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Abstract
Four species of Chilean leaf beetles in the subfamily Chrysomelinae have been cytogenetically analyzed, 
Blaptea elguetai Petitpierre, 2011, Henicotherus porteri Bréthes, 1929 and Jolivetia obscura (Philippi, 1864) 
show 2n = 28 chromosomes and a 13 + Xyp male meioformula, and Pataya nitida (Philippi, 1864) has 
the highest number of 2n = 38 chromosomes. The karyotype of H. porteri is made of mostly small meta/
submetacentric chromosomes, and that of Jolivetia obscura displays striking procentric blocks of hetero-
chromatin at pachytene autosomic bivalents using conventional staining. These findings are discussed in 
relation to previous cytogenetic data and current taxonomy of the subfamily.
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Introduction

The subfamily Chrysomelinae is a group of mostly quite large or medium sized leaf 
beetles mainly distributed in cool and temperate regions of the world, which are com-
posed of 133 genera (Daccordi 1994), and nearly 3000 species worldwide (Farrell 
1998; Reid et al. 2009)

From the cytogenetic standpoints, this subfamily is relatively well-known since 
nearly 260 taxa and chromosomal races in 38 genera have been surveyed to date (Pe-
titpierre 2011a). In a previous cytogenetic study, we analyzed three Chilean species of 
Chrysomelinae (Petitpierre and Elgueta 2006), belonging to three of the ten genera so 
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far found in the country (Daccordi 1994). We have here enlarged this research with four 
additional species and genera from Chile, of which three, Henicotherus Bréthes, 1929, 
Jolivetia Bechyné, 1946 and Pataya Bechyné, 1946, are endemics for this geographic sub-
region in the Neotropics (Daccordi 1994), and the fourth, Blaptea Weise, 1915, has only 
one other species, in Colombia and Brazil (Daccordi 1994, Petitpierre 2011b).

Material and methods

The checked species and their origins are reported in Table 1.
The surveyed individuals of Blaptea elguetai, Jolivetia obscura and Pataya nitida 

were caught by sweeping on their host plants Tropaeolum brachyceras Hook. et Arn., 
1830 (Tropaeolaceae), Aristeguietia salvia (Colla) R.M. King et H. Rob., 1975 (Aster-
aceae) and Ageratina glechonophylla (Less.) R.M. King et H. Rob., 1970 (Asteraceae), 
in October 2009, October 2006 and November 2007, respectively, and those of Heni-
cotherus porteri were caught by hand under stones in October 2009. At least two indi-
viduals from each species have been cytogenetically studied.

The chromosome analyses were only performed on male living individuals brought 
from Chile to our laboratory in Palma de Mallorca (Spain), where they were killed 
with ethyl acetate. Then, the procedure to get the conventional staining preparations 
was the same used before in our previous paper (Petitpierre and Elgueta 2006). Finally, 
we obtained micrographs by a ZEISS AXIOSKOP photomicroscope and subsequently 
enlarged them for printing at X1500.

Table 1. Chromosomally checked species and their Chilean geographical sources.

Blaptea elguetai Petitpierre, 2011 Isla Negra, prov. San Antonio, Reg. Valparaíso
Henicotherus porteri Bréthes, 1929 Mincha 2 km W, prov. Choapa, Reg. Coquimbo
Jolivetia obscura (Philippi, 1864) Isla Negra, prov. San Antonio, Reg. Valparaíso
Pataya nitida (Philippi, 1864) Isla Negra, prov. San Antonio, Reg. Valparaíso

Results

Tribe Chrysomelini
Subtribe Entomoscelina

Blaptea elguetai has 2n = 28 chromosomes and a 13 + Xyp male meioformula of me-
dium and small autosomal bivalents plus the Xyp “parachute” sex-chromosome system 
where most of these autosomic bivalents are rod-shaped (Fig. 1A).

Henicotherus porteri has also 2n = 28 chomosomes at spermatogonial metaphases (Fig. 
1B), from which a karyogram has been obtained, made of medium and small metacen-
trics of gradually decreasing sizes, including the largest X-chromosome and the small-
est y-chromosome elements (Fig. 1C). Confirming what was expected, the metaphases I 
comprise 13 autosomic bivalents and the Xyp sex-chromosome system (not shown).
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Tribe Chrysomelini
Subribe Chrysomelina

Jolivetia obscura displays 2n = 28 chromosomes as in the two previous species, from 
pachytene meiotic cells where 14 bivalents are distinguishable and among them the 
Xyp sex-chromosome system. Each of the 13 pachytene autosomal bivalents show a 
remarkable band of procentric heterocromatin, and the presumed Xyp sex-chromo-
some system appears as a strongly heterochromatic round bulk under the conventional 
staining technique (Fig. 2A).

Figures 1A–C. A Blaptea elguetai metaphase I showing 13 + Xyp, the Xyp is arrowed B Henicotherus 
porteri spermatogonial metaphase with 2n = 28, the y-chromosome is arrowed.C karyogram showing 
small meta/submetacentric chromosome pairs, the medium-sized X and the smallest y-chromosome are 
in the extreme right. Bar = 10 µm

Figures 2A–C. A Jolivetia obscura pachytene showing 13 + Xyp with striking procentric heterochro-
matic bands in the autosome bivalents, and the presumed Xyp arrowed B Pataya nitida spermatogonial 
metaphase (left) and pachytene (right), some autosome bivalents show small procentric bands of hetero-
chromatin C anaphase I showing 2n = 38 chromosomes. Bar = 10 µm
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Conversely, Pataya nitida displays a higher diploid number of 19 pachytene bi-
valents, a few of which having heterochromatic bands (Fig. 2B), and 2n = 38 small 
chromosomes at spermatogonial anaphase (Fig. 2C).

Discussion

The diploid number of chromosomes and male sex-chromosome system of Blaptea 
elguetai 2n = 28 (Xyp) agrees with our findings in Microtheca ochroloma Stål, 1860 (Pe-
titpierre 1988), Blaptea and Microtheca Stål, 1860, both American genera, are closely 
related taxa within the subtribe Entomoscelina (Daccordi 1994). Henicotherus porteri, 
also belonging to the same subtribe Entomoscelina as the former (Daccordi 1994), 
shares again a 2n = 28 (Xyp) diploid number and male sex-chromosome system, and 
its karyotype is made up of meta/submetacentric chromosomes of small size mostly. 
These meta/submetacentric chromosome shapes are the prevalent elements in beetle 
karyotypes (Smith and Virkki 1978; Virkki 1984), and more particularly, in the leaf 
beetles of the subfamily Chrysomelinae too (Petitpierre 2011a).

Among the different subtribes of Chrysomelinae (Daccordi 1994), the Entomosceli-
na have been scarcely surveyed from cytogenetic standpoints, with only seven checked 
species (Barabás and Bezo 1978; Petitpierre 1988; Petitpierre and Grobbelaar 2004), 
in five genera including the two present ones, among the total of 27 genera described 
to date (Daccordi 1994). However, it might seem that this subtribe is rather conserva-
tive in chromosome number and sex-chromosome system because five species have 2n 
= 28 (Xyp) and two 2n = 26 (Xyp), contrary to most other subtribes of Chrysomelinae, 
which exhibit a wide range of haploid chromosome numbers, namely from 9 to 22 in 
Timarchina, 10 to 25 in Chrysolinina, and 6 to 18 in Doryphorina (Petitpierre 2011a).

As reported above, Jolivetia obscura and Pataya nitida are classified in a different 
subtribe, Chrysomelina, than the two previous species (Daccordi 1994), and they have 
2n = 28 (Xyp) and 2n = 38 chromosomes, respectively. Among the 35 chromosomally 
studied species belonging to 12 genera in this subtribe, there is again a rather wide range 
of haploid numbers from 12 to 19, but with a clear modal value at n = 17 (65.7%) 
(Petitpierre 2011a). Therefore, Pataya nitida displays the highest so far found number 
and Jolivetia obscura one of the lowers within subtribe Chrysomelina. It is also remark-
able, that even though both species, Jolivetia obscura and Pataya nitida, are taxonomi-
cally and morphologically related (Daccordi 1994), feeding on Asteraceae host plants as 
mentioned above, they are characterized with so diverse chromosome numbers.

The procentric bands of heterochromatin found in pachytene autosomal bivalents 
of Jolivetia obscura and in some of those of Pataya nitida, using conventional stain-
ing, are common feature in beetle chromosomes, as it has been recently demonstrated 
in several families of Coleoptera including Chrysomelidae by C-banding techniques 
(Rozek et al. 2004; Karagyan et al. 2012).

The sex-chromosome system found in our sampled species of Chilean chrysomelines 
was the parachute-type Xyp, except in Pataya nitida which has not been identified. Thus, 



A chromosomal analysis of four species of Chilean Chrysomelinae (Coleoptera, Chrysomelidae) 339

they agree with those found in the three previously analysed species of Chilean chrysome-
lines (Petitpierre and Elgueta 2006), and follow the prevalent rule in the subfamily 
Chrysomelinae, where almost 80% of the nearly 260 examined taxa display this sex-chro-
mosome system (Petitpierre 2011a), as well as it also occurs in most beetles of the suborder 
Polyphaga (Smith and Virkki 1978; Virkki 1984; Dutrillaux and Dutrillaux 2009).
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Abstract
Using the fluorescence in situ hybridization (FISH), the presence of (TTAGG)n telomeric sequence was 
detected in the chromosomes of Lethocerus patruelis (Stål, 1854) belonging to the family Belostomatidae 
(Heteroptera: Nepomorpha). This sequence was exclusively present at the ends of chromosomes in this 
species. This is the first evidence of the insect-type TTAGG telomeric repeats in Heteroptera.

Keywords
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Introduction

Telomeres are specific nucleoprotein structures at the ends of chromosomes and are 
responsible for their stability. Information on the telomere structure and function is 
presently available for many animals, plants and fungi (Fuchs et al. 1995, McKnight 
and Shippen 2004, Traut et al. 2007, Zakian 2012). The telomeres of insect species are 
predominantly composed of a pentanucleotide sequence repeat (TTAGG)n (reviewed in 
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Frydrychová et al. 2004). On the other hand, there are some higher taxa known to have 
lost this telomeric motif during their evolution, and Heteroptera are repeatedly referred 
to as one of such groups (Sahara et al. 1999, Frydrychová et al. 2004, Vitková et al. 
2005, Lukhtanov and Kuznetsova 2010, Grozeva et al. 2011, Kuznetsova et al. 2011).

In this paper we report the molecular structure of telomeres at the physical ends 
of chromosomes in Lethocerus patruelis (Stål, 1854) (Nepomorpha: Belostomatidae).

Material and methods

Spread chromosome preparations were made from testes of L. patruelis and stained 
using a Shiff-Giemsa method as described in Grozeva et al. (in press). The molecular 
structure of telomeres was investigated by fluorescence in situ hybridization of chromo-
somes (FISH) with a (TTAGG)n probe. In addition, we used an 18S rDNA probe to 
reveal the location of ribosomal clusters, NORs, on L. patruelis chromosomes. In these 
experiments we followed the protocol described in Grozeva et al. (2011). Fluorescence 
images were taken with a Leica DFC 345 FX camera using Leica Application Suite 3.7 
software with an Image Overlay module.

