,i, Zhang et al. (2015)a,m, (2016)a,c,i
C. myriocarpus 24a 12b Diploidc; 45S (2d/4e) and co-localized 45S+5S (2)f rDNA signalsd CCDB a; Zhang et al. (2016)a,b,c,d,f, Yagi et al. (2015)a-f
C. myriocarpus subsp. leptodermis Schweickerdt, 1933 12a 24b Diploidc; 4 satellited chromosomesd; 45S (3e, 2f) and co-localized 45S+5S (2g) rDNA signals Yagi et al. (2015) a-g
C. myriocarpus var. myriocarpus 12a 48b Tetraploidc; 8 satellited chromosomesd; 45S (4) and co-localized 45S+5S (4) rDNA signalse Yagi et al. (2015) a-e
C. prophetarum Linnaeus, 1755 24a 12b Diploidc, 2C (Feulgen Microdensitometry): 1.656 pgd 5m+7sm (haploid)e Ramachandran and Narayan (1985) a,c,d, Rajkumari et al. (2013)a,b, (2015)a,c,e
C. prophetarum subsp. zeyheri Sonder, 1862 48a - IPCN a
C. pubescens Willdenow, 1805 24a 12b - IPCN a; Beevy and Kuriachan (1996)b
C. pustulatus Hooker, 1871 48a, 72b 24c Hexaploidd, 45S (8) and co-localized 45S+5S (2) rDNA signalse; FISH with bulked oligo probe from cucumber chromosome C7f Yadava et al. (1984) a,c, Han et al. (2015)f, Zhang et al. (2016)b,d,e
C. ritchiei Clarke, 1879 24a Diploidb, 8m+4sm (haploid)c Rajkumari et al. (2015) a,b,c
C. sagittatus Peyritsch, 1860 24a 12b Diploidc, 2C (Feulgen microdensitometry):1.571pgd Yadava et al. (1984) a,b, Ramachandran and Narayan (1985)a,c,d
C. sativus Linnaeus, 1753 7a 14b 7c Diploidd, 2C (flow cytometry): 1.03pge /1.77pgf; 12 metacentric and 2 sub-metacentric chromosomesg; CSR: 0.83-1.01μmh, chromosomal C-bandsi; centromeric 45S (10) and distal 5S (2) rDNA signalsj; FISH with centromeric and telomerick and SSR probe reveals chromosome evolutionl; high resolution molecular cytogenetic mapm; ScgCP applied for cross species chromosome rearrangement studyn; FISH with bulked oligo probe from cucumber chromosome C7 in comparison with 5 Cucumis specieso; GISH reveals cross species relationshipsp Kumar and Subramaniam (1987) a,b, Marie and Brown (1993)f, Beevy and Kuriachan (1996)b,c, Hoshi et al.(2008)b,d,i, Barow and Meister (2003)b,d,e, Han et al (2011)b,d,k,l,m, Liu et al. (2010)b,l, Waminal and Kim (2012)b,d,g,h,j, Rajkumari et al. (2013)b,c,f, Sun et al. (2013)b,m, Lou et al. (2014)b,n, Han et al. (2015)o, Zhang et al. (2015)b,p, Li et al. (2016)b,d,j
C. sativus var. Hokutosei 7a 14b Diploidc, 12 metacentric, 2 sub-metacentric chromosomesd; centromeric and telomeric signalse Zhang et al. (2012) a-e
C. sativus var. hardwickii Royle, 1835 7a 14b Diploidc; 2C (Feulgen Microdensitometry): 1.798pgd; 6m+1sm (haploid)e; centromeric 45S (6) and intercalary 5S (2) rDNA signalsf, centromeric, telomeric and SSR probe hybridizationgh; molecular cytogenetic mapi Ramachandran and Narayan (1985) b,d, Zhao et al. (2011)b,c,f,g, Yang et al. (2012)b,h, Rajkumari et al. (2015)b,c,e, Zhang et al. (2016)a,b,c,f
C. sativus var. Long green 7a 14b Diploidc, 12 metacentric, 2 sub-metacentric chromosomesd; centromeric and telomeric sequence signalse Zhang et al. (2012) a-e
C. sativus var. sativus (CSS) 7a 14b Diploidc, centromeric 45S (10) and intercalary 5S (2) rDNA signalsd; centromeric and distal repetitive sequence probese; molecular cytogenetic mapf Zhao et al. (2011) b-e, Yang et al. (2012)b,f, Zhang et al. (2016)a-d
C. sativus cv. Winter Long 14a 7b Diploidc, C- bandingd, DAPI bandinge, 45S (6) and 5 S (2) rDNA signalsf, repetitive sequence based molecular karyotype in somatic and pachytene chromosomesg Koo et al. (2002) a-f, (2005)a,b,g
C. sativus var. xishuangbannesis Qi et Yuan Zhenzhen, 1983 7a 14b Diploidc, centromeric 45S (10) and intercalary 5S (2) rDNA signalsd; centromeric and telomeric signalse Zhao et al. (2011) b,c,e, Zhang et al. (2016)a-d
C. setosus Cogniaux, 1881 24a 12b Diploidc; 4m+5sm+3st (haploid)d Rajkumari et al. (2013) a-c, (2015)a,c,d
C. silentvalleyii Manilal et Sabu et Mathew, 1985 24a 12b - Rajkumari et al. (2013) a,b
C. trigonus Roxb. 24a 12b - Rajkumari et al. (2013) a,b
C. zambianus Widrl., J.H.Kirkbr., Ghebret. and K.R.Reitsma 12a 24b Diploidc; 45S (2) and co-localized 45S+5S (2) signalsd Zhang et al. (2016) a-d
C. zeyheri Sond. 24a, 48b Diploidc, Allotetraploidd; 2C (Feulgen densitometry): 1.682e/2.846 pgf; 4 satellitesg; 45S (2) and co-localized 45S+5S (2) rDNA signalsh; FISH with bulked oligo probe from cucumber schromosome C7i; 24IIj , 12IIk, 11II+2Il IPCN a,b,d,j,k,l, Ramachandran and Narayan (1985)a-f, Han et al. (2015)i, Yagi et al. (2015)a,c,g,h
Cucumella cinerea (Cogn.) C.Jeffrey 2C (Feulgen Microdensitometry): 0.50pga Bennet et al. (1982)a
Mukia maderaspatana (L.) M.Roem. (syn. Cucumis maderaspatanas and Melothria maderaspatana) 12a 24b 11c, 12d - CCDB b,c, Rajkumari et al. (2015)b,d
Oreosyce africana Hook.f. (syn. Cucumis subsericeus) 12a 48b Tetraploidc; co-localized 45S and 5S rDNA signals (2)d; FISH with bulked oligo probe from cucumber chromosome C7e Han et al. (2015) e, Zhang et al. (2016)a-d
Table 8.

