Review Article |
Corresponding author: Sumita Jha ( sumitajha.cu@gmail.com ) Academic editor: Viktoria Shneyer
© 2023 Biplab Kumar Bhowmick, Sayantika Sarkar, Dipasree Roychowdhury, Sayali D. Patil, Manoj M. Lekhak, Deepak Ohri, Satyawada Rama Rao, S. R. Yadav, R. C. Verma, Manoj K. Dhar, S. N. Raina, Sumita Jha.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Bhowmick BK, Sarkar S, Roychowdhury D, Patil SD, Lekhak MM, Ohri D, Rama Rao S, Yadav SR, Verma RC, Dhar MK, Raina SN, Jha S (2023) Allium cytogenetics: a critical review on the Indian taxa. Comparative Cytogenetics 17: 129-156. https://doi.org/10.3897/CompCytogen.17.98903
|
The genus Allium Linnaeus, 1753 (tribe Allieae) contains about 800 species worldwide of which almost 38 species are reported in India, including the globally important crops (onion, garlic, leek, shallot) and many wild species. A satisfactory chromosomal catalogue of Allium species is missing which has been considered in the review for the species occurring in India. The most prominent base number is x=8, with few records of x=7, 10, 11. The genome size has sufficient clues for divergence, ranging from 7.8 pg/1C to 30.0 pg/1C in diploid and 15.16 pg/1C to 41.78 pg/1C in polyploid species. Although the karyotypes are seemingly dominated by metacentrics, substantial variation in nucleolus organizing regions (NORs) is noteworthy. The chromosomal rearrangement between A. cepa Linnaeus, 1753 and its allied species has paved way to appreciate genomic evolution within Allium. The presence of a unique telomere sequence and its conservation in Allium sets this genus apart from all other Amaryllids and supports monophyletic origin. Any cytogenetic investigation regarding NOR variability, telomere sequence and genome size in the Indian species becomes the most promising field to decipher chromosome evolution against the background of species diversity and evolution, especially in the Indian subcontinent.
Allium, Chromosome, FISH, Genome size, Indian species, NORs, Telomere
The genus Allium Linnaeus, 1753 is considered a wonder crop of global importance, catering to the agriculture, condiment, pharmaceutical, nutraceutical and cosmetic sectors of economy owing to the presence of numerous species with tremendous significance. Among several herb species, an onion (A. cepa Linnaeus, 1753) that is valued throughout the continent attracts a lot of attention of the economic sectors mentioned above, followed by garlics, leeks and shallots having limited uses. Onion is the second of the five main world vegetables species (after tomato) whose worldwide production accounted for 9% of the total (42–45%) increase in production of vegetables between 2000–2019 (https://www.fao.org/3/cb4477en/online/cb4477en.html#chapter-2_1).
Allium, previously referred to Liliaceae, is now a member of Amaryllidaceae sensu Angiosperm Phylogeny Group or APG III (
Cytogenetics, being the only elementary discipline of genetics, focuses on genome structure, function and evolution. The evolutionary history of organisms is inscribed in the chromosomes, the physically visible form of genome. The very fundamental parameters such as chromosome count reports, when combined with molecular cytogenetic and phylogenetic data (
India is the world’s second-largest producer of onion after China, with a production rate of 16360 kg/ Ha (2020–2021) (https://eands.dacnet.nic.in/). After onion, A. sativum Linnaeus, 1753 (garlic) is the second largest species of Allium contributing significantly to agro-economical development of the country (https://eands.dacnet.nic.in/). Among the other species, A. schoenoprasum Linnaeus, 1753 and A. roylei Stearn, 1947 exhibited resistance qualities (
Distribution of taxa, chromosome counts, ploidy, karyotypes and molecular cytogenetic reports have been compiled from original publications, chromosome atlases and databases e.g. Database on Genome-Related Information of Indian Plants or d-GRIP (http://indianpcd.com/;
There are 35–40 species of Allium currently reported from India (ca. 38 species) (d-GRIP,
The chromosome counts and karyotype details are known perhaps in 33 and 25 species, respectively (Table
Chromosome numbers, ploidy and nuclear genome sizes in Indian species of Allium of Amaryllidaceae (Tribe Allieae, Subfamily Allioideae, sensu APG IV 2016).