Results

At first metaphases in L. patruelis males, 11 autosomal bivalents, each with one (some-
times two) terminal or subterminal chiasmata, a bivalent of m-chromosomes (micro-
chromosomes) and a XY- pseudo-bivalent could be seen (Fig. 1a). Figures 1b-d show 
the results of fluorescence in situ hybridization with pentanucleotide (TTAGG)n and 
18S rDNA probes to several meiotic spreads. At metaphase nuclei, TTAGG fluores-
cent signals (red) are clearly seen at all chromosomal ends, whereas rDNA clusters 
(green) are clearly evident on the X and Y chromosomes (Fig. 1b, c). Prominent tel-
omere clustering at the periphery of spermatid nuclei (Fig. 1d) creates one large while 
sometimes a small number of TTAGG signals (red).

Discussion

The standard karyotype of Lethocerus patruelis males is 2n = 22A + 2m + XY as it was 
recently shown by Grozeva et al. (in press). We found that L. patruelis displayed FISH 
rDNA sites both on X and Y chromosomes. This is as expected since CMA3-staining 
performed by Grozeva et al. (in press) has revealed GC rich clusters (typically pointed 
to NORs) on the sex chromosomes in this species. In other Belostomatidae species 
studied in this respect, NORs are known to be located either on sex chromosomes 
or on a pair of autosomes, the co-generic species sometimes differing in this pattern 
(reviewed in Grozeva et al. 2011).
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Figures 1. Meiotic chromosomes of Lethocerus patruelis subjected to standard staining (a) and FISH 
(b–d). a metaphase I showing n = 11AA + mm + XY; b–d representative FISH images of metaphase I 
chromosomes (b, c) and spermatids (d) hybridized with probes against 18S rDNA and telomeres, show-
ing ribosomal clusters (green) on X and Y chromosomes (b, c), and TTAGG repeats (red) located at the 
ends of chromosomes (b, c) and clustered at the periphery of spermatid nuclei (d).

DNA of the telomeres consists of short nucleotide motifs (combinations) repeated 
thousands and millions of times. Comparative analysis of these motifs in various groups of 
organisms has shown that they are evolutionarily stable, and, having once appeared dur-
ing the evolution, mark taxa and phylogenetic lineages of high rank (Traut et al. 2007).
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Quite recently, Frydrychová et al. (2004) assembled and analyzed the data available 
on the telomeric sequences in Insecta, and, together with some original observations, 
they interpreted these character data in a phylogenetic framework. Conclusions in that 
work are largely congruent with those previously proposed by Sahara et al. (1999). The 
great majority of insect species share the telomeres composed of (TTAGG)n repeat. 
Since the same telomere composition is characteristic of the rest of arthropods, the 
(TTAGG)n telomeric motif is considered an ancestral one in Insecta. Many higher-
level insect groups preserved this motif; however several orders, e.g. Dermaptera, Het-
eroptera, Diptera and some others, are suggested to have lost this telomeric sequence 
during the evolution (Sahara et al. 1999, Frydrychová et al. 2004, Vitková et al. 2005, 
Lukhtanov and Kuznetsova 2010).

We emphasize, however, that the problem of telomere composition in different in-
sect orders is still not adequately explored and in most cases, the available data concern 
one or more species only (see Fig. 6 in Frydrychová et al. 2004). On the other hand, 
in one of the better studied orders, Coleoptera (data are available for more than 20 
species), both (TTAGG)n-positive and (TTAGG)n-negative species have been reported 
(Frydrychová and Marec 2002, Frydrychová et al. 2004).

In Heteroptera, the absence of the (TTAGG)n telomeric motif was firstly shown 
for Halyomorpha halys (Stål, 1855) (Pentatomidae) studied using Southern hybridiza-
tion (Okazaki et al. 1993: as H. mista (Uhler, 1860)) and Pyrrhocoris apterus (Linnaeus, 
1758) (Pyrrhocoridae) subjected to both Southern hybridization and FISH (Sahara et 
al. 1999). On the other hand, this sequence was revealed in telomeres of non-heterop-
teran Hemiptera and some other Paraneoptera (Frydrychova et al. 2004).

Originally proposed by Sahara et al. (1999) and accepted at a later time by other 
authors (Frydrychova et al. 2004, Vitková et al. 2005, Lukhtanov and Kuznetsova 
2010), the hypothesis for the loss of (TTAGG)n sequence in true bugs has received 
further support owing to the discovery of Grozeva et al. (2011) that five more species 
studied by FISH and Dot-blot hybridization are also (TTAGG)n- negative. Based on 
evidence provided by Okazaki et al. (1993), Sahara et al. (1999) and Grozeva et al. 
(2011), (TTAGG)n motif is known to be absent in seven species of true bugs. These 
species represent phylogenetically distant families, such as Pentatomidae (Halyo-
morpha halys, Eurydema oleracea (Linnaeus, 1758), Graphosoma lineatum (Linnaeus, 
1758)) and Pyrrhocoridae (Pyrrhocoris apterus) belonging to the infraorder Pentato-
momorpha and also Miridae (Deraeocoris rutilus (Herrich-Schaffer, 1838), Megaloc-
eroea recticornis (Geoffroy, 1785)) and Cimicidae (Cimex lectularius (Linnaeus, 1758) 
belonging to the infraorder Cimicomorpha.

Our results of FISH with a (TTAGG)n probe strongly demonstrated that (TTAGG)n 
sequence was located at the telomeres of all chromosomes in L. patruelis. The finding 
of the insect-type (TTAGG)n telomeric motif in L. patruelis is thus clearly indicative 
of the heterogeneity of Heteroptera in telomere organization. The family Belostomati-
dae, to which this species belongs, is classified within the infraorder Nepomorpha (or 
true water bugs). The data on telomeres imply that true water bugs preserved the ple-
siomorphic telomere structure, whereas Cimicomorpha and Pentatomomorpha have 
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the apomorphic state of this character, which can be considered a synapomorphy of 
these infraorders. This conclusion is consistent with the generally accepted opinion 
that Cimicomorpha and Pentatomomorpha represent a monophyletic lineage, and 
Nepomorpha has a basal position within Heteroptera (Wheeler et al. 1993; Mahner 
1993, Scherbakov and Popov 2002, Xie et al. 2008, Weirauch and Schuh 2011).
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Abstract
The karyotype of the Tsing-Ling (Huanghe) pika, Ochotona huangensis Matschie, 1908 from the for-
est habitats of the Qinling Mountains (Shaanxi Province, China) was described for the first time. The 
chromosome set contains 42 chromosomes (NFa=80). The autosomes are 15 meta-submetacentric pairs 
and 5 subtelocentric pairs. The X chromosome is a medium sized submetacentric; the Y chromosome is 
a small sized acrocentric. C-banding revealed a localization of heterochromatin in the pericentromeric 
regions of all autosomes.

Keywords
Ochotona huangensis, pika, karyotype, chromosome, C-banding

Introduction

The pikas Ochotona Link, 1795 are small (12–28 cm long) mammals of the order 
Lagomorpha Brandt, 1855. The developed sound signaling is a characteristic feature of 
most northern Ochotona species. They live either alone or in colonies, preferring taluses 
or open plains. The pikas find refuges in the crevices between rocks or dig burrows 
(Sokolov et al. 1994, Hoffmann and Smith 2005).
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These animals occur in North America from Alaska to New Mexico. In the Old 
World pikas are distributed from the Arctic coast to the northern regions of Iran, Af-
ghanistan, Pakistan, India and Burma, from the Polar Urals in the West to the Pacific 
coast in the East, including Chukotka, Kamchatka peninsula, Hokkaido Island and 
also in territory of North Korea (Sokolov et al. 1994, Hoffmann and Smith 2005).

The pikas are one of the most ancient groups of the placental mammals (Gu-
reev 1964, Ivanitskaya 1989, Lopatin and Aver’yanov 2008, Rose et al. 2008). The 
morphological criteria of species diagnosis were ascertained for many described Ocho-
tona species. The pikas have rather distinct interspecific differentiation of karyotypes 
(2n=38-68) that helps to solve controversial taxonomic issues. Most species have stable 
karyotypes without geographic variability and intrapopulation polymorphism (Ivan-
itskaya 1989). However, two chromosomal forms of uncertain taxonomic rank were 
revealed for O. alpina group (Formozov et al. 2006).

The majority of modern taxonomists recognize 30 species of pikas and they divide 
them into three subgenera: Pika Lacepede, 1799, Ochotona Link, 1795 and Conothoa 
Lyon, 1904 (Hoffmann and Smith 2005). The karyotypes at least of 17 pika spe-
cies were described (Table 1). These species are mainly from northern and temperate 

Table 1. Subgenera system of the genus Ochotona and variability of the diploid chromosome number 
(2n). NF – the fundamental number of chromosomal arms.

Subgenus Species 2n NF Banding 
methods References

Pika O. argentata Howell, 1928 38 76 C, NOR Formozov et al. 2004
O. hoffmanni Formozov et al., 1996 38 76 G, C Formozov and Baklushinskaya 1999

O. pallasi (=pricei) Gray, 1867 38
– –
76 G, C Ivanitskaya 1991

O. hyperborea Pallas, 1811 40
– – Hayata and Shimba 1969
– – Vorontsov and Ivanitskaya 1973
76 C Ivanitskaya 1991

O. alpina Pallas, 1773 42
– – Vorontsov and Ivanitskaya 1973
78 G, C Ivanitskaya 1991
– – Formozov et al. 2006

O. collaris Nelson, 1893 68 90 – Rausch and Ritter 1973

O. princeps Richardson, 1828 68 86
– Adams 1971

G, C Stock 1976
Ochotona O. huangensis Matschie, 1908 42 84 C Our data

O. curzoniae Hodgson, 1858 46 68 G, C Tan and Bai 1987

O. nubrica Thomas, 1922 48 – – Formozov et al. (personal 
communication)

O. dauurica Pallas, 1776 50
– – Vorontsov and Ivanitskaya 1973
72 G, C Ivanitskaya 1991

O. pusilla Pallas, 1769 68
– – Vorontsov and Ivanitskaya 1973

106 G, C Ivanitskaya 1991
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latitudes. Information on the differential staining of chromosomes is available for 13 
species. Comparative analysis of G-banding pika chromosomes showed a high degree 
of similarity between the karyotypes of several species: O. alpina – O. pallasi, O. pusilla 
– O. princeps, O. rutila – O. rufescens (Ivanitskaya 1991).

Up to 24 species of pika inhabit China (Wang 2003), but the karyotypes of only 
five species have been described for this territory: O. curzoniae Hodgson, 1858 (Tan 
and Bai 1987), O. ladacensis Gunther, 1875, O. nubrica Thomas, 1922 (Formozov et 
al., personal communication), O. argentata Howell, 1928 (Formozov et al. 2004), O. 
forresti Thomas, 1923 (Ye et al. 2011).

During the last four decades, the systematics of the northern Palearctic and North 
American pikas has been well developed, but the system of subgenera and superspe-
cies groups was periodically reconsidered with increase of number of morphological, 
morpho-ecological features and descriptions of karyotypes (Ivanitskaya 1991). Later it 
was corrected by multiple molecular data (Yu et al. 2000, Niu et al. 2004, Formozov 
et al. 2006, Lissovsky et al. 2007, Lanier and Olson 2009).