Cytogenetic information in Cucurbiteae #.

Genera studied Species studied Chromosome no. Ploidy, Genome size, Chromosome features References
x 2n n
Cayaponia Silva Manso, 1836 C. laciniosa Linnaeus, 1753 24a - Kumar and Subramaniam (1987) a
Cucurbita 10a, 12b - Darlington and Janaki Ammal (1945) a,b
C. andreana Naudin, 1896 40a CCDB a
C. argyrosperma Huber, 1867 (syn. C. mixta Pangalo, 1930) 40a 2C (flow cytometry): 0.748 pgb Sisko et al. (2003)a,b
C. cylindrata Bailey, 1943 40a 20b - CCDB a,b
C. digitata Gray, 1853 10a, 12b 40c 20d - Darlington and Janaki Ammal (1945) a,b, CCDBc,d
C. ecuadorensis Cutler et Whitaker, 1969 2C: 0.72pga Plant DNA C Value databasea
C. ficifolia Bouché, 1837 (syn. C. melanosperma Gasparrini, 1847) 40a 2C (flow cytometry): 0.933pgb Plant DNA C- Values Databasea,b
C. foetidissima Kunth, 1817 10a, 12b 40c, 42d 2C (flow cytometry): 0.686pge Darlington and Janaki Ammal (1945) a,b, Plant DNA C- Values Databasec,e, CCDBc,d
C. indica (unresolved) 40a - IPCN a
C. lundelliana Bailey, 1943 20a 2C (flow cytometry): 0.72pgb CCDB a, Plant DNA C Value databaseb
C. maxima Duchesne, 1786 20a 24b, 40c, 44d, 48e 20f Kumar and Subramaniam (1987) a,c,d,e, Beevy and Kuriachan (1996)f, CCDBc,f
C. moschata Duchesne, 1786 10a, 12b 24c, 40d, 44e,48f Diploidg; 2C (Feulgen microdensitometry): 0.90pgh; 2C (flow cytometry): 0.708i/ 0.97jpg; 36 metacentric and 4 sub-metacentric chromosomesk; CSR: 1.05-1.78μml, 45S (10) and 5S (4) rDNA signalsm CCDB f, Plant DNA C- Values Databaseh,i, Kumar and Subramaniam (1987)a-f, Barrow and Meister (2003)j, Xu et al. (2007)d,m, Waminal et al. (2011)g,d,k,l,m
C. okeechobeensis ssp. martinezii Bailey, 1943 40a 2C (flow cytometry): 0.74pgb Plant DNA C- Values Databasea,b
C. palmata Watson, 1876 10a, 12b 40c, 42d 20e - Kumar and Subramaniam (1987) a,b, CCDBc,d,e
C. pedatifolia Bailey, 1943 40a - CCDB a
C. pepo Linnaeus, 1753 10a, 12b 22c, 24d, 28e, 40f, 42g, 44h, 46i, 80j 20k 2C (flow cytometry): 0.74pgl; 0.864m; 1.109 pg-1.064 pgn; 1.18pgo; 45S (10) and 5S (4) rDNA signalsp Kumar and Subramaniam (1987) a-j, CCDBf,k, Marie and Brown (1993)l, Barow and Meister (2003)o, Rayburn (2008)n, Plant DNA C- Values Databasem, Xie et al. (2019b)f, p
Sicana Naudin, 1862 S. odorifera Vellozo, 1831 40a 20b - IPCN a,b

Nuclear genome contents

Nuclear genome sizes are reported in 49 species (~5% of total species) belonging to 15 genera (~16% of total genera) of Cucurbitaceae. Among the understudied tribes, 2C genome content is known for one species each from Gomphogyneae and Coniandreae (Table 2). Within the Momordiceae species of India, significant interspecific genome size differences have been reported (Ghosh et al. 2021). The species differed 5.19-fold in their genome sizes (2C = 0.72-3.74 pg) (Table 3) (Ghosh et al. 2021). Interestingly, the species with lowest chromosome number (M. cymbalaria, 2n = 18) contained highest nuclear DNA content among the four Momordica species (Table 3). In Bryonieae, flow cytometric genome size of Bryonia shows a 2.2-fold increase than Ecballium (Table 4). In case of Sicyoeae, flow cytometric 2C DNA content ranges from 1.49–2.32 pg/2C, indicating 1.55-fold differences in genome size. Echinocystis lobata Michaux, 1803, in spite of tetraploid condition, shows lowest genome size (Table 5). There is no significant difference in genome size between the genders of Trichosanthes dioica Roxburgh, 1832 (Table 5). Genome size estimates are known from 24 Benincaseae species of which 17 species belong to Cucumis (Tables 6, 7). Highest 2C nuclear genome is known in Benincasa hispida Thunberg, 1784 (1.97 pg) (Bhowmick and Jha 2015a) while the lowest is known in Cucumis melo var. inodorus Harz, 1885 (0.64 pg) (Karimzadeh et al. 2010). In case of Cucumis, there is yet no consensus on whether the taxa with different base numbers (x = 7, 12) have correspondingly dissimilar genome sizes since the researchers depended on diverse methods of genome size estimation. Lower 2C genome size was reported in C. Coccinia grandis Linnaeus, 1767 (2n = 24) while C. trilobata (2n = 20) had higher 2C DNA content (Table 6). The divergence in genome size between genders was found to be highest in dioecious C. grandis (Table 6), a sharp contrast to dioecious Trichosanthes dioica (Table 5). Benincaseae shows a 3.07-fold overall difference in genome size. Genome sizes are known in eight species of Cucurbita Jussieu, 1789. Flow cytometric genome size ranges from 0.686–0.933 pg/2C, indicating a 1.36-fold variation (Table 8). Despite polypoidy, the nuclear DNA content of Cucurbita species is comparable to many diploids.