Subgenus/ section | Species (syn.) | Chromosome number | Ploidy | 4C DNA value in diploid/ polyploid nuclei (pg) | Genome size in diploid/polyploid (pg) | References | |||
---|---|---|---|---|---|---|---|---|---|
Basic (x) | Gametic (n) | Zygotic (2n) | 1C | 1Cx | |||||
Amerallium/ Bromatorrhiza! | A. fasciculatum Rendle (A. gageanum) | 10a | – | 20b, 40c | Diploidd, Tetraploide | – | – | – |
a, b, d( |
Amerallium/ Bromatorrhiza* | A. hookeri Thwaites (A. tsoongii) | – | – | 22a, 33b, 44c | – | 63.24 (diploid, Feulgen cytophotometry)d | 15.81 (diploid)d | 15.81d |
a( |
Amerallium/ Bromatorrhiza! | A. macranthum Baker (A. oviflorum Regel, A. simethis H.Lev.) | – | 14a | 14b, 28c | – | – | – | – |
a( |
Amerallium/ Bromatorrhiza*! | A. wallichii Kunth. (A. bulleyanum Diels, A. caeruleum Wall.) | 7a | - | 14b, 28c, 32d | Diploide, Tetraploidf | 64.98 (diploid, Feulgen Cytophotometry)g, 121.79 (tetraploid, Feulgen Cytophotometry)h, 119.13 (tetraploid, Feulgen microdensitometry)i | 16.24 (diploid)g, 30.45 (tetraploid)h | 16.24g, 15.22h |
a, b, c, e, f( |
Anguinum/ Anguinum* | A. prattii C.H.Wright (A. cannifolium H. Lev., A. ellipticum Wall et Kunth) | 8a | 16b | 16c, 32d | Diploide, Tetraploidf | – | – | – |
a( |
Anguinum/ Anguinum! | A. victorialis L. (A. anguinum Bubani, A. reticulatum St.-Lag.) | 8a | 8b | 16c, 32d, 36e | Diploidf, Tetraploidg | 81.00 (diploid)h, 86.42 (diploid, Feulgen microdensitometry)i, 162.02 to 167.10 (Tetraploid, Feulgen cytophotometry)j | 20.25 (diploid)h, 21.60 (diploid)i, 40.5–41.78 (tetraploid)j | 20.25h, 21.60i, 20.25–20.89 |
a, b, f( |
Melanocrommyum/ Brevicaule # | Allium chitralicum Wang & Tang (A. badakhshanicum, A. pauli) | – | – | 16a, 32b | – | – | 34.35 (tetraploid, flow cytometry)c** | 17.17 (tetraploid, flow cytometry)c** |
a( |
Butomissa/ Butomissa* | A. tuberosum Rottler ex Spreng. (A. chinense Maxim., A. clarkei Hook.f.) | 8a | 8b, 16c, 32d | 16e, 32f, 24g, 31, 33h, 48i, 61–64 j, 62k, 64l | Tetraploidm, Hexaploidn, Octaploido, Autotetraploidp, Autopolyploidq | 66.80 (tetraploid)r, 121 (tetraploid)s, 109.36 (tetraploid, Feulgen cytophotometry)t, 121.47–123.25 (tetraploid, Feulgen Cytophotometry)u | 30.36–30.62 (tetraploid)u | 15.18–15.31u |
a, c, f, m, p( |
Butomissa/ Austromontana*! | A. oreoprasum Schrenk | – | – | 16 a, 48 b | – | – | – | – |
a( |
Rhizirideum/ Caespitosoprason* | A. przewalskianum Regel (A. jacquemontii var. parviflorum (Ledeb.) Aswal, A. junceum Jacquem. et Baker) | 8a | – | 16b, 32c, 64d | Diploide, Tetraploidf Octaploidg Autopolyploidh | – | – | – |
a, b, e, f( |