In this paper the karyotype of Ochotona huangensis Matschie, 1908 is described 
for the first time. This species has a few synonyms of common names: Tsing-Ling 
pika, Huanghe pika, Qinling pika. We will use the common name as Tsing-Ling 
pika, before conducting the full revision of this species. We adhered to intrage-
neric taxonomy proposed by Hoffmann and Smith (2005), in which O. huangensis 
belongs to the subgenus Ochotona. A level of variation of the diploid chromosome 
numbers in subgeneric groups of the genus Ochotona is discussed on the basis of our 
own and literature data.

Material and methods

One male of Ochotona huangensis was used as a material for this study. It was caught on 
Sept. 12, 2005 during the joint Russian-Chinese expedition to the Qinling Mountains 

Subgenus Species 2n NF Banding 
methods References

Conothoa O. forresti Thomas, 1923 54 – DAPI Ye et al. 2011

O. rufescens Gray, 1842 60

86 – Nadler et al. 1969
– – Vorontsov and Ivanitskaya 1973
– G, C Kimura et al. 1983
90 G, C Ivanitskaya 1991

O. roylei Ogilby, 1839 62 – G, NOR Capanna et al. 1991
O. macrotis Gunther, 1875 62 86 – Vorontsov and Ivanitskaya 1973

O. rutila Severtsov, 1873 62
– – Vorontsov and Ivanitskaya 1973
86 G, C Ivanitskaya 1991

O. ladacensis Gunther, 1875 68 – – Formozov et al. (personal 
communication)
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near the Foping village of Shaanxi Province, China. The pika was caught on a glade of 
the pine-oak forest, at height less than 1800 m (33°28'36,3"N, 108°30'18,6"E). This 
was slightly below the typical habitat for the Tsing-Ling (Huanghe) pika: a birch-fir 
forest located above 2000 m (Qin et al. 2007). This specimen is stored under the № 
0509391 in the museum of Kunming Institute of Zoology. The karyotype of one male 
of Ochotona dauurica Pallas, 1776 was studied for comparison. The Daurian pika was 
caught in 2004 near the Tsagan-Oluy village (50°30'N, 117°3'25"E) of Borzya Distr. 
Transbaikalia, Russia.

Identification of the pika from the Qinling Mountains was performed by mor-
phological characters. We used a molecular express analysis of the cytochrome b 
gene of mtDNA for confirming of taxonomic status of this specimen to the species 
O. huangensis. Total genomic DNA was extracted from  liver tissue by standard 
protocol (Arrighi et al. 1968). We used a standard polymerase chain reaction (PCR) 
for full-length sequences cytochrome b gene (1140 bp) amplification with specially 
designed primers:

L14075och 5’ – gta tgt cat aat tct tac atg ga – 3’
H15374och 5’ – gta agc cga ggg cgt ctt tg – 3’

The primers were designed according to published whole mitochondrial sequence 
of pika O. collaris (GenBank NCBI (www.ncbi.nlm.nih.gov) № NC_003033). The 
PCR program consisted of 94 °C for 5 min followed by 35 cycles at 94 °C for 1 min, 
62 °C for 1 min, and 72 °C for 3 min. A final amplification step completed the PCR 
at 72 °C for 7 min.

The PCR products were purified by Sin Column PCR Product Purification Kit 
(Evrogen, Moscow, Russia). The directly sequencing of the purified PCR products 
was performed using ABI PRISM BigDyeTM Terminator v3.1 (Applied Biosystems, 
Inc., Foster City, California) with an automatic DNA sequencer (Model ABI PRISM 
3100-Avant Genetic Analyzer; Applied Biosystems, Inc., Foster City, California). The 
same primers were used for sequencing PCR from both directions.

The obtained sequence (GenBank NCBI № JN645147) was compared with full-
length cytochrome b (1140bp) of 23 pikas species published by different authors in 
GenBank. The alignment of sequences was conducted by the program BIOEDIT 
v7.0.9 (Tom Hall, Ibis Biosciences). The genetic distances were estimated with neigh-
bor-joining method, using Kimura two-parameter model. The tree was constructed by 
including all transitions and transversions with TREECON v3.1b (Yves Van De Peer, 
Germany). A rabbit Oryctolagus cuniculus Linnaeus, 1758 was selected as an outgroup 
(Fig. 1).

Method of cell division stimulation in the red bone marrow with baker’s yeast 
solution was used for preparation of chromosomal slides (Lee and Elder 1980). The 
slides were made by standard method (Ford and Hamerton 1956). The procedure of 
differential staining (C-banding) was held for detection of structural heterochromatin 
(Sumner 1972).
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The chromosomal slides were analyzed on light microscope AxioSkop 40 with lens 
x100. Photographs were performed with the digital camera AxioCamHR using the pro-
gram AXIOVISION 4.7 (Carl Zeiss MicroImaging GmbH, Germany). The morphol-
ogy of the chromosomes was assessed visually without measurements (Orlov 1974).

Figure 1. Neighbor-joining distance tree constructed using the Kimura two-parameter model for com-
plete sequence cytochrome b (1140 bp). Numbers on branches indicate bootstrap support; values less 
than 50 are not shown. Numbers following the species names indicate the GenBank accession numbers.
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Results and discussion

Independence of the O. huangensis taxon was suggested by molecular studies (Yu et 
al. 2000, Niu et al. 2004), but the morphological revision of specimens used in these 
articles was never done, so we can stick to only one fact. Our data of the molecular 
express analysis showed that the sequence of our specimen had maximum similarity to 
that sequence of specimen which was identified as O. huangensis by Yu (2000) (Fig. 1).

According to the results of counting on 40 metaphase plates, the diploid chromo-
some number of O. huangensis is 42 (NFa=80). Morphologically two groups of auto-
somes were identified. The first group consists of 15 pairs (3 large, 8 medium and 4 
small) meta-submetacentric chromosomes. The second group consists of 5 pairs rather 
large, gradually decreasing in size, subtelocentric chromosomes. The X chromosome 
is a medium sized submetacentric, the Y chromosome is a small acrocentric (Fig. 2a).

Nineteen metaphase cells stained for the structural heterochromatin (C-banding) 
were analyzed. The clearly stained pericentromeric heterochromatic blocks, which sizes 
were approximately the same, were identified at all chromosomes of O. huangensis. The 
heteromorphism was detected by localization of heterochromatic blocks on the 8-th 
pair of autosomes. An intercalary heterochromatic block was always detected in the 
long arm of one homologue of the 8-th pair. Also, that homologue had the pericentro-
meric block of heterochromatin. In the second homologue of this pair, the intercalary 
heterochromatic block was detected in nine metaphase cells. In the remaining cells, 
only the larger pericentromeric heterochromatic block was detected in this homo-
logue. By that, the euchromatic site, which separates the intercalary heterochromatic 
block, was broader on the first homologue than that on the second homologue (Fig. 
4). We can’t characterize this phenomenon in details and discuss about its nature, be-
cause of the absence of sufficient material. So we leave it only as an observed fact. The 
X chromosome has a pericentromeric block of heterochromatin. The heterochromatic 
region occupies 2/3 of the lower arm on the Y chromosome (Fig. 3a).

The Daurian pika, which like O. huangensis belongs to the subgenus Ochotona, was 
studied for a comparative karyotype analysis. The karyotype of O. dauurica contains 50 
chromosomes (NFa=68) which are grouped in 10 meta-submetacentric pairs (3 large, 
2 medium and 5 small) and 14 subtelo- and acrocentric pairs of autosomes. The X 
chromosome is a submetacentric, similar in size to the 3-rd or 4-th pairs of autosomes, 
the Y chromosome is a very small acrocentric (Fig. 2b). The karyotype of the Daurian 
pika does not differ from that which was previously described in the literature (Vo-
rontsov and Ivanitskaya 1969, 1973).

Analysis of 15 C-stained metaphase plates showed that all autosomes of O. dau-
urica have the large pericentromeric heterochromatic blocks which were intensively 
stained. The 10-th and 15-th – 22-th pairs of autosomes have completely heterochro-
matic short arms. The last two small pairs of autosomes (23-th and 24-th) are com-
posed of heterochromatin entirely. The large pericentromeric block of the X chromo-
some occupies 1/3 of the long arm. Heterochromatic structure of the Y chromosome 
was not confirmed (Fig. 3b) compared with published data (Ivanitskaya 1991).
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An obvious resemblance between the karyotypes of O. huangensis and O. dauurica 
was seen by the routine staining, despite of some bigger size of the first pair of O. 
huangensis. The first four meta-submetacentric pairs of O. dauurica are similar to the 
2nd – 5-th pairs of O. huangensis autosomes. The remaining five meta-submetacentric 
pairs of O. dauurica, except the 10-th pair, are similar to the last five pairs of the first 
group of O. huangensis autosomes. The 11-th – 15-th autosomes of O. dauurica are 
very similar to the second subtelocentric group of O. huangensis by morphology and 
sizes, with a loss of the little part of the upper arm on the 20-th pair. The absence of 
G-stained chromosomes not allows us to do unambiguous conclusion about the rela-
tionship between the karyotypes of O. dauurica and O. huangensis. Such species as O. 
alpina (2n=42), O. hyperborea (2n=40), O. pallasi (2n=38) and O. argentata (2n=38) of 
the subgenus Pika (Vorontsov and Ivanitskaya 1973, Ivanitskaya 1991) are close to O. 
huangensis by the diploid chromosome number. However, they have more significant 
differences in relation of morphological groups and sizes of chromosomes.

Figure 2. Routine stained karyotypes of Ochotona huangensis (a) and O. dauurica (b): M-Sm meta-sub-
metacentric chromosomes, St subtelocentric chromosomes, St-Ac subtelo- and acrocentric chromosomes. 
Bar = 5 μm.
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The C-banding patterns of O. dauurica specimens from Transbaikalia (near the 
station Armagotuy) and Mongolia (Selenge aimag, near Shamar) (Ivanitskaya 1991) 
differs slightly from the specimen studied by us. Four pairs of subtelo-acrocentric auto-
somes have euchromatic material on the short arms in our pika. According to the data 
obtained by Ivanitskaya (1991), euchromatic material was on the short arms only on 
one pair. This pair is the largest and it corresponds to our 11-th pair. In addition, Ivan-
itskaya (1991) described three completely heterochromatic pairs, but according to our 
data, only last two pairs of autosomes have such features. These differences may be due 

Figure 3. C-banded karyotypes of Ochotona huangensis (a) and O. dauurica (b):  – intercalary hetero-
chromatic blocks,  – autosomes entirely consisted of heterochromatin. Bar = 5 μm.
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to interpopulation variability as well as influence of different C-staining procedures of 
chromosomal slides. However, the reason of these differences remains unclear, because 
of the absence of sufficient material at present.

A tendency of heterochromatin decreasing is confirmed in row of pikas: from spe-
cies with a large number of chromosomes to species with a smaller number, while 
comparing the overall C-banding pattern of O. dauurica and O. huangensis (Formozov 
et al. 2004). Perhaps, this indicates a loss of the heterochromatic material as a result of 
the chromosomal rearrangements.