Karyotypes, chromosome banding and molecular cytogenetics

Among the understudied tribes, information on chromosome morphology, size and karyotype are reported in very few taxa (Table 2). In Gynostemma pentaphyllum Thunberg, 1784, the number of rDNA loci was suggested to reduce during polyploidization (Pellerin et al. 2018). The Actinostemma tenerum Griffith, 1837, genome contained interstitial telomeric repeats which were suggested to be the result of chromosome fusion from ancestral genome. The co-localization of 45S and 5S rDNA loci in A. tenerum and Thladiantha dubia Bunge, 1833, have been thought to imply regional synteny and shared ancestral traits (Xie et al. 2019b). In the tribe Cucurbiteae, detailed karyotype analysis is known only in Cucurbita moschata Duchesne, 1786 and C. pepo Linnaeus, 1753, showing conserved 45S and 5S rDNA signals (non-co-localized) in independent analyses (Table 8).

Karyotypes and chromosome sizes are reported in ten species of Momordiceae (Table 3). Interspecific differences have been observed and found to correlate with phylogenetic relationship within Momordica (Ghosh et al. 2021). Infraspecific delimitation of Indian M. charantia varieties was based on fluorochrome banding pattern and genome size divergence (Table 3), corresponding to infraspecific distinction reported in the Japanese bitter gourd cultivars (Kido et al. 2016). FISH in three Momordica species revealed 45S and 5S rDNA sites to be localised on different chromosomes (Table 3). In context of the genome sequence of bitter gourds (Matsumura et al. 2020), further scopes for cytogenetic and genomic investigation remain open.

Karyotype and chromosome size is reported in eight 8 species of Sicyoeae (Table 5). Fluorochrome banding pattern has facilitated comparative analysis in Luffa species occurring in India (Tables 1, 5) (Bhowmick and Jha 2015a, 2021). The cultivated ridged gourd (L. acutangula Linnaeus, 1753) showed three CMA+ satellite bearing pairs (Fig. 1A–C, J) as in the wild L. echinata Roxburgh, 1814 (Fig. 1G–I, L), while the sponge gourd (L. aegyptiaca Miller, 1768 has two satellited pairs (Fig. 1D–F, K). Luffa acutangula and L. echinata also showed up distal DAPI bands (Fig. 1J, L), absent in L. aegyptiaca (Fig. 1K). Trichosanthes species (2n = 22) have inter-specific differences (Fig. 2) as well as infraspecific distinction (T. cucumerina Linnaeus, 1753) in fluorochrome banding pattern (Tables 1, 5, Fig. 2A–H). The male and female plants of T. dioica show similar chromosome number, morphology and genome size but show differences in fluorochrome banding pattern (Fig. 2I–P, Table 5). The 11th, 12th and 13th pairs (CMA+) are marker chromosomes in Luffa (Fig. 1, Table 1) while the 10th and 11th pairs are conserved CMA+ satellited pairs in Trichosanthes (Fig. 2, Table 1). Eight species of Sicyoeae have been subjected to FISH (Table 5). The polyploid and diploid species have differences in the number of rDNA loci, showing separate localization of the 45S and 5S rDNA signals except Sicyos angulatus Linnaeus, 1753 and Trichosanthes kirilowii Maximowicz, 1859 (Table 5).

Benincaseae generally reveal two distal 45S rDNA loci of which at least one locus is either adjacent to 5S rDNA locus (Table 6) or co-localized in the same chromosome as in most of the Cucumis species (Table 7). Exceptionally, a wild species of Benincasa (B. fistulosa Stocks, 1851) has non-adjacent 45S and 5S signals (Li et al. 2016). GC rich satellites were observed in the 12th pair of chromosomes showing CMA+ bands in cultivated Indian ashgourd (B. hispida) (Fig. 3 A–C, J, Tables 1, 6). Lagenaria siceraria Molina, 1782 and Cucumis melo Linnaeus, 1753 are the other two genera having similarity in rDNA hybridization profile, agreeing with phylogenetic affinity (Li et al. 2016).

Citrullus colocynthis Linnaeus, 1753 and C. lanatus Thunberg, 1794 may share a common ancestor both having two 45S rDNA loci and one 5S locus. Loss of one 45S rDNA locus has given way to C. rehmii De Winter, 1990 while gain of one 5S rDNA locus has been proposed to lead to C. ecirrhosus Cogniaux, 1888 and C. lanatus var. citroides Bailey, 1930 (presently C. amarus Schrader, 1836) (Reddy et al. 2013; Li et al. 2016). GISH using C. lanatus var. citroides genome has revealed divergence from C. lanatus var. lanatus (Reddy et al. 2013).