Allium/ Allium* | A. ampeloprasum L. (A. adscendens, A. porrum var. ampeloprasum) | 8a | – | 16b, 24c, 32d, 40e, 56f | Diploidg, polyploidh/ autotetraploidi | 48.20 (tetraploid, feulgen cytophotometry)j, 100.54 (cytometry)k, 119.64/ 121.15 (tetraploid, feulgen cytophotometry)l, 119.80 (tetraploid, feulgen cytophotometry)m | 16.7 (diploid, flow cytometry)n**, 25.35–27.45 (tetraploid, flow cytometry)m,n** | 16.7 (diploid, flow cytometry)n**, 12.67–13.73 (tetraploid, flow cytometry)m,n** |
a, b, d, g, h, i, n**( |
Allium/ Allium* | A. sativum L. (A. arenarium Sadler et Rchb, A. controversum Schrad. et Willd.) | 8a | 8b | 16c, 12d | Diploide | 63.00 (diploid)f, 64.90 (diploid, Feulgen Cytophotometry)g, 65.40 (diploid)h, 66.40–69.00 (diploid)i, 68.20l, 71.40m, 73.59–91.80 (diploid, Feulgen Cytophotometry)j, 120 (diploid, Feulgen Cytophotometry)k | 15.75 (diploid)f,16.23 (diploid)g,16.35 (diploid)h, 16.6–17.25 (diploid)i, 17.05l, 17.85m, 18.40–22.95 (diploid)j, 30.0 (diploid)k | 15.75f, 16.23g, 16.35h, 16.6–17.25i, 17.05l, 17.85m, 18.40–22.95j, 30.0k |
a( |
Allium/ Avulsea* | A. griffithianum Boiss. (A. bahri, A. jacquemontii var. grandiflorum) | 8a | 16b | 16c, 32d | Diploide, Tetraploidf, Autotetraploidg | 41.15 (diploid, Feulgen cytophotometry)h | 10.29 (diploid)h | 10.29h |
a, b, d, f( |
Allium/ Avulsea* | A. rubellum M. Bieb. (A. albanum Grossh., A. leptophyllum Wall.) | – | 16a | 16b, 24c, | Diploidd, Triploide, Tetraploidf, Numerical hybridg, Autopolyploidh | – | – | – |
a, f( |
Allium/ Caerulea! | A. jacquemontii Kunth | 8a | 8b | 16c | Diploidd | – | – | – |
a, b( |
Reticulatobulbosa/ Reticulatobulbosa! | A. humile Kunth (A. govanianum, A. nivale) | 8a | 8b | – | Diploidc | – | – | – |
a, b, c( |
Reticulatobulbosa/ Reticulatobulbosa! | A. schrenkii Regel (A. bogdoicola Regel) | – | – | 32a | – | – | – | – |
a( |
Reticulatobulbosa/ Sikkimensia* | A. sikkimense Baker (A. kansuense Regel, A. tibeticum Rendle) | – | – | 16a, 32b | – | – | – | – |
a( |
Polyprason/ Falcatifolia* | A. carolinianum DC. (A. aitchisonii, A. obtusifolium) | 8a | 16b | 16c, 32d | Diploide, Tetraploidf | 52.90 (diploid, Feulgen cytophotometry)g | 13.23 (diploid)g | 13.23g |
a( |
Polyprason/ Oreiprason* | A. roylei Stearn (A. lilacinum Royle et Regel, A. rubens Baker) | 8a | 8b | 16c | Diploidd | 63.00 (diploid)e, 70.03 (diploid, Feulgen microdensitometry)f | 15.75 (diploid)e, 17.51 (diploid)f | 15.75e, 17.51f |
a, b, c, d( |
Polyprason/ Falcatifolia*! | A. platyspathum Schrenk (A. platyspathum subsp. platyspathum) | – | – | 16a | – | – | – | – |
a( |
Cepa/ Cepa* | A. cepa L. (A. cepa var. aggregatum, A. cepa var. anglicum) | 8a | 6b, 8c | 14d, 16e, 24f | Diploidg, Triploidh | 65.4 (diploid, flow cytometry)i, 66.40–69.00 (diploid, Feulgen cytophotometry)j, 67–71.61 (diploid, Feulgen cytophotometry)k, 67.5 (diploid, flow cytometry)l | 16.35 (diploid)i, 16.60–17.25 (diploid)j, 16.75–17.90 (diploid)k, 16.87 (diploid)l, 16.2 (diploid)m**, 17.18–17.32 (diploid)n** | 16.35i, 16.60–17.25j, 16.75–17.90k, 16.87l, 16.2m**, 17.18–17.32n** |