The species O. alpina (subgenus Pika) is similar to O. huangensis by the diploid chro-
mosome number, but it has another arrangement of heterochromatin.  Pericentromeric 
heterochromatin is detected only on 6 submetacentric and 5 subtelocentric pairs of O. 
alpina autosomes (Ivanitskaya 1991). Four submetacentric pairs of O. alpina (especially 
the first pair) have the larger heterochromatic blocks than the corresponding pairs of 
O. huangensis. Two large subtelocentric pairs of O. alpina also have the larger blocks 
of heterochromatin in comparison with the subtelocentric pairs of O. huangensis. The 
remaining three minor subtelocentric pairs of O. alpina, which contain the pericentro-
meric heterochromatin, have no analogues in the karyotype of O. huangensis. Besides, 
the X chromosome of O. alpina has no heterochromatin unlike O. huangensis. The Y 
chromosome of O. alpina is composed of heterochromatin entirely (Ivanitskaya 1991).

The molecular studies of the genus Ochotona (Yu et al. 2000, Formozov et al. 
personal communication) showed division of pikas for three superspecies groups: 1. 
Pika – northern pikas and Mongolian pika; 2. Ochotona – shrub-steppe pikas except 
Mongolian, Ladak and Kozlov’s pikas; 3. Conothoa – mountain pikas with Ladak and 
Kozlov’s pikas. At present, the statuses of subgenera are given for these groups of pikas 
(Hoffmann and Smith 2005). Formozov et al. (personal communication) suggested the 
existence of variation of the diploid chromosome number for each subgenus (group) 

Figure 4. Scheme of localization of heterochromatic blocks on 8-th pair of Ochotona huangensis: 1 – the 
first homologue, 2 and 3 – the second homologue in two variants.
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of pikas. The karyotypes of the subgenus Pika species have 38-42 chromosomes. The 
species of the subgenus Ochotona have the karyotypes with 46-50 chromosomes. The 
pikas of the subgenus Conothoa have 60-62 chromosomes in the karyotypes. Moreo-
ver, there are species with 2n=68 in each subgenus.

The position of O. huangensis is ambiguous in this system. According to the data 
of study of the cytochrome b and the ND4 gene (Yu et al. 2000), O. huangensis is very 
far distant from the group of shrub-steppe pikas. Also, O. huangensis is allocated to a 
separate independent group by analysis of the cytochrome b of 27 pikas species (Niu 
et al. 2004). At present, O. huangensis (2n=42) belongs to the subgenus Ochotona 
(Hoffmann and Smith 2005). If the view point of Hoffmann and Smith is true, our 
data extend the level of variation of the diploid chromosome number for the subgenus 
Ochotona. In this case, there is no border with the subgenus Pika by this indicator. 
Thus, O. huangensis is significantly diverging from the main group of the subgenus 
Ochotona by main karyotypic characteristics that corresponds to the data of mtDNA 
study (Yu et al. 2000, Niu et al. 2004). The recent cytogenetic study of O. forresti 
(2n=54) (Ye et al. 2011) also greatly expands karyotypic variability of the subgenus 
Conothoa. As yet, the karyotypes of eight species of the subgenus Conothoa and three 
species of the subgenus Ochotona are not investigated. It is not excluded that the new 
karyotypic data will changed the level of the diploid numbers variation between all 
subgenera of the genus. Thus, we assume that the karyotypic system of the genus Ocho-
tona can not be constructed completely without studying cytogenetic characteristics of 
all species of pikas.
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Abstract
Chromosomal traits have provided valuable information for phylogeny and taxonomy of several fish 
groups. Three Atlantic Carangidae species of the genus Trachinotus Lacépède, 1801 (T. goodei Jordan et 
Evermann, 1896, T. carolinus (Linnaeus, 1766) and T. falcatus (Linnaeus, 1758)) were investigated, hav-
ing 2n=48 chromosomes but different chromosomal arms (FN number), i.e., 52, 56 and 58, respectively, 
in view of the different number of two-armed chromosomes found in their karyotypes. Thus, T. goodei, 
T. carolinus and T. falcatus present a progressive distance from the probable basal karyotype proposed for 
Perciformes (2n=48 acrocentrics, FN=48). At first sight, these findings do not agree with the phylogenetic 
hypothesis based on mitochondrial sequences, where T. goodei appear as the most derived species, followed 
by T. falcatus and T. carolinus, respectively. However, the chromosomal mapping of ribosomal DNAs 
was informative for clarifying this apparent conflict. Indeed, the multiple 5S and 18S rDNA sites found 
in T. goodei corroborate the most derived condition for this species. In this sense, the occurrence of the 
unexpected number of two-armed chromosomes and FN value for this species, as well as for T. carolinus, 
must be due to additional rounds of acrocentric formation in these species, modifying the macrostructure 
of their karyotypes.
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Introduction

The genus Trachinotus Lacépède, 1801, also known as pompanos, encompasses 20 
species distributed in tropical and subtropical oceans (Cunha 1981). In the Eastern 
Atlantic, the species Trachinotus carolinus (Linnaeus, 1766), popular for both sport 
and commercial fishing, T. falcatus (Linnaeus, 1758), a game fish species, and T. goodei 
Jordan et Evermann, 1896, a species with a high potential for aquaculture and sport 
fishing, are the most widely distributed, occurring from the Southern United States to 
Northern Argentina (McMaster 1988, Lazo et al. 1998, Heilman and Spieler 1999). 
Recent data identified population differentiations in the number and positions of the 
ribosomal sites among the extensively distributed species, T. falcatus and T. goodei (Ac-
cioly et al. in press). Indeed, there is growing evidence that cytotaxonomic markers, 
particularly ribosomal sites, may reveal the genetic structure of marine fish populations 
(Motta-Neto et al. 2011a, Lima-Filho et al. in press).

In addition to their biological significance in commercial and sport fishing, repre-
sentatives of the genus Trachinotus are considered potentially suitable for pisciculture pur-
poses (Watanabe 1995, Weirich et al. 2006). Trachinotus species have very desirable bio-
logical characteristics, such as fast adaptation to confined environments, good tolerance to 
extreme environmental conditions and rapid growth (Jory et al. 1985). Nevertheless, ge-
netic and cytogenetic foundations supporting their cultivation remain largely unknown.

Most species of the marine Perciformes exhibit a basal karyotype composed of 2n=48 
acrocentric chromosomes, extensively conserved in several families (Molina 2007). Giv-
en the large number of species, most cytogenetic studies have focused on mapping bio-
diversity in this order, the largest of all living vertebrates. Among the family Carangidae, 
cytogenetic data have already been reported for a total of 27 species in 13 genera (e.g. 
Caputo et al. 1996, Sola et al. 1997, Rodrigues et al. 2007, Chai et al. 2009). Of these, 
few species occur exclusively in the Atlantic. The present cytogenetic study characterizes 
the species Trachinotus carolinus, T. falcatus and T. goodei through conventional staining, 
Ag-NOR detection, C-banding, CMA3/DAPI fluorochrome staining, and mapping of 
the 18S and 5S rDNA sequences by dual-color FISH. Useful phylogenetic information 
was provided by ribosomal sequences mapping, indicating an intriguing scenario with 
additional acrocentrics formation in T. goodei and T. carolinus.

Material and methods

Samples of the species Trachinotus carolinus (N=5; 3 males. one female, one imma-
ture), T. falcatus (N=10; 4 males, 3 females, 3 immatures) and T. goodei (N=10; 6 
males, 4 females) were obtained on the coast of Rio Grande do Norte state (05°05'26"S, 
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36°16'31"W), in Northeast Brazil. Prior to chromosomal preparations, specimens were 
submitted to in vivo mitotic stimulation for 24 hours, through intramuscular and in-
traperitoneal injection of complex antigens (Molina et al. 2010). Individuals were an-
esthetized with clove oil (Griffiths 2000) and sacrificed. Mitotic chromosomes were ac-
quired from cell suspensions of anterior kidney fragments according to in vitro mitotic 
block (Gold et al. 1990). Cell suspensions were dripped onto slides coated with a film 
of distilled water heated to 60°C, and stained with 5% Giemsa diluted in a phosphate 
buffer pH 6.8. The material was analyzed under 1000× magnification and the best 
metaphases were photographed under an Olympus BX50® epifluorescence microscope, 
with an Olympus DP70® digital image capturing system. About 30 metaphases were 
analyzed for each individual in order to determine the diploid number for every species.

Chromosome nomenclature

Chromosomes were classified as metacentric (m), submetacentric (sm), subtelocentric 
(st) and acrocentric (a), based on the system proposed by Levan et al. (1964).

Chromosome banding

The heterochromatic and nucleolar organizer regions (Ag-NORs) were identified using 
techniques developed by Sumner (1972) and Howell and Black (1980) respectively. 
CMA3/DAPI staining was applied in accordance with Barros-e-Silva and Guerra (2010).

Cytogenetic mapping protocols

Two probes were used: an 18S rDNA probe obtained from the nuclear DNA of Prochil-
odus argenteus Spix et Agassiz, 1829 (Hatanaka and Galetti 2004); a 5S rDNA probe 
isolated from the genomic DNA of Leporinus elongatus Valenciennes, 1850 (Martins 
and Galetti 1999); probes were labeled by polymerase chain reaction (PCR), using 
biotin-16-dUTP (Roche Applied Science®) for 18S rDNA or digoxigenin-11-dUTP 
(Roche Applied Science®) for 5S rDNA. PCR labeling for rDNA clones was performed 
with specific primers, using 20 ng of template DNA, 1X Taq reaction buffer (200 mM 
Tris pH 8.4, 500 mM KCl), 40 µM dATP, dGTP and dCTP, 28 µM of dTTP, 12 µM 
biotin-16-dUTP or digoxigenin-11-dUTP, 1 µM primers, 2 mM MgCl2 and 2 U of 
Taq DNA Polymerase (Invitrogen®) under the following conditions: 5 min at 94°C; 35 
cycles: 1 min at 90°C, 1 min 30 s at 52°C and 1 min 30 s at 72°C; and a final extension 
step at 72°C for 5 min.

The overall hybridization procedure followed the protocol described by Pinkel et 
al. (1986), under high stringency conditions (2.5 ng/µL from each probe, 50% deion-
ized formamide, 10% dextran sulphate, 2XSSC, pH 7.0 – 7.2, at 37°C overnight). 



Uedson Pereira Jacobina et al.  /  Comparative Cytogenetics 6(4): 359–369 (2012)362

After hybridization, slides were rinsed in 15% formamide/0.2XSSC at 42°C for 20 min, 
0.1XSSC at 60°C for 15 min, and 4XSSC/0.05% Tween at room temperature for 10 
min (two times for 5 min each). Signal detection was performed using streptavidin-alexa 
fluor 488 (Molecular Probes®) for the 18S rDNA probe; and anti-digoxigenin-rhoda-
mine (Roche Applied Science®) for 5S rDNA, which were detected by dual color FISH.

Results

All species analyzed exhibited 2n=48 chromosomes, however with a notable difference 
in the number of two-armed (bibrachial) elements.

The karyotype of Trachinotus goodei (Figure 1a, d, g) is composed of 4 m/sm and 
44a (FN=52). The heterochromatic regions in this species are very reduced and restrict-
ed to small blocks in the chromosomal pericentromeric regions. The Ag-NORs/18S 
rDNA sites were identified near the centromeric region of two acrocentric pairs, ten-
tatively No. 5 and 11 of the karyotype. These sites proved to be rich in GC base 
composition (CMA+/DAPI-) (Figure 1d). Hybridization signals with 5S rDNA probes 
were also identified on the terminal regions of the short arms of three acrocentric pairs, 
tentatively numbered as 9, 12 and 22 (Figure 1g).