The genus Cucumis is the largest in Benincaseae with 65 species of which 39 have been studied (Table 7). Among the Cucumis species with x = 12, co-localization rDNA loci (45S and 5S rDNA) have been documented in 14 species, including C. melo (Table 7). However, the number of 45S sites is generally four, which may be six or eight in some cases (Table 7). rDNA hybridization data strongly corroborated with the ‘fusion’ theory for derivation of x = 7 (C. sativus) from x = 12 (C. melo) (Waminal and Kim 2012) which is substantiated by genomic studies (Li et al. 2011). There are ten pericentromeric/ centromeric 45S and two distal 5S rDNA sites in C. sativus while six 45S rDNA sites were reported in C. sativus var. hardwickii Royle, 1835 (Koo et al. 2005; Zhang et al. 2012). Comparative chromosome painting (Lou et al. 2014) and GISH (Zhang et al. 2015) proved high colinearity between cucumber and melon. Based on chloroplast and nuclear DNA (ITS) phylogeny, C. melo (melon) has been found to be sister to a clade comprising C. sativus and related genera (Dicaelospermum Clarke, 1879 and Mukia Arnott, 1840) (Renner et al. 2007). rDNA site co-localization was found to coincide with geographical origin of 12 Cucumis species (Zhang et al. 2016). The chromosomal affinity between C. metuliferus Schrader, 1838, C. anguira Linnaeus, 1753, C. zeyheri Sonder, 1862, C. myriocarpus Naudin, 1859 and polyploid C. heptadactylis Naudin, 1859 (dioecious) (Yagi et al. 2015) can be substantiated by their phylogenetic proximity based on chloroplast and nuclear DNA (ITS) sequences (Renner et al. 2007). rDNA distribution of C. metuliferus was also the reason to consider proximity with Citrullus naudinianus Sonder, 1862, (previously Acanthosicyos naudinianus Sonder, 1862) (Reddy et al. 2013). Infraspecific differences were documented in Cucumis melo on the basis of 45S- 5S rDNA signals (linked or separated) which also possessed unique centromeric satellites (Setiawan et al. 2018, 2020). Moreover, chromosome painting method elucidated chromosomal rearrangement in some Cucumis species (Lou et al. 2014; Li et al. 2018).

The dramatic evolution of Y chromosome was validated in karyotypes (Fig. 3 D–I, K–L) of Coccinia grandis (Table 6). The 45S rDNA sites enabled confirmation of NORs in the 8th and 12th pair containing distal GC rich CMA+ signals in C. grandis (Fig. 3 D–I, K–L, Tables 1, 6). 45S and 5S rDNA hybridization pattern was similar in three other Coccinia species and Diplocyclos palmatus Linnaeus, 1753 (Table 6). The three closely related dioecious species of Coccinia accumulated Y chromosome repeats and displayed sex chromosome turnover (Sousa et al. 2017). Strong centromeric CMA bands (Fig. 3 D–I, K–L, Table 1) were observed in C. grandis except Y chromosome (Fig. 3 I, L), presenting a possibility that CgCent (CL1) is a feature of centromeres of dioecious Coccinia species (Sousa et al. 2017). In addition, non-nucleolar CMA+ heterochromatin might be associated with sexual differentiation of autosomes in dioecious C. grandis (Fig. 3) which is also a marker in Trichosanthes dioica (Fig. 2, Table 1), opening good scope for further study.

Distinct 45S rDNA sites are higher in number than 5S rDNA sites in Cucurbitaceae (Fig. 4) (Waminal and Kim 2012). The distal 45S rDNA loci are conserved genomic landmarks (Fig. 4) while 5S rDNA loci are relatively diverse (Fig. 4). Based on the literature reports, some NORs (Type I) included chromosomes showing non-colocalized 45S and 5S rDNA sites in seven species of Benincaseae, one species each from Cucurbiteae and Momordiceae and two species of Sicyoeae. The rearrangement of 45S rDNA site in Cucumis sativus, probes for chromosome number reduction which may be a consequence of diploidization. The second type (Type II) shows colocalised 45S and 5S rDNA loci, either adjacent or distant, but always on the same chromosome and found in one species each of Benincaseae, Sicyoeae and Actinostemmateae. The third type (Type III) was characterized by chromosomes with non-colocalized and colocalised 45S and 5S rDNA loci, as in 14 species of Benincaseae and one species each of Sicyoeae and Thladiantheae. The rDNA sites of majority of Cucumis species were of non-adjacent type. Hence, type III NORs in majority of Benincaseae genera advocates conservation of the marker chromosomes having distal NOR (45S rDNA). Gynostemma pentaphyllum and some polyploid Cucumis reveal rDNA loci reduction after polyploidization (Zhang et al. 2016; Pellerin et al. 2018).

Figure 4.

Types of chromosomes bearing the NORs as per available reports of rDNA hybridization in Cucurbitaceae. Type I: Chromosomes with only non-colocalised 45S and 5S rDNA sites, Type II: Chromosomes with colocalised 45S and 5S rDNA sites, Type III: Chromosomes with both non- colocalised and colocalised 45S and 5S rDNA sites. See text for explanation.

Correlation between parameters

Chromsome numbers in Cucurbitaceae range from x = 5 to x = 16. The most prevalent number x = 12 (Fig. 5) is considered ancestral (Xie et al. 2019b), followed by x = 11, 13, 14 and 10 (Fig. 5). The present regression analyses for 41 taxa (including 16 Indian taxa) (Table 9) revealed significant linear correlation between 2n and HCL, between ploidy and genome size and between ploidy and HCL (Fig. 6). Therefore, an increase in ploidy/ 2n number is linked with increase in HCL. There was no significant correlation between 2C genome size and chromosome numbers. Cytogenetic parameters may not reflect residual evidence of CCT in Cucurbitraceae at present, as reasoned by Alix et al. (2017).

Table 9.

Data on fundamental cytogenetic parameters utilized for statistical analysis.