a, e, g( |
Cepa/ Annuloprason* | A. atrosanguineum Kar. et Kir. (A. monadelphum) | 8a | – | 16b,32c | diploidd | – | – | – |
a, b, d( |
Cepa/ Annuloprason* | A. fedschenkoanum Regel. (A. atrosanguineum var. fedschenkoanum) | 8a | 8b | 16c | Diploidd | – | – | – |
a, b, d( |
Cepa/ Sacculiferum* | A. chinense G. Don. (A. bakeri, A. bodinieri) | 8a | – | 16b, 24c, 32d | Triploide, Tetraploidf, Segmental allotetraploidg | 130.86 (tetraploid, Feulgen cytophotometry)h | 32.7 (tetraploid)h | 16.35h |
a, d, f, i( |
Cepa/ Schoenoprasum* | A. schoenoprasum L. (A. acutum Spreng., A. alpinum (DC.) Hegetschw.) | 8a | 8b | 14c, 16d, 24e, 32f, 48g | Diploidh | 31.20 (diploid, 79)i, 33.20 (diploid)j, 33.80 (diploid)k, 34.90 (diploid)l 37.73(diploid, Feulgen Cytophotometry)m, 60.66 (tetraploid)n | 7.8 (diploid)i, 8.3 (diploid)j, 8.45 (diploid)k, 8.72 (diploid)l, 9.43 (diploid)m, 15.16 (tetraploid)n | 7.8i, 8.3j, 8.45k, 8.72l, 9.43m, 7.58n |
a, b, h( |
– | A. ascalonicum L. (A. carneum, A. fissile) | 8a | 8b | 16c | Diploidd | 66.32–68.67 (diploid, Feulgen cytophotometry)e | 16.58–17.16 (diploid)e | 8.29–8.28e |
a( |
– | A. atropurpureum Waldst. et Kit. (A. nigrum var. atropurpureum) | 8a | 8b | 16c,32d | diploide, tetraploidf | 112.81 (tetraploid, Feulgen cytophotometry)g, 113.66 (diploid, Feulgen cytophotometry)h | 28.2 (tetraploid)g, 28.45 (diploid)h | 14.1g 28.45h |
a, b, c, e( |
– | A. blandum Wall. | – | 16a | 32b | Tetraploidc | – | – | – |
a, b, c( |
– | A. caesioides Wendelbo (A. kachrooi) | – | 8a | 16b | Diploidc | – | – | – |
a, b, c(dGRIP) , a, c( |
– | A. consanguineum Kunth | 8a | 8b | 16c | Diploidd | – | – | – |
a, b, d( |
– | A. hypsistum Stearn | – | – | 32a | – | – | – | – | a(dGRIP) |
– | A. stracheyi Baker (A. longistaminum Royle) | 8a | 8b | 16c, 14d, 32e, 48f | Diploidg | – | – | – |
a, b, g( |
The greatest variation in ploidy has been observed in A. tuberosum (subgenus Butomissa), A. przewalskianum (subgenus Rhizirideum), A. chinense G. Don, 1827 (subgenus Cepa) and A. rubellum, A. ampeloprasum, A. griffithianum (subgenus Allium) (Table
Among the diploid species, the range of genome size (Table
The genome size evolution of Allium species has been envisaged in relation to growth pattern (dormancy), habitat preference and evolutionary history of the subgenera and sections (
The karyotype features are known in 8 subgenera and 14 sections of Allium species occurring in India (Fig.
Karyotype features and molecular chromosomal landmarks in species of Allium (Amaryllidaceae, Subfamily Allioideae, Tribe Allieae, sensu APG IV 2016) occurring in India.