The T. carolinus karyotype (Figures 1 b, e, h) consists of 8m/sm and 40a (FN=56). 
The content of heterochromatin is also poorly distributed in the pericentromeric re-
gions of some chromosome pairs. Ag-NORs/18S rDNA sites were located on the short 
arm of only one acrocentric pair, identified as number 5. These sites are clearly hetero-

Figure 1. Karyotypes of Trachinotus goodei (a, d, g), T. carolinus (b, e, h) and T. falcatus (c, f, i). Conven-
tional staining (a, b, c) highlighting the chromosomal pairs carrying Ag-NOR sites; C-banding (d, e, f); 
nucleolar organizer pairs are highlighted by staining with CMA3

+/DAPI-. Dual-color FISH (f,  g,  h) show-
ing the chromosomal mapping of the 18S rDNA (green) and 5S rDNA (red) sites. Bar = 5 µm.
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chromatic, with a CMA+/DAPI- pattern. The 5S rDNA sites were mapped only on the 
short arm of the acrocentric chromosome 9.

The karyotype of T. falcatus (Figure 1c, f, i) has the largest number of bibrachial 
elements if compared to the other species, i.e., 10 m/sm and 38a (FN=58). As in the 
two previous species, small heterochromatic blocks are present in pericentromeric re-
gions of the chromosomes. Ag-NORs/18S rDNA sites were situated in the terminal 
region of the short arm of the submetacentric chromosome pair 3, which also appears 
heterochromatic after C-banding, with a CMA+/DAPI- pattern. The 5S rDNA sites 
were mapped exclusively on the short arms of the acrocentric pair 9.

Discussion

As in many species of Perciformes, the species analyzed displayed 2n=48 and large 
numbers of acrocentric chromosomes, although there were notable differences in kary-
otype macrostructure. This is particularly evident for the number of chromosome arms 
(FN) that varies between species. Thus, T. goodei exhibits FN=52, T. carolinus FN=56 
and T. falcatus FN=58. Karyotypes similar to those presented here for T. goodei and T. 
falcatus were previously identified in other populations of this species on the Southeast 
and Northeast coasts of Brazil (Rodrigues et al. 2007, Accioly et al. in press).

Evolutionary karyotype modifications resulting from pericentric inversions are com-
mon in Perciformes. In fact, two-armed chromosomes have been found in approxi-
mately 30% of Carangidae species karyotyped to date (Chai et al. 2009). Furthermore, 
other kinds of chromosomal diversification have been identified for this family including 
Robertsonian translocations, transient in Seriola Cuvier, 1817 (Vitturi et al. 1986, Sola 
et al. 1997) or already established in Selene setapinnis (Mitchill, 1815) (Jacobina 2012).

Basing on morphological and molecular evidences, the genus Trachinotus is in-
cluded in the tribe Trachinotini, which is considered one of the least diverse groups 
among carangids (Smith-Vaniz 1984, Gushiken 1988). Phylogenetic hypotheses based 
on mitochondrial sequences (Reed et al. 2002) suggest T. carolinus as the most basal 
species, followed by more derived T. falcatus and T. goodei, respectively. However, 
these phylogenetic relationships do not agree with the karyotypic characteristics pre-
sented by these species (Figure 2a).

Whereas the fully acrocentric karyotype with 2n=48 (FN=48) is considered basal 
for Perciformes, variations of this karyotypic formula can be interpreted as derived 
conditions. Thus, an increase in the number of two-armed chromosomes, as sequen-
tially found in T. carolinus (eight two-armed chromosomes) and in T. falcatus (ten 
two-armed chromosomes), would be expected to represent derived cytogenetic char-
acteristics. As such, T. goodei, showing only four two-armed chromosomes and, con-
sequently, the largest number of acrocentric chromosomes, would be representing the 
species with the karyotype closer to the basal one.

Many closely related species of Perciformes show poorly varied or cryptic cytoge-
netic characteristics, hampering their application in phylogenetic inferences (Molina 



Uedson Pereira Jacobina et al.  /  Comparative Cytogenetics 6(4): 359–369 (2012)364

2007, Motta-Neto et al. 2011a, b, c). Indeed, this is observed in the similar karyotype 
macrostructure or heterochromatic patterns, such as those found in Trachinotus spe-
cies, where C-bands are inconspicuous and similarly located in the pericentromeric 
region of the chromosomes. A reduced amount of heterochromatin is also a common 
feature in other Perciformes, possibly resulting in lower karyotype evolution dynamics 
(Molina and Galetti 2004, Molina 2007). On the other hand, NORs were promi-
nent characteristics, in lines with considerable karyotype variation between species. 
Trachinotus carolinus and T. falcatus displayed only one pair of chromosomes carry-
ing ribosomal sites (Ag-NOR/18SrDNA/CMA+/DAPI-). This condition is considered 
basal and the most common for Carangidae (Caputo et al. 1996, Sola et al. 1997). As 
previously confirmed (Accioly et al. in press), the T. goodei population from Brazilian 
Northeastern coast exhibits a more derived condition, with two chromosomal pairs 
carrying ribosomal sites (pairs 5 and 11). Although multiple sites have not been iden-
tified in populations from the Southeastern coast (Rodrigues et al. 2007), the occur-
rence of more than one chromosome pair carrying NORs in T. goodei indicates some 
level of derivation in this species in relation to the others. Greater dynamic evolution 
of the ribosomal sites in this species is corroborated by the presence of three chromo-
somal pairs carrying 5S rDNA sequences (pairs 9, 12, 22), a condition not present in 
T. carolinus and T. falcatus, where these sites were mapped only in pair 9 (Figs 1, 2c). 
In addition, dual-color FISH showed no synteny between 18S and 5S rDNA sites in 
all the three species of Trachinotus analyzed here.

Figure 2. Phylogenetic tree from molecular data of some species of Trachinotini tribe (a), adapted 
from Reed et al. (2002). The molecular relationship is confronted with the chromosomal formula of the 
Trachinotus species analyzed. Schematic illustration shows the role of additional pericentric inversions 
leading to new acrocentric chromosomes and modification of the FN value (b), and the derived condition 
of multiple sites of 18S and 5S rDNAs in T. goodei (c).
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Simple ribosomal sites are considered an ancestral condition, most frequently found 
in carangids (Caputo et al. 1996, Sola et al. 1997), as well as among marine Perciformes 
(Galetti et al. 2000). Their location in distinct chromosomal pairs is an efficient cyto-
taxonomic marker of species and populations of Trachinotus (Accioly et al. in press). 
Indeed, Southeastern populations of T. falcatus and T. goodei are characterized by hav-
ing simple Ag-NOR sites on the short arms of pair 18 and on the short arms of pair 
3, respectively. The greater dynamic evolution of the 18S and 5S ribosomal sequences 
in T. goodei corroborates its more derived condition in relation to the other species 
(Figure 2), as suggested by molecular data (Reed et al. 2002). In turn, sharing of 5S 
rDNA sequences by a same chromosome pair, tentatively identified as no. 9, probably 
indicates homeologous chromosomes with similar syntenic content. The occurrence of 
three pairs carrying 5S rDNA sequences (pairs 9, 12 and 22) in T. goodei is uncommon 
among fish (Martins and Galetti 2000). The location of 5S and 18S rDNA sites in dif-
ferent chromosomes, and the functional divergence between 18S rDNA (transcribed by 
RNA polymerase I) and 5S rRNA genes (transcribed by RNA polymerase II) (Martins 
and Galetti 2000), supports the independent evolution of these multigene families due 
to specific selection pressures (Amarasinghe and Carlson 1998).

Variations in the number and location of NORs in some cases, are likely to be 
favored by a high and heterogeneous heterochromatic content, whereas the inverse 
seems to reduce the evolutionary dynamism of these regions (Molina 2007). Besides 
increasing the NORs’ dynamics, there are also indications that heterochromatin may 
act as hotspots for chromosomal rearrangements (Almeida-Toledo et al. 1996; Jaco-
bina 2012). However, there is currently no information that the heterochromatin may 
be exerting some role in the evolutionary dynamics of the rDNA in T. goodei. Disper-
sion of these sequences in the karyotype may occur via transposition events by mobile 
elements in the carrier genome, with subsequent amplification and formation of new 
repetitive DNA sites (Eickbush and Eickbush 1995; Almeida-Toledo et al. 1996). 
Indeed, a surprising chromosome spreading of associated transposable elements and 
ribosomal DNA (Rex3/5S rDNA) was demonstrated to occur in the freshwater fish 
Erythrinus erythrinus (Bloch et Schneider, 1801) (Erythrinidae), increasing the num-
ber of such rDNA sequences from 2 to 22 between distinct populations (Cioffi et 
al. 2010). Growing knowledge on the organization of repetitive DNAs also indicates 
that their evolution may be mediated by unequal crossover, transposition mediated by 
RNA and gene conversion (Dover 1986, Martins et al. 2006). Thus, different events 
may be associated with the serial repetition of the 5S rDNA multigene family in the 
genome of T. goodei, characterizing its more derived condition in relation to the other 
species, T. falcatus and T. carolinus.

The existing set of cytogenetic data for Carangidae suggests karyotype evolution 
strongly mediated by pericentric inversion events. Based on the basal karyotype for 
Perciformes (2n=48 acrocentrics, FN=48), the increase of FN indicates a derived con-
dition. Thus, if T. goodei is the most derived species in respect to T. falcatus and T. 
carolinus, as indicated by mitochondrial sequences (Reed et al. 2002), and supported 
by the apomorphic features of its karyotype (multiple 18S and 5S rDNA sites), a par-
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ticular evolutionary pathway provided by pericentric inversions must be considered for 
this species. Thus, the smaller number of two-armed chromosomes in T. goodei may 
indicate additional rounds of pericentric inversions on two-armed chromosomes, in-
creasing the number of acrocentric chromosomes in the karyotype and, consequently, 
decreasing the FN value (Fig. 2b). The same could be also considered for T. carolinus, 
considering its more basal position in the phylogeny proposed for Trachinotus (Fig. 2a).

Our understanding of the karyotype evolution of Carangidae (including rDNA) was 
improved by the present findings. Our data demonstrate that, in addition to structural 
changes by pericentric inversions, rDNA sequences also acted as an important evolution-
ary indicator in Trachinotus karyotype. In this sense, the combined mapping of 18S and 
5S rDNA sequences proved to be useful to clarify the relationships in this fish group.
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Abstract
We compared chromosome number (CN) variation among vascular floras of three different countries 
with increasing latitude in the Boreal hemisphere: Italy, Slovakia, Poland. Aim of the study was to verify 
whether the patterns of CN variation parallel the differences in latitudinal ranges. The three datasets com-
prised 3426 (Italy), 3493 (Slovakia) and 1870 (Poland) distinct cytotypes. Standard statistics (ANOVA, 
Kruskal–Wallis tests) evidenced significant differences among the three countries, mean CN increasing 
together with latitude. On the contrary, an inverse relation (r = -1) was evidenced among the frequency of 
odd CNs and latitude. Our results show that the hypothesis of a polyploid increase proportional with dis-
tance from the Equator seems to be confirmed, when territories from the same hemisphere are compared.