Species 2n Chromosome no. Ploidy 2C genome size (pg) MCL (μm) HCL (μm) References
Gynostemma pentaphyllum 66 6 3.62 Zhang et al. (2013), Pellerin et al. (2018)
Zanonia indica 30 2 1.47 22.12 Lekhak et al. (2018)
Momordica balsamina 22 2 1.30 14.3# Bharathi et al. (2011)
Momordica charantia var. charantia 22 2 0.72 1.97 21.77 Ghosh et al. (2018)
Momordica charantia var. muricata 22 2 1.16 2.19 24.19 Ghosh et al. (2018)
Momordica cochinchinensis 28 2 2.64 2.27 31.86 Ghosh et al. (2021)
Momordica cymbalaria 18 2 3.74 3.75 33.79 Ghosh et al. (2021)
Momordica dioica 56 4 3.36 2.75 77.1 Ghosh et al. (2021)
Momordica sahyadrica 28 2 1.34 18.76 Bharathi et al. (2011)
Momordica subangulata 56 4 3.06 2.15 60.3 Ghosh et al. (2021)
Luffa acutangula 26 2 2.20 28.63 this study
Luffa cylindrica 26 2 1.56 2.98 38.77 Bhowmick and Jha (2015a), this study
Luffa echinata 26 2 3.17 41.26 this study
Trichosanthes cucumerina 22 2 3.47 37.855 Bhowmick and Jha (2019), this study
Trichosanthes cucumerina subsp. cucumerina Anguina 22 2 3.43 37.74 Bhowmick and Jha (2019), this study
Trichosanthes dioica Male 22 2 2.27 3.71 40.82 Bhowmick and Jha (2015a), this study
Trichosanthes dioica Female 22 2 2.32 3.71 40.82 Bhowmick and Jha (2015a), this study
Benincasa hispida 24 2 1.97 3.17 38.08 Bhowmick and Jha (2015a), this study
Citrullus lanatus 22 2 1.33# 14.67 Waminal et al. (2011)
Coccinia grandis male 24 2 0.92 1.80 20.32 Bhowmick et al. (2012, 2016), this study
Coccinia grandis female 24 2 0.73 1.86 19.85 Bhowmick et al. (2012, 2016), this study
Coccinia hirtella 24 2 0.988 Sousa et al. (2017)
Coccinia sessilifolia Male 24 2 0.984 Sousa et al. (2017)
Coccinia sessilifolia Female 24 2 0.998 Sousa et al. (2017)
Coccinia trilobata 20 2 1.263 Sousa et al. (2017)
Lagenaria siceraria 22 2 0.734 1.79 20.06 Achigan-Dako et al. (2008)
Cucumis africanus 24 2 2.08 25.045 Yagi et al. (2015)
Cucumis anguria var. anguria 24 2 2.13 25.6 Yagi et al. (2015)
Cucumis anguria var. longaculeatus 24 2 2.10 25.195 Yagi et al. (2015)
Cucumis heptadactylus 48 4 2.09 50.225 Yagi et al. (2015)
Cucumis melo 24 2 1.05 1.50 17.8# Marie and Brown (1993), Hoshi et al. (2013)
Cucumis melo var. inodorus 24 2 0.64 Karimzadeh et al. (2010)
Cucumis myriocarpus var. leptodermis 24 2 1.93 23.19 Yagi et al. (2015)
Cucumis myriocarpus var. myriocarpus 48 4 2.25 53.985 Yagi et al. (2015)
Cucumis zeyheri 24 2 2.30 27.56 Yagi et al. (2015)
Cucumis sativus 14 2 1.03, 1.77## 2.07# 14.50 Barow and Meister (2003), Marie and Brown (1993), Waminal and Kim (2012)
Cucurbita argyrosperma 40 0.748 Roy et al. (1991), Sisko et al. (2003)
Cucurbita ecuadorensis 40 0.933 Sisko et al. (2003)
Cucurbita foetidissima 40 0.686 Sisko et al. (2003)
Cucurbita moschata 40 2 0.708, 0.97## 1.26# 25.19 Sisko et al. (2003), Barrow and Meister (2003), Waminal et al. (2011)
Cucurbita okeechobeensis ssp. martinezii 40 0.74 Sisko et al. (2003)
Figure 5.

The types of different base numbers (x, based on published reports) or possible base numbers (x/n, based on reported haploid counts) in Cucurbitaceae. The numbers in brackets beside names of genera signify the number of species whose chromosome counts are reported. The % of genera and species with a particular chromosome number, is indicated at the end arrow (out of a total of 44 genera and 188 species with chromosome counts).

Figure 6.

Scatter plots of 2n chromosome number and ploidy level (predictor variables) versus 2C genome size, MCL (mean chromosome length) and HCL (total length of haploid chromosome set) in Cucurbitaceae taxa. Symbols below plots depict regression analysis parameters; square: adjusted R square, circle: standard error of the estimate, triangle: Pearson Correlation, star: 2-tailed significance of Pearson Correlation. Regular lines indicate significant linear regression and dotted lines indicate not significant linear regress

Future directions

Chromosome number and genome size information in the basal clades (understudied tribes) should be given attention to infer ancient base numbers. The parameters of fundamental and molecular cytogenetics are inevitable for genomic interpretation (Weiss-Schneeweiss and Schneeweiss 2013; Deakin et al. 2019) and hence relevant to spot genetic resources and relationships with wild relatives. The current review is not exhaustive but supersedes the scopes of general web resources and brings an offline resource exclusive for Cucurbitaceae.

Acknowledgements

SJ is thankful to the National Academy of Sciences (NASI, Allahabad, India) for the NASI Senior Scientist Fellowship award. BKB gratefully acknowledges Principal, Scottish Church College, India for continuous support and encouragement in research activities.