Subgenera/ sections | Species | Karyotype | Heterochromatin banding (Giemsa/ Fluorochrome/others) | rDNA/ telomeric/ other signals | References | ||
---|---|---|---|---|---|---|---|
Chromosome morphology | SAT or NORs/ 2n | No. of signals/2n | Features | ||||
Amerallium/ Bromatorrhiza! | A. fasciculatum Rendle | Majorly submetacentric, few telocentric and metacentrica | 4b | – | – | – |
a, b( |
Amerallium/ Bromatorrhiza* | A. hookeri Thwaites | Majorly submetacentric, few metacentrica | 2b | – | – | – |
a, b( |
Amerallium/ Bromatorrhiza*! | A. wallichii Kunth. | Majority submetacentrica | 2b | – | – | – |
a, b( |
Anguinum/ Anguinum* | A. prattii C.H.Wright | Majority metacentrica | 2b/4c | – | – | – |
a, b( |
Anguinum/ Anguinum! | A. victorialis L. | Majority metacentrica or sub–metacentricb | 2c | – | – | – |
a( |
Butomissa/ Butomissa* | A. tuberosum Rottler et Spreng. | Majority metacentrica or submetacentricb,c | 3d/ 4e / 6f | – | 5S:4–6g | 5S: proximal and intercalaryh |
a( |
Rhizirideum/ Caespitosoprason* | Allium przewalskianum Regel | Majority metacentric chromosomesa | 2b | – | – | – |
a, b( |
Allium/ Allium* | A. ampeloprasum L. | Majorly metacentric, few sub–metacentrica, few subacrocentricb | 8c | Interstitial C– bands colocalized to silver stained regions in 8 active NORsd, 8 CMA3+/DAPI– bands colocalized to silver stained regions and 35S rDNA sites in NORse | 35S:8, 5S: 13 (polymorphic) f | 35S: interstitial (4) and pericentromeric (4) in short armsg, 5S: interstitial/ pericentromeric, non–coloclaized to 35S except in one chromosome of 8th pair where it flanks 35S siteh |
a, c, e, f, g, h( |
Allium/ Allium* | A. sativum L. | Majority metacentrica | 2b/ 4c/ 6d/ 4–8e | C–Bands: nucleolarf, telomeric and interstitialg, centromeric (2 pairs)h; N–bands: nucelolar (4)i; Active NORs (AgNORs):2, occasionally4j; CMA+/DAPI–bands: 4–6k | 5S: 4l, 6m; 45S and 5S rDNA localizedn; telomeric signals in all chromosomeso; numerous satellite signalsp | telomeric signals distalq, satellite signals sub–telomeric and interstitialr |
a( |
Allium/ Avulsea* | A. griffithianum Boiss. | Majorly metacentrica | – | – | – |
a( |
|
Allium/ Avulsea* | Allium rubellum M. Bieb. | Majority metacentric to sub–metacentrica | 2b/ 6c/ 8d | – | – | – |
a, b( |
Allium/ Caerulea! | A. jacquemontii Kunth | Majority metacentrica | – | – | – | – |
a( |
Reticulatobulbosa/ Reticulatobulbosa! | A. humile Kunth | Majority metacentrica | – | – | – | – |
a( |
Polyprason/ Oreiprason* | A. roylei Stearn | Majority metacentrica or sub–metacentricb | 2c | – | – | tyr-FISH mapping of bulb alliinase gened |
a, b, c( |
Polyprason/ Falcatifolia* | A. carolinianum DC. | Majorly metacentric, few sub–meta– or sub–telocentrica | 2b | – | – | – |
a, b( |
Cepa/ Cepa* | A. cepa L. | Majority metacentric, few submetacentrica | 1b, 1–2c, 1–4d, 2e, 2–4f | C–Bands: telomericg, intercalaryh, distali, centromeric and at satellitesj; heterochromatic CMA/DAPI/AMD bands at NORs and telomeresk | 18S–5.8S–25S rDNA loci: 2–4l, 45S rDNA loci: 3m, 4n, 4–5o, 5p; 5S rDNA loci: 2q, 4r | Variable rDNA sitess; distal 45S rDNA loci colocalized with telomeric tandem repeatt and non–colocalized to 5S lociu; 5S loci proximal and distalv or interstitialw; tyrFISH (with allinase, CHS–B and EST markers) reveal chromosome evolutionz |
a( |
Cepa/ Annuloprason* | A. atrosanguineum Kar. et Kir. | majorly metacentrica | 2b | – | – | – |
a, b( |
Cepa/ Annuloprason* | A. fedschenkoanum Regel. | Majority metacentric chromosomesa | – | – | – | – |
a( |
Cepa/ Sacculiferum* | A. chinense G. Don. | Majority sub– metacentrica or submetacentricb | 2–4c | – | – | – |
a( |
Cepa/ Schoenoprasum* | A. schoenoprasum L. | Majority metacentrica | 1–6b | C–bandsc | 5S: 4d | 5S: interstitial in chromosome 6e, tyr–FISH of alliinase reveal chromosome evolutionf |
a( |