Keywords
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Introduction

Chromosome number is the most basic feature concerning the genome of a species, 
and it is also the easiest to obtain, technically. For this reason, since 1882 (Garbari et 
al. 2012), chromosome number data for many plant organisms have been accumulated 
worldwide accounting for about one third of plants being now known in this respect 
(Stace 2000). Although cytotaxonomy had become less popular in the end of twentieth 
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century (Guerra 2012), in the last years, a growing interest of scientific botanical com-
munity was devoted to plant chromosome number databases (Stuessy 2009), especially 
those in digitized format (Gacek et al. 2011; Bedini et al. 2012a, c).

As already pointed out by Peruzzi et al. (2011) and Bedini et al. (2012a, b, c), 
plant chromosome number databases are a useful tool for systematic comparisons of 
geographical or taxonomical groups of plants. In these studies, profound differences 
in chromosome number variation were evidenced for instance between Italian and an-
tipodean New Zealand vascular flora, at various taxonomical scales (vascular plants as 
a whole, single orders), suggesting also possible different evolutionary dynamics among 
the two hemispheres (Peruzzi et al. 2011). Also just within Italian flora, a significant 
increase in mean chromosome number was evidenced to follow a bioclimatic/latitudi-
nal gradient (Islands→southern peninsular Italy→northern Italy) (Bedini et al. 2012a) 
and specific orders and families where shown to be marked by peculiar chromosome 
number variation patterns (Bedini et al. 2012b).

A natural prosecution of the above mentioned studies, concerning geographical 
variation of mean chromosome number, was to extend the sample coverage, by select-
ing further countries (from the same hemisphere) to test the hypothesis that mean 
chromosome number in vascular plants tends to increase in parallel with latitude / 
cooler bioclimate. Accordingly, the aim of this study is to quantitatively evaluate chro-
mosome number variation of vascular floras among three countries with increasing 
latitude and decreasing altitudinal range (Table 1): Italy, Slovakia and Poland.

Table 1. Range of latitudes (in degrees and in km) and altitudes for the considered countries.

Degrees Km Altitude
Italy 35°29' to 47°05'N 1500 0–4810 m a.s.l.

Slovakia 47°40' to 49°35'N 200 94–2655 m a.s.l.
Poland 48°59' to 54°49'N 650 -2–2499 m a.s.l.

Methods

Data source

Chromosome numbers from the considered countries were taken from available online 
databases. Chrobase.it (Bedini et al. 2010 onwards) stores the available karyological in-
formation about Italian vascular flora, in terms of chromosome number (2n and/or n) 
and B-chromosome occurrence, along with main geographic-administrative data and 
literature references (Bedini et al. 2012a). The “Karyological database of ferns and flow-
ering plants of Slovakia” (www.chromosomes.sav.sk/) stores the available karyological 
information about Slovak vascular flora, and was recently published also as hard-print 
book (Marhold et al. 2007). Finally “Chromosome number database – PLANTS” 
(Góralski et al. 2009 onwards) stores the available karyological information about Pol-
ish angiosperms. The latter database was also integrated by a recent survey on Polish 
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ferns (Ivanova and Piekos-Mirkova 2003). The total number of cytotypes retained for 
each dataset (ITA: Italy; SK: Slovakia; PL: Poland) was obtained by excluding counts 
in multiple copy (i.e. the same chromosome number for the same species). Eventual n 
counts (a minority in the three datasets) were transformed to 2n. Italian dataset cover-
age is about 35% of vascular plants (Bedini et al. 2012a), the Slovak dataset about 60% 
(Marhold et al. 2007), and the Polish one about 40% (Gacek et al. 2011). The families 
circumscription followed APG III (2009), Chase and Reveal (2011) and Christenhusz 
et al. (2011a–b).

Data analysis

Similarly to Bedini et al. (2012a, b), the following data were calculated for each data-
set: mean chromosome number (CN hereafter), median, mode, Coefficient of Varia-
tion of CN (CVCN), frequency of B-chromosomes occurrence (fB), frequency of odd 
CN (fOCN), not considering B-chromosomes. ANOVA was used to test statistical 
differences in CN among considered groups. If ANOVA was not applicable (Levene 
test), then the non-parametric U Mann-Whitney / H Kruskal-Wallis test was used.

Results

A total of 146 different CNs were found, ranging from 2n = 6 (in all datasets) to 2n = 
304 (in the Slovak dataset only). The families included in the datasets were 107 for Ita-
ly, 123 for Slovakia and 114 for Poland. Of them, 82 were shared by all datasets. Most 
of the data (39–40% of each dataset) were concentrated in five families: Asteraceae, 
Brassicaceae, Fabaceae, Poaceae, Ranunculaceae (Table 2). CNs are apparently distrib-
uted in different proportions in the three geographical areas (Table 3; Figure 1). The 
most frequent (modal) CN in Italy is 2n = 18; in Slovakia it is 2n = 16 and in Poland 
2n = 28. Despite this, mean CN is increasing from Italy, through Slovakia, to Poland 
(Table 1). This difference is supported by ANOVA (F = 22.412, p < 0.000), despite 
the absence of a significant distinction between Slovakia and Poland. On the contrary, 
the frequency of odd CNs (fOCN) tends to decrease from Italy to Poland (Spearman 
correlation between mean CN and fOCN: r = - 1.0, p < 0.01), while the frequency of 
B-chromosomes is nearly 8-fold more frequent in Italy than in the other two countries. 
Indeed, B-chromosomes occur in 246 registered cytotypes (148 taxa) of the Italian vas-
cular flora, in 65 cytotypes (27 taxa) of the Slovak flora and in 39 cytotypes (19 taxa) 
of Poland flora. Among the taxa showing B-chromosomes, their mean number is 2.03 
± 1.75 in Italy, 2.80 ± 1.99 in Slovakia and 1.95 ± 1.07 in Poland. Since the data on 
B-chromosome numbers did not follow a normal distribution, we performed the non-
parametric Kruskal–Wallis test, which failed, however, to find significant differences 
between the number of B-chromosomes among the three geographical areas.
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Table 2. Most represented families in the three datasets (> 100 registered cytotypes in at least one country).

Italy Slovakia Poland
cytotypes % cytotypes % cytotypes %

Amaryllidaceae 118 3.4 58 1.7 24 1.3
Asteraceae 579 16.9 573 16.4 275 14.7
Asparagaceae 135 3.9 53 1.5 21 1.1
Brassicaceae 193 5.6 238 6.8 80 4.3
Caryophyllaceae 133 3.9 145 4.2 56 3.0
Cyperaceae 56 1.6 110 3.1 36 1.9
Fabaceae 306 8.9 180 5.2 81 4.3
Juncaceae 9 0.3 103 2.9 18 1.0
Lamiaceae 111 3.2 127 3.6 62 3.3
Orchidaceae 158 4.6 62 1.8 30 1.6
Plumbaginaceae 128 3.7 4 0.1 1 0.1
Poaceae 166 4.8 251 7.2 209 11.2
Ranunculaceae 144 4.2 152 4.4 91 4.9
Rosaceae 27 0.8 187 5.4 118 6.3
other families 1163 33.9 1250 35.8 768 41.1

Table 3. Chromosome number parameters calculated for each country dataset.

N°cytotypes CN ± SD median mode CVCN fB fOCN
Italy 3426 30.560 22.060 24 18 72.186 0.071 0.087
Slovakia 3493 33.818 12.728 28 16 37.637 0.019 0.070
Poland 1870 33.820 23.386 28 28 69.149 0.021 0.044

Figure 1. Histograms showing the percentage frequencies (y-axis) of 2n chromosome numbers, grouped 
in classes (x-axis) known for the Italian (ITA), Slovak (SK) and Polish (PL) vascular flora.
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Discussion

According to our results, it was possible to confirm that, in Boreal hemisphere, mean 
CN in vascular plants tends to increase with increasing latitude, as already suggested 
by Bedini et al. (2012a) concerning Italy. Median and modal CN are less variable and 
not very useful to assess relationships among territories. Especially mode seems prone 
to reflect a casual abundance of certain taxa in the datasets. Indeed, Slovak and Pol-
ish floras, otherwise not statistically distinct, shows modal CNs 2n = 16 and 2n = 28, 
respectively. This is due to a number (62) of diploid Brassicaceae with x = 8 counted in 
the former country, and a number (56) of tetraploid Rubus Linnaeus, 1753 with x = 7 
counted in the latter. The scarce differentiation between Slovakia and Poland could be 
easily explained by their shared administrative borders, with partial overlap of latitude 
range (cfr. Table 1). On the other hand, a possible influence of altitudinal range - in 
shaping CN variation among our datasets - cannot be ruled out too, since this param-
eter shows an exactly inverted variation trend respect with latitude variation (Table 1).

The idea that polyploidy tends to increase with latitude is not new (Löve and Löve 
1957, Hanelt 1966, Hair 1966, Stebbins 1971, Levin 2002), but ploidy levels are not 
easy to assess on large datasets, with coverage comparable to that of current (either 
online or hard-printed) CN databases and atlases.

The use of mean CN as a proxy of polyploidy has the advantage to be easier to 
assess and more objective, albeit less precise. Indeed, CNs are unquestionable, while 
basic CNs are often subjective (see for instance the recent debate in Cusimano et 
al. 2012). Also the ancestral CN reconstructions are currently based on probabilistic 
models (Mayrose et al. 2010).

A further interesting point to address with further research is the seemingly dif-
ferent pattern of CN variation among the two hemispheres: Peruzzi et al. (2011) ev-
idenced striking differences among Italy and New Zealand, two nearly antipodean 
countries. This could be due, to a certain degree, to the fully insular nature of the 
latter territory, where mean CN is about 2-fold. In order to positively verify whether 
the CN evolution dynamics in the Austral hemisphere are comparable to those in the 
Boreal one or not, it could be useful to compare different territories with increasing 
latitudes, for instance in the southern parts of America and Africa. Unfortunately, as 
far as we are aware, CN databases covering those territories are not available, or not 
significant in coverage of flora. Indeed, very recently an online cytogenetic database of 
Chilean plants was made available (Jara-Seguel and Urrutia 2011 onwards), but only 
2.8% of Chilean angiosperm flora was karyologically studied (Jara-Seguel and Urrutia 
2012). Similar degree of coverage exists for plants from Paraguay (Molero et al. 2001). 
Of course, the use of territories circumscribed by ecological and/or biogeographical 
criteria, instead of countries, could be even more useful to address these questions. 
Unfortunately, such kind of CN databases do not exist.

Contrary to what was observed for Italy (Bedini et al. 2012a), the frequency of 
B-chromosomes (fB) does not follow a geographical gradient, but in all the three con-
sidered countries values were higher than those reported for New Zealand (Peruzzi et 
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al. 2011). Indeed, the adaptive/ecological role of B-chromosomes is still a controversial 
issue (Jones 2012). Concerning the frequency of odd CNs (fOCN), it is clearly decreas-
ing with increasing latitude, while New Zealand has a value intermediate between Slo-
vakia and Poland (Peruzzi et al. 2011). Maybe the latter finding could be related with a 
different frequency of apomictic and/or holocentric species in the considered territories.
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Abstract
Studies of karyotypes have been revealing important information on the taxonomic relationships and 
evolutionary patterns in various groups of birds. However, the order Caprimulgiformes is one of the least 
known in terms of its cytotaxonomy. So far, there are no cytogenetic data in the literature on birds belong-
ing to 3 of 5 families of this order -Nyctibiidae, Steatornithidae and Aegothelidae. For this reason, the aim 
of our study was to describe the karyotype of Nyctibius griseus (Gmelin, 1789) (Aves, Nyctibiidae, Caprim-
ulgiformes) and contribute with new data that could help to clarify the evolutionary relationships in this 
group. Bone marrow was cultured directly to obtain material for the chromosome study. C-banding was 
used to visualize the constitutive heterochromatin and Ag-NOR-banding to reveal nucleolus organizer 
regions. The diploid number observed was 2n=86±. Using sequential Giemsa/C-banding staining, we 
determined that the W chromosome was entirely C-band positive with the two most prominent markers 
in the interstitial and distal regions of the long arm. The nucleolus organizer regions showed a typical 
location in a pair of microchromosomes that exhibited Ag-NOR.The results obtained for Nyctibius griseus 
suggest that, of all the species studied in the references cited, it has the most ancestral sex chromosome 
composition of the order Caprimulgiformes.
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Introduction

At present, studies of the class Aves, which includes more than 9000 species, are fairly 
incomplete in regard to genetic and evolutionary studies (Pigozzi and Solari 2000). 
Cytogenetic studies have been conducted on less than 14% of the species content 
(Santos and Gunski 2006).

The species studied here, Nyctibius griseus (Gmelin, 1789) belongs to the order 
Caprimulgiformes, which includes the families Caprimulgidae, Nyctibiidae, Steatorni-
thidae, Podargidae and Aegothelidae. Nyctibius griseus is found in South Ameri-
can territories from Costa Rica to Bolivia, Argentina, Uruguay and throughout Bra-
zil, where it is common at the edges of forests, in fields with trees and on savannas. 
It feeds on nocturnal insects, mainly large moths, termites and beetles which it hunts 
in flight. It never lands on the ground, but always on branches, posts, fences and tree 
stumps, where it is easily camouflaged. This species has a form of adaptation unique 
among birds, known as the “magic eye” and consisting of two slits in the upper eyelid, 
which allows it to remain immobile for lengthy periods, watching its surroundings, 
even with its eyes closed. It lays one egg in a tree stump or branch cavity a few meters 
above ground level, where it is incubated for around 33 days (Accioly 2000). It is pre-
dominantly brownish in color, varying in tone from reddish to grayish, with streaks on 
its head and black markings on its breast. Its song consists of descending notes in the 
range of the human voice (Souza 2004).

Bird karyotypes generally consist of a diploid number of around 80 chromosomes, 
including eight macrochromosome pairs and 32 microchromosome pairs (Tegelström 
et al. 1983, De Lucca and Rocha 1992). According to Gunski et al. (2000), in species 
with a high number of microchromosomes, macrochromosomes with monobrachial 
or acrocentric morphology are prevalent. However, in species with a low number of 
microchromosomes, macrochromosomes with a bibrachial morphology are predom-
inant, suggesting a process of karyotypic evolution through translocations between 
macro and microchromosomes, and also centric fusions of macrochromosomes.

In birds, a ZZ/ZW system determines gender, the male being the homogametic 
sex (the two sex chromosomes are homologous) and the female the heterogametic sex 
(the two sex chromosomes differ in size and morphology).

The members of the family Caprimulgidae are the most well-known of these birds, 
since they are found in all parts of the world, and consequently are better represented 
in terms of cytogenetic information. The references for the 40-year period of chromo-
some studies of this group of birds cited in Table 1 include descriptions of 8 karyo-
types of Caprimulgidae: Caprimulgus aegyptius arenicolor (Lichtenstein, 1823), Nyc-
tidromus albicollis (Gmelin, 1789), Caprimulgus indicus (Latham, 1790), Hydropsalis 
brasiliana (Gmelin, 1789), Chordeiles pusillus (Gould, 1861), Caprimulgus parvulus 
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(Gould, 1837) and Caprimulgus rufus (Boddaert, 1783) and Lurocalis semitorquatus 
(Gmelin, 1789). Two families of the five are represented by one species each – Podar-
gidae, Podargus strigoides (Latham, 1801) and Nyctibiidae, Nyctibius griseus. There 
were no previous description of the karyotypes in the latter family, and the aim of this 
work was to show some details characterizing the chromosome complement of this 
New World species and establish the C- and Ag-NOR-banding patterns which may be 
evolutionary informative for these birds.

Methods

Specimens were captured from dusk to nightfall, the period of greatest activity, using 
nets set up over tree stumps and branches of trees in the Misiones Province, Campo 
San Juan (Sta. Ana), Argentina.

Two specimens were analyzed, 1 male and 1 female. They were taxonomically 
identified by Professor Julio Contreras. The specimens were deposited at Bernardino 
Rivadavia Natural Sciences Museum Collection, under accession numbers 011578 
(male) and 011577 (female).

Metaphases were obtained using the direct bone marrow culture technique (Gar-
nero and Gunski 2000). The constitutive heterochromatin was identified using a mod-
ification of the method described by Ledesma et al. (2002) and the karyotypes were 
arranged according to the classification in Levan et al. (1964). The nucleolus organizer 
regions (AgNOR) were determined according to the silver–nitrate method described 
by Howell and Black (1980).

Results and discussion

This study presents the initial data on the number and morphology of chromosomes 
of Nyctibius griseus (Figs 1–4). The diploid number in specimens of both sexes 
is 2n=86±. The first chromosome pairs are the large subtelocentric, submetacentric, 
acrocentric and acrocentric, and the following 5 pairs reveal bibrachial constitution 
(submeta-, subtelo- or metacentrics). Lesser chromosomes look mainly acrocentrics. 
The sex chromosomes of this species are interesting, since the W chromosome has 
metacentric morphology and size similar to the Z chromosome, so externally the ZZ 
pair in a male and ZW in a female (Fig. 1) look the same.

Using Giemsa/C-banding re-staining, we determined that, in contrast to the C-
negative Z chromosome with a centromeric C-band, the W chromosome (Fig. 2) looks 
entirely C-band positive with the two most prominent markers in the interstitial and 
distal region of the long arm, something that is not observed when the chromosome 
has a higher degree of condensation. The C-banding pattern shows that all macrochro-
mosomes exhibit a centromeric C-band, except for pairs 8 and 9 that have an entirely 
C-band positive arm.
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Figure 1. Male and female partial karyograms (without microchromosomes) of Nyctibius griseus (2n=86 
±). The similarity of the sex chromosomes ZZ and ZW is noticeable. Bar = 5 μm.



Leonardo Martin Nieto et al.  /  Comparative Cytogenetics 6(4): 379–387 (2012)384

Figure 3 shows the Giemsa C-banding sequential staining for a male Nyctibius 
griseus, highlighting the positive C-band in the centromeric region of the two Z chro-
mosomes. The nucleolus organizer regions (Fig. 4) show up in a microchromosome 
pair that exhibits a strong Ag-NOR-positive band, as it is common in many birds.

8 species belonging to the family Caprimulgidae (Table 1) exhibit a marked nu-
meric variability, ranging from 2n=68 in C. pusillus to 2n=82 in Lurocalis semitorqua-
tus. Thus, the newly described karyotype of Nyctibius griseus with its 86 chromo-
somes shows the highest 2n for the whole order Caprimulgiformes. Without data on 
chromosome homology, any suggestion on karyotypic rearrangements is unreliable, 
nevertheless, a monotonous size arrangement of the karyotype without sharp differenc-
es between one- and bi-brachial chromosomes does not support a proposition of fu-
sion between macrochromosomes. Thus, the 2n variation observed might result from 
fusions of microchromosomes to macrochromosomes. The morphology and large size 
of the W chromosome of N. griseus represents one of the most important discoveries 

Figures 2 A–D. Metaphases and partial karyotype of female Nyctibius griseus: Giemsa (A, C) and C-
banding (B, D) sequential staining. The arrows indicate the Z and W heterochromosomes. Among the 
autosomes, pairs 8 and 9 reveal an entirely heterochromatic short arm. Bar = 5 μm.
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in this study, and would lead us to infer that the species may be at a primitive stage of 
sex chromosome differentiation.

In the majority of bird species cytogenetically analyzed, the W chromosome is 
generally of a lesser size, close to the ninth or tenth pair, although there are cases like 
the one described by Christidis (1986) for Neochmia phaeton (Hombron & Jacquinot, 
1841), a species in which the W chromosome is the third pair and is larger than the Z 
chromosome. Furthermore, in some species of Columbiformes (De Lucca and Aguiar 
1976), Falconiformes (De Boer and Sinoo 1984), Passeriformes (Bulatova 1973) and 
Strigiformes (Renzoni and Vegni-Talluri 1966), the W chromosome was observed to 
be as large as the Z chromosome.

The W chromosome morphology in the family is also variable, ranging from meta-
centric to telocentric (Table 1). The wide variation in size and morphology of the W 
chromosome indicates different stages of differentiation, which shows that it has un-
dergone greater changes in bird karyotype evolution than the Z chromosome.

In evolutionary terms, Nyctibius griseus may represent the first step in this differen-
tiation, which according to Jones (1983), started from a homomorphic pair that acquired 
constitutive heterochromatin to become subsequently morphologically differentiated. 
These assumptions are in line with the distinct levels of heterochromatinization of the W 
chromosome of N. griseus, in which there is a general pattern of positive markers in the 
centromeric region, as well as an interstitial band and a telomeric region in the long arm.

The results we obtained for Nyctibius griseus lead us to assume that, of all the 
other Caprimulgiformes species studied, N. griseus exhibits the most ancestral sex 
chromsome composition.

Figure 3. Routine Giemsa (A) and C-heterochromatin (B) sequential staining for a male Nyctibius griseus. 
The arrows indicate ZZ sex chromosomes. Bar = 5 μm.
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Figure 4. Nucleolus organizer regions in Nyctibius griseus. The arrows indicate NORs positioned in a 
strong secondary constriction probably of one pair of small one armed autosomes. Bar = 5 μm.
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Abstract
A new species of scale insects, Aclerda pseudozoysiae sp. n., is described and illustrated. The karyotypes and 
some aspects of reproductive biology and cytogenetics of the new species species and Aclerda takahashii 
Kuwana, 1932 were studied, representing the first data for the genus Aclerda Signoret, 1874 and the family 
Aclerdidae as a whole. A. pseudozoysiae sp. n. has 2n=16, bisexual reproduction, and heterochromatiniza-
tion of one haploid set of chromosomes in male stages of the life cycle, matching either a Lecanoid or a 
Comstockioid genetic system. A. takahashii demonstrates 2n=18 and unusual type of parthenogenesis with 
diploid and haploid embryos (inside each gravid female) without heterochromatinization. Both species are 
ovoviviparous; all stages of embryonic development occur inside the mother’s body.

Keywords
Scale insects, Aclerdidae, Aclerda takahashii, Aclerda pseudozoysiae, taxonomy, morphology, new species

Introduction

The scale insect family Aclerdidae currently includes 5 genera with 58 species (ScaleNet 
<http://www.sel.barc.usda.gov/scalenet/scalenet.htm> – Ben-Dov et al. 2012) distrib-
uted mainly in hot and dry, often semi-desert regions of the world. Most of the species 
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are connected with grasses (Poaceae), inhabiting leaf sheathes, they demonstrate very 
specialized morphological characters such as the absence of legs and strong reduction 
of antennae, unique anal apparatus, unique invaginated setae, and others (see Fig. 1).