References

  • Achigan-Dako EG, Fuchs J, Ahanchede A, Blattner FR (2008) Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Systematics and Evolution 276: e9. https://doi.org/10.1007/s00606-008-0075-2
  • Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany 120: 183–194. https://doi.org/10.1093/aob/mcx079
  • Beevy SS, Kuriachan PH (1996) Chromosome numbers of south Indian Cucurbitaceae and a note on the cytological evolution in the family. Journal of Cytology and Genetics 31: 65–71.
  • Bellot S, Mitchell TC, Schaefer H (2020) Phylogenetic informativeness analyses to clarify past diversification processes in Cucurbitaceae. Scientific Reports 10: 1–13. https://doi.org/10.1038/s41598-019-57249-2
  • Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Proceedings of the Royal Society of London – Series B, Biological Sciences 216: 179–199. https://doi.org/10.1098/rspb.1982.0069
  • Bharathi LK, Munshi AD, Vinod SC, Behera TK, Das AB, John KJ (2011) Cytotaxonomical analysis of Momordica L. (Cucurbitaceae) species of Indian occurrence. Journal of Genetics 90: 21–30. https://doi.org/10.1007/s12041-011-0026-5
  • Bhowmick BK, Jha S (2015a) Differential heterochromatin distribution, flow cytometric genome size and meiotic behavior of chromosomes in three Cucurbitaceae species. Scientia Horticulturae 193: 322–329. https://doi.org/10.1016/j.scienta.2015.07.006
  • Bhowmick BK, Jha S (2019) Differences in karyotype and fluorochrome banding patterns among variations of Trichosanthes cucumerina with different fruit size. Cytologia 84: 237–245. https://doi.org/10.1508/cytologia.84.237
  • Bhowmick BK, Jha TB, Jha S (2012) Chromosome analysis in the dioecious cucurbit Coccinia grandis (L.) Voigt. Chromosome Science 15: 9–15.
  • Bhowmick BK, Yamamoto M, Jha S (2016) Chromosomal localization of 45S rDNA, sex specific C values and heterochromatin distribution in Coccinia grandis (L.) Voigt. Protoplasma 253: 201–209. https://doi.org/10.1007/s00709-015-0797-2
  • Chomicki G, Schaefer H, Renner SS (2020) Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytologist 226: 1240–1255. https://doi.org/10.1111/nph.16015
  • Darlington CD, Janaki Ammal EK (1945) Chromosome atlas of cultivated plants. George Allen and Unwin LTD, London.
  • Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MD, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes 10: e627. https://doi.org/10.3390/genes10080627
  • Ghosh I, Saha PS, Bhowmick BK, Jha S (2021) A phylogenetic analysis of Momordica (Cucurbitaceae) in India based on karyo-morphology, nuclear DNA content and rDNA ITS1–5.8S–ITS2 sequences. Protoplasma 258: 347–60. https://doi.org/10.1007/s00709-020-01576-z
  • Goldblatt P, Lowry PP (2011) The Index to Plant Chromosome Numbers (IPCN): three decades of publication by the Missouri Botanical Garden come to an end. Annals of the Missouri Botanical Garden 98: 226–227. https://doi.org/10.3417/2011027
  • Guo J, Xu W, Hu Y, Huang J, Zhao Y, Zhang L, Huang CH, Ma H (2020) Phylotranscriptomics in cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Molecular Plant 13: 1117–1133. https://doi.org/10.1016/j.molp.2020.05.011
  • Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proceedings of the National Academy of Sciences 106: 14937–14941. https://doi.org/10.1073/pnas.0904833106
  • Hoshi Y, Kido M, Yagi K, Tagashira N, Morikawa A, Nagano K (2013) Somatic chromosome differentiation in Cucumis melo L. and C. metuliferus E. Mey. ex Naudin. Chromosome Botany 8: 7–12. https://doi.org/10.3199/iscb.8.7
  • Hoshi Y, Mori M, Matoba H, Tagashira N, Murata T, Plader W, Malepszy S (2008) Chromosomal polymorphism of two pickling cucumbers (Cucumis sativus L.) revealed by fluorescent staining with CMA and DAPI. Cytologia 73: 41–48. https://doi.org/10.1508/cytologia.73.41
  • Karimzadeh G, Mousavi SH, Jafarkhani-Kermani M, Jalali-Javaran M (2010) Karyological and nuclear DNA variation in Iranian endemic muskmelon (Cucumis melo var. inodorus). Cytologia 75: 451–461. https://doi.org/10.1017/S147926211400077X
  • Kausar N, Yousaf Z, Younas A, Ahmed HS, Rasheed M, Arif A, Rehman HA (2015) Karyological analysis of bitter gourd (Momordica charantia L., Cucurbitaceae) from Southeast Asian countries. Plant Genetic Resources 13: 180–182. https://doi.org/10.1017/S147926211400077X
  • Koo DH, Hur Y, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Molecules and Cells 13: 413–418.
  • Koo DH, Choi HW, Cho J, Hur Y, Bang JW (2005) A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48: 534–540. https://doi.org/10.1139/g04-128
  • Kumar V, Subramaniam B (1987) Chromosome atlas of flowering plants of the Indian subcontinent. Vol 1 and 2. Botanical Survey of India.
  • Lekhak MM, Yadav PB, Attar UA, Rajput KS, Ghane SG (2018) Cytopalynological studies in Zanonia indica (Cucurbitaceae), a monotypic genus. The Nucleus 61: 105–109. https://doi.org/10.1007/s13237-018-0234-y
  • Li D, H Cuevas E, Yang L, Li Y, Garcia-Mas J, Zalapa J, J Staub E, Luan F, Reddy U, He X, Gong Z, Weng Y (2011) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12: e396. https://doi.org/10.1186/1471-2164-12-396
  • Li K, Wang H, Wang J, Sun J, Li Z, Han Y (2016) Divergence between C. melo and african Cucumis species identified by chromosome painting and rDNA distribution pattern. Cytogenetic and Genome Research 150: 150–155. https://doi.org/10.1159/000453520