– | A. ascalonicum L. | metacentric to sub–metacentrica | 2b | Distal C bands in all chromosomesc | – | – |
a, b( |
– | A. atropurpureum Waldst. et Kit. | Majorly nearly metacentric and few submetacentrica | – | – | – | – |
a( |
– | A. blandum Wall. | metacentrica | – | – | – | – |
a( |
– | A. consanguineum Kunth | Majority metacentric or sub–metacentric chromosomesa | 2 (interstitial)b | – | – | – |
a( |
– | A. stracheyi Baker | Majority metacentrica or sub–metacentricb | – | – | – | – |
a( |
The predominance of metacentric chromosomes and symmetric nature of karyotypes is in accordance with earlier studies (
Presence of B-chromosomes has been reported in 97 species of Allium (
Nucleolus organizer regions or NORs are significant markers for chromosome identification. Among the species considered presently, NORs/ satellite-bearing chromosomes often show infra-specific or cultivar-specific differences particularly in A. cepa, A. sativum and A. tuberosum (Table
In case of subgenus Allium, eight active NORs have been shown in A. ampeloprasum by C- banding, CMA3+/DAPI- banding, AgNOR staining and FISH (Table
Allium cepa varieties with different ploidy levels (e.g. A. cepa var. viviparum, then supposed to be a hybrid between A. cepa and A. fistulosum Linnaeus, 1753) (
One interesting feature is that satellites occur mostly in the short arms except for some cases in the subgenera Allium and Amerallium (
Diagram showing NOR landmarks based on globally published reports in the three species of the genus Allium occurring in India. The modal karyotypes for subgenera are adopted and modified after
Telomeres and rDNA loci are the two especially variable features of A. cepa chromosomes. Many authors have previously argued that genomic rearrangements are responsible for positional variations of 45S rDNA loci in A. cepa (
The plant telomere was once thought to be composed of Arabidopsis Heynhold, 1842 prototype TTTAGGG repeats (
A robust phylogenetic analysis supported by genome size and karyotype parameters was found to elucidate the evolution of Gilliesieae of Allioideae (
The utility of cytogenetic mapping remains unparallel to investigate synteny comparison between phylogenetically related species that has been employed to interpret chromosome evolution in Allium crop species from Russia (
Considering the impact of cytogenetic investigation in Allium phylogeny at a global scale, it is unfortunate to notice the lack of attention in an Indian context in spite of species abundance. Although A. cepa has often been regarded as the common material for cytogenetic analysis and the popular ‘Allium cepa test’ (
Conceptualization, supervision, project administration and funding: SJ, MML, DO, SRR, SRY, MKD, SNR, RCV. Data Curation and data analysis: BKB, SS, DRC, SDP. Writing and Editing: BKB, SS, DRC, MML, DO, SJ.
SJ thanks National Academy of Sciences (India) for award of Senior Scientist Fellowship to continue research. The work is supported by Department of Biotechnology, Ministry of Science and Technology, Government of India under the project entitled “Network Programme for Enrichment and Update of Plant Chromosome Database for Spermatophytes and Archegoniate” vide No. BT/PR7866/NDB/39/272/2013 in which all the authors are beneficiaries.
Biplab Kumar Bhowmick https://orcid.org/0000-0001-6029-1098
Sayantika Sarkar https://orcid.org/0000-0002-8738-9500
Dipasree Roychowdhury https://orcid.org/0000-0001-7537-4056
Sayali D. Patil https://orcid.org/0000-0000-0000-00000
Manoj M. Lekhak https://orcid.org/0000-0001-5753-2225
Deepak Ohri https://orcid.org/0000-0001-6327-4330
Satyawada Rama Rao https://orcid.org/0000-0003-0309-720X
S. R. Yadav https://orcid.org/0000-0001-6728-5483
R. C. Verma https://orcid.org/0000-0000-0000-00000
Manoj K. Dhar https://orcid.org/0000-0002-8777-6244
S. N. Raina https://orcid.org/0000-0002-4916-3359
Sumita Jha https://orcid.org/0000-0002-1375-2768