The species of the family have never been specially studied. However, Moharana 
(1990) noted 2n=18 for undetermined species of Aclerda Signoret, 1874 from India 
without photos or comments on karyotype and genetic system of this species. During 
an expedition to Indonesia in October – November 2011 I was able to collect two spe-
cies of Aclerda. One of those species is suggested to be new for science and is described 
below; the second species, Aclerda takahashii Kuwana, 1932, is known to be widely 
distributed in tropical zones of the world. The study of the collected material has pro-
vided a possibility to present here some information on cytogenetics and reproductive 
biology of both discussed species.

Material and methods

Aclerda pseudozoysiae sp. n. K 884, Indonesia, New Guinea (Irian Jaya), vicinity of 
Jayapura city, slopes of Cyclop mountains above Entrop, dry primary forest interrupt-
ed by agricultural crops and sandy burrows, under the leaf sheaths of undetermined 
grass (Poaceae), 1.XI. 2011, Ilya Gavrilov-Zimin.

Aclerda takahashii. K 933, Indonesia, South-Eastern Sulawesi, vicinity of Kendari 
city near Haluoleo airport, chaotic agricultural plantations after recent deforestation, 
under the leaf sheaths of Saccharum sp., 12.XI.2011, Ilya Gavrilov-Zimin.

All material, including the types of the new species, is preserved in the Zoological 
Institute, Russian Academy of Sciences, St. Petersburg.

The chromosomal plates were prepared using a squash method in a drop of 
lactoacetorcein as previously described (Gavrilov and Trapeznikova 2007, 2008).

Aclerda pseudozoysiae sp. n.
urn:lsid:zoobank.org:act:00A57BC1-DD95-4220-A601-C1554AFEBB87
http://species-id.net/wiki/Aclerda_pseudozoysiae
Fig. 1

Adult female. Body elongate oval, up to 7 mm long, slightly curved. Antennae small, 
1-segmented, with several setae. Eyes and legs absent. Spiracles in two pairs; each with 
large and nearly circular and heavy sclerotized peritrema, covered by numerous quin-
quelocular pores. Posterior end of body heavily sclerotized on both surfaces even in 
very young females, abruptly narrowed and acutely pointed, ridged. Anal cleft short, 
about the same length as anal plate. Form of anal plate shown on the enlargement 
of Fig. 1. In general, the structure of anal complex is poorly visible because of heavy 
sclerotization of anal region of body, but it looks like anal complex in other species of 
the genus. Tubular ducts of 3 sizes: large tubular ducts about 18 µm long; medium-
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Figure 1. Aclerda pseudozoysiae sp. n., holotype.
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sized ducts about 10 µm long; and microtubular ducts about 7–8 µm long. All 3 types 
of ducts form ventral submarginal band as shown in Fig. 1. Microtubular ducts form 
also a group near labium. Quinquelocular pores form small groups near spiracles (with 
about 10–20 pores in each group). Dorsal invaginated setae (about 12–15 µm long) 
arranged along submarginal area of abdomen.

Taxonomic notes. The large and widely distributed genus Aclerda was compre-
hensively revised by McConnell (1953). After this review no new Aclerda species have 
been described from Australasian or Indomalasian regions and in view of this I consid-
er the McConnell’ s identification key as correct until now. Based on McConnell’s key, 
figures and descriptions, Aclerda pseudozoysiae sp. n. is similar to A. zoysiae McConnell, 
1953 which was described from the Philippine Islands, but differs in the presence of 
3 types of tubular ducts which are all located on the ventrum only in contrast to A. 
zoysiae having two types of ducts only (microtubular and macrotubular) distributed on 
both surfaces of the body.

Material. Holotype: female, K 884, vicinity of Jayapura, under the leaf sheath 
of undetermined grass (Poaceae), 1.XI. 2011, specimen in a black circle. Paratypes: 1 
female on the same slide; 3 females on other slides and series of unmounted females 
and larvae in acet-ethanol; all with the same collecting data as holotype.

Etymology. The species name “pseudozoysiae” is composed of pseudo (false) and 
“zoysiae”, and is intended to show its similarity to the related species, A. zoysiae.

Cytogenetics and reproductive biology

Both species are ovoviviparous; all stages of embryonic development occur inside the 
mother’s body. In view of the absence of any notes on ovisacs in other species of Aclerda 
in the coccidological literature, I suppose that the genus as a whole is ovoviviparous.

Both species have a spermatheca, attached medially between two lateral oviducts 
(Fig. 2).

Unexpectedly, the mode of reproduction is found to be absolutely different in 
these two species.

Aclerda pseudozoysiae has bisexual reproduction, with the presence of male stages of 
the life cycle in the analyzed population. The studied male ultimonymphs contained 
bundles of sperms in their testicles (Fig. 3). Specimens with meiotic divisions were not 
collected. Male larvae and nymphs, and about 50% of the embryos inside each of the 
four dissected adult females demonstrated a heterochromatinization of one haploid set 
of chromosomes (Fig. 4), that is common for the majority of cytogenetically studied 
groups of the superfamily Coccoidea (see, for example, the review of Gavrilov 2007). 
According to the special experimental studies, elaborated on different genera of Coc-
coidea (see Brown and Nelson-Rees 1961) the presence of heterochromatinized hap-
loid set characterizes male developmental stages only and moreover, the heterochro-
matinized set is usually of the paternal origin. Based on this heterochromatinization, A. 
pseudozoysiae is suggested to have either a Lecanoid or a Comstockioid genetic system, 
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these systems being difficult to distinguish without special analysis of male meiosis 
(see, for example, Nur 1980). The diploid karyotype of A. pseudozoysiae includes 16 
chromosomes forming gradual size series (Fig. 5).

On the contrary, in the studied population of Aclerda takahashii, no male stages 
of the life cycle were found and adult females did not have sperms and their sper-
mathecae and oviducts. So, the species demonstrates a parthenogenetic form of repro-
duction. The diploid chromosomal number of A. takahashii was found to be 18 (Fig. 
6, 7) with chromosomes forming more or less gradual size series. Some of the cells 
showed a nucleolus located at the end of one of the longer chromosomes (Fig. 7) (the 
localization of NORs in scale insects was discussed earlier by Gavrilov and Trapeznik-
ova 2007). The heterochromatinization of one haploid set of chromosomes was not 
found in any of about 150 studied embryos from 4 females and, so, theoretically, all 
these embryos must be female embryos. However, only about 50 % of the embryos 
inside each studied female were diploid, and the others demonstrated haploid num-
ber (n=9) of chromosomes in each of the cells (Fig. 8). This sudden form of partheno-
genesis seems to be unknown in scale insects. Usual haplo-diploidy is inherent in dif-
ferent species of Iceryini scale insects (superfamily Orthezioidea), but diploid progeny 
are characteristically produced by fertilized Iceryini females only (Hughes-Schrader 
1948). In the superfamily Coccoidea, parthenogenesis with different ways of diploidy 
restoration is known in different families, but in all studied cases of deuterotoky and 
arrhenotoky, haploid embryos are not produced, diploidy is restored in all embryos 
and the heterochromatinization of one haploid set of chromosomes marks male em-
bryos (Nur 1971, 1980). Probably, in A. takahashii the parthenogenetic diploidy res-

Figure 2. Schematic drawing of oviducts and spermatheca of studied Aclerda spp.
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Figures 3–8. 3–5 Aclerda pseudozoysiae sp. n.: 3 bundles of sperms, 4 heterochromatinization of one 
haploid set of chromosomes (black bodies inside the cells), 5 karyotype 6–8 Aclerda takahashii: 6 diploid 
karyotype, 7 diploid karyotype with nucleolus (arrowed) 8 haploid karyotype. Bar = 10 µm.

toration takes place in a part of embryos only. The question whether haploid embryos 
are able to produce viable males/ females can not be answered without additional 
observations in the field and laboratory experiments.
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Abstract
We describe the karyotype, location of nucleolus-organizing regions (NORs) and heterochromatin com-
position and distribution in Lepidochitona caprearum (Scacchi, 1836). The examined specimens had 2n=24 
chromosomes; the elements of pairs 1–4 were metacentric, subtelocentric those of the fifth pair, telocentric 
the elements of other pairs. NOR-FISH, Ag-NOR- and CMA3 banding showed NORs localized on peri-
centromeric regions of a medium small sized, telocentric chromosome pair. After C-banding or digestions 
with restriction enzyme NOR associate heterochromatin only was cytologically evident, resulting CMA3 
positive. The comparison with chromosome data of other chitons, other than to evidence a karyotypic 
similarity of L. caprearum to species of suborder Acanthochitonina, allows us to infer that chromosome 
evolution in the suborder mainly occurred via reduction of the number of the chromosomes by centric 
fusions, which took place repeatedly and independently in the different lineages of Acanthochitonina.
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Introduction

Polyplacophora, known also as chitons, includes about 900 living species, exclusively ma-
rine, distributed worldwide, mostly from the intertidal to the sub-littoral zone (Slieker 
2000). These mollusks are scarcely investigated from a karyological point of view: data are 
available for only 21 species, all of the order Chitonida (sensu Sirenko 2006), namely ten 
of the suborder Chitonina (six species of the family Chitonidae and four of Ischnochito-
nidae) and eleven of the suborder Acanthochitonina (seven species of Acanthochitonidae, 
three of Mopaliidae and one of Tonicellidae) (Table 1). Though few, the karyological data 
have provided valuable information for systematics and phylogeny of chitons (Odierna 
et al. 2008). In order to increase karyological data on this class of mollusks we performed 
a chromosomal analysis using both conventional and banding staining methods and in 
situ hybridization (NOR-FISH) on Lepidochitona caprearum (Scacchi, 1836). For this 
chiton karyological data concern the chromosome number of 2n=24 and some details 
on morphology of eight large elements (meta- or sub-metacentric) (Vitturi et al. 1982). 
Systematic and phylogenetic relationships of this species are debated. In addition, L. 
caprearum has been the subject of several nomenclatural and taxonomic revisions. First 
Scacchi (1836) described this common Mediterranean chiton as Chiton caprearum Scac-
chi, 1836 (pag. 9); later, it was described by Reeve (1848) as Chiton corrugatus Reeve, 
1848 (Plate 28, figure 185). Dall (1882) created the genus Middendorffia Dall, 1882 for 
it, and, successively, Kaas (1957) synonymised Middendorffia caprearum (Scacchi, 1836) 
with Chiton corrugatus. Successively, Kaas and van Belle (1981) carried out a systematic 
revision of perimediterranean and Atlantic species of the genus Lepidochitona Gray, 1821 
and considered the taxon Middendorffia as synonym of the genus Lepidochitona. Finally, 
on the basis of the classification priority criterion, nomenclatural validity of the Scacchian 
taxon was demonstrated by Piani (1983) and a few years later by Gaglini (1985).

Table 1. Chomosome data of the chitons studied to date, classified according to Sirenko (2006). n= 
haploid number; FN = Fundamental number (arm number), M= metacentric, SM= Submetacentric, 
ST=subtelocentric