  • Li Q, Ma L, Huang J, Li LJ (2007) Chromosomal localization of ribosomal DNA Sites and karyotype analysis in three species of Cucurbitaceae. Journal-Wuhan University Natural Sciences Edition 53: e449.
  • Li Z, Bi Y, Wang X, Wang Y, Yang S, Zhang Z, Chen J, Lou Q (2018) Chromosome identification in Cucumis anguria revealed by cross-species single-copy gene FISH. Genome 61: 397–404. https://doi.org/10.1139/gen-2017-0235
  • Liu C, Liu J, Li H, Zhang Z, Han Y, Huang S, Jin W (2010) Karyotyping in melon (Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization. Cytogenetic and Genome Research 129: 241–249. https://doi.org/10.1159/000314343
  • Lou Q, Zhang Y, He Y, Li J, Jia L, Cheng C, Guan W, Yang S, Chen J (2014) Single‐copy gene‐based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. The Plant Journal 78: 169–179. https://doi.org/10.1111/tpj.12453
  • Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In: Greilhuber J, Dolezel J, Wendel JF (Eds) Plant genome diversity volume 2: Physical structure, behaviour and evolution of plant genomes. Springer, Vienna, 137–147. https://doi.org/10.1007/978-3-7091-1160-4_9
  • Matsumura H, Hsiao MC, Lin YP, Toyoda A, Taniai N, Tarora K, Lee CR (2020) Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proceedings of the National Academy of Sciences 117: 14543–14551. https://doi.org/10.1073/pnas.1921016117
  • Mota L, Torices R, Loureiro J (2016) The evolution of haploid chromosome numbers in the sunflower family. Genome Biology and Evolution 8: 3516–3528. https://doi.org/10.1093/gbe/evw251
  • Pellerin RJ, Waminal NE, Kim HH (2018) Triple-color FISH karyotype analysis of four korean wild Cucurbitaceae species. Horticultural Science and Technology 36: 98–107. https://doi.org/10.12972/kjhst.20180011
  • Pellicer J, Leitch IJ (2020) The Plant DNA C‐values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301–305. https://doi.org/10.1111/nph.16261
  • Rajkumari K, Joseph John K, Yadav SR, Bhat KV, Rao SR (2013) Comparative male meiotic studies in some Indian representative species of Cucumis L. (Cucurbitaceae) Caryologia 66: 313–320. https://doi.org/10.1080/00087114.2013.854613
  • Rajkumari K, Joseph John K., Yadav SR, Bhat K V, Shamurailatpam A, Rao SR (2015) Cytogenetical treatise of Indian representative species of Cucumis. A karyotypic approach. Cytology and Genetics 49: 388–396. https://doi.org/10.3103/S0095452715060079
  • Ramachandran C, Narayan RKJ (1990) Satellite DNA specific to knob heterochromatin in Cucumis metuliferus (Cucurbitaceae). Genetica 80: 129–138. https://doi.org/10.1007/BF00127133
  • Reddy UK, Aryal N, Islam-Faridi N, Tomason YR, Levi A, Nimmakayala P (2013) Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genetic Resources and Crop Evolution 60: 2091–2100. https://doi.org/10.1007/s10722-013-9976-1
  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PloS ONE 7: e1. https://doi.org/10.1371/journal.pone.0029453
  • Renner SS, Schaefer H (2017) Phylogeny and evolution of the Cucurbitaceae. In: Grumet R, Katzir N, Garcia-Mas J (Eds) Genetics and genomics of Cucurbitaceae. Springer, Cham, 13–23. https://doi.org/10.1007/7397_2016_14
  • Renner SS., Schaefer H, Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evolutionary Biology 7: 1–11. https://doi.org/10.1186/1471-2148-7-1
  • Renner SS, Sousa A, Chomicki G (2017) Chromosome numbers, Sudanese wild forms, and classification of the watermelon genus Citrullus, with 50 names allocated to seven biological species. Taxon 66: 1393–1405. https://doi.org/10.12705/666.7
  • Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The Chromosome Counts Database (CCDB)–a community resource of plant chromosome numbers. New Phytologist 206: 19–26. https://doi.org/10.1111/nph.13191
  • Roy RP, Saran S, Dutt B (1991) Cytogenetics of the Cucurbitaceae. In: Tsuchiya T, Gupta PK (Eds) Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier Science Publishers BV, Amsterdam, The Netherlands, 181–200. https://doi.org/10.1016/B978-0-444-88260-8.50015-X
  • Samuel R, Balasubramaniam S, Morawetz W (1995) The karyology of some cultivated Cucurbitaceae of Srilanka. Ceylon Journal of Science (Biological Sciences) 24: 17–22.
  • Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T (2018) Cytogenetic variation among Cucumis accessions revealed by fluorescence in situ hybridization using ribosomal RNA genes as the probes. Chromosome Science 21: 67–73.
  • Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T (2020) Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189. PloS ONE 15(1): e0227578. https://doi.org/10.1371/journal.pone.0227578
  • Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then and now: Stebbins revisited. American Journal of Botany 101: 1057–1078. https://doi.org/10.3732/ajb.1400178
  • Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: A ca. 3 myr-old species of Cucurbitaceae with the largest Y/Autosome divergence in flowering plants. Cytogenetic and Genome Research 139: 107–118. https://doi.org/10.1159/000345370
  • Sousa A, Fuchs J, Renner SS (2017) Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover. Chromosome Research 25: 191–200 https://doi.org/10.1007/s10577-017-9555-y
  • Soza VL, Haworth KL, Di Stilio VS (2013) Timing and consequences of recurrent polyploidy in meadow-rues (Thalictrum, Ranunculaceae). Molecular Biology and Evolution 30: 1940–1954. https://doi.org/10.1093/molbev/mst101
  • Ting Y, Ya W, Su-qin Z, Guang-dong GENG (2019) Chromosomal karyotype analysis of Sechium edule Swartz. Hubei Agricultural Sciences 58: 215.
  • Uguru MI, Onovo JC (2011) Evidence of polyploidy in fluted pumpkin (Telfairia occidentalis Hook F.). African Journal of Plant Science 5: 287–290.
  • Viruel J, Kantar MB, Gargiulo R, Hesketh-Prichard P, Leong N, Cockel C, Forest F, Gravendeel B, Pérez-Barrales R, Leitch IJ, Wilkin P (2021) Crop wild phylorelatives (CWPs): Phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Botanical Journal of the Linnean Society 195: 1–33. https://doi.org/10.1093/botlinnean/boaa064
  • Volz SM, Renner SS (2008) Hybridization, polyploidy and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae). American Journal of Botany 95: 1297–1306. https://doi.org/10.3732/ajb.0800187
  • Wang J, Sun P, Li Y, Liu Y, Yang N, Yu J, Ma X, Sun S, Xia R, Liu X, Ge D, Luo S, Liu Y, Kong Y, Cui X, Lei T, Wang L, Wang Z, Ge W, Zhang L, Song X, Yuan M, Guo D, Jin D, Chen W, Pan Y, Liu T, Yang G, Xiao Y, Sun J, Zhang C, Li Z, Xu H, Duan X, Shen S, Zhang Z, Huang S, Wang X (2018) An overlooked paleotetraploidization in Cucurbitaceae. Molecular Biology and Evolution 35: 16–26. https://doi.org/10.1093/molbev/msx242
  • Waminal NE, Kim HH (2012) Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species. Horticulture, Environment, and Biotechnology 53: 49–56 .https://doi.org/10.1007/s13580-012-0105-4
  • Waminal NE, Kim HH (2015) FISH karyotype analysis of four wild cucurbitaceae species using 5S and 45S rDNA probes and the emergence of new polyploids in Trichosanthes kirilowii Maxim. Korean Journal of Horticultural Science and Technology 33: 869–876. https://doi.org/10.7235/hort.2015.15101
  • Winterfeld G, Ley A, Hoffmann MH, Paule J, Röser M (2020) Dysploidy and polyploidy trigger strong variation of chromosome numbers in the prayer-plant family (Marantaceae). Plant Systematics and Evolution 306: 1–7. https://doi.org/10.1007/s00606-020-01663-x
  • Whitaker TW (1950) Polyploidy in Echinocystis. Madrono 10: 209–10.
  • Xie W, Huang J, Ma X (2019a) Localization of 45S and 5S rDNA sequences on chromosomes of 20 species of Cucurbitaceous plants. Journal of South China Agricultural University 40: 74–81.
  • Xie D, Xu Y, Wang J, Liu W, Zhou Q, Luo S, Huang W, He X, Li Q, Peng Q, Yang X, Yuan J, Yu J, Wang X, Lucas WJ, Huang S, Jiang B, Zhang Z (2019b) The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications 10: 1–12. https://doi.org/10.1038/s41467-019-13185-3
  • Xu YH, Yang F, Cheng YL, Ma L, Wang J-B, Li L-J (2007) Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Yi Chuan Hereditas 29(5): 614–620. https://doi.org/10.1360/yc-007-0614
  • Yagi K, Siedlecka E, Pawełkowicz M, Wojcieszek M, Przybecki Z, Tagashira N, Hoshi Y, Malepszy S, Pląder W (2014) Karyotype analysis and chromosomal distribution of repetitive DNA sequences of Cucumis metuliferus using fluorescence in situ hybridization. Cytogenetic and Genome Research 144: 237–242. https://doi.org/10.1159/000369183
  • Yagi K, Pawełkowicz M, Osipowski P, Siedlecka E, Przybecki Z, Tagashira N, Hoshi Y, Malepszy S, Pląder W (2015) Molecular cytogenetic analysis of Cucumis wild species distributed in southern Africa: physical mapping of 5S and 45S rDNA with DAPI. Cytogenetic and Genome Research 146: 80–87. https://doi.org/10.1159/000433572
  • Yang L, Koo D-H, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. The Plant Journal 71: 895–906. https://doi.org/10.1111/j.1365-313X.2012.05017.x
  • Zhao X, Lu J, Zhang Z, Hu J, Huang S, Jin WW (2011) Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. Journal of Genetics and Genomics 38: 39–45. https://doi.org/10.1016/j.jcg.2010.12.005
  • Zhang C, Kikuchi S, Koba T (2012) Karyotype comparison of Indian and Japanese cucumber cultivars by fluorescence in situ hybridization probed with tandem repeat sequences. Chromosome Science 15: 17–21.
  • Zhang Y, Chen J, Yi H, Feng J, Wu M (2005) Staining and slide-preparing technique of mitotic chromosomes and its use in karyotype determination of Cucumis melo L. Acta Botanica Boreali-Occidentalia Sinica 25: 1735–1739.
  • Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, Chen J, Lou Q (2015) Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. BMC Genomics 16: 1–3. https://doi.org/10.1186/s12864-015-1877-6
  • Zheng Y, Wu S, Bai Y, Sun H, Jiao C, Guo S, Zhao K, Blanca J, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, Reddy UK, Ando K, McCreight JD, Schaffer AA, Burger J, Tadmor Y, Katzir N, Tang X, Liu Y, Giovannoni JJ, Kai-Ling S, Wechter WP, Levi A, Garcia-Mas J, Grumet R, Fei Z (2019) Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research 47(D1): D1128–D1136. https://doi.org/10.1093/nar/gky944
  • Zhang Z-T, Yang S-Q, Li Z-A, Zhang Y-X, Wang Y-Z, Cheng C-Y, J Li, Chen J-F, Lou Q-F (2016) Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome 59: 449–457. https://doi.org/10.1139/gen-2015-0207

ORCID

Biplab Kumar Bhowmick https://orcid.org/0000-0001-6029-1098

Sumita Jha https://orcid.org/0000-0002-1375-2768

login to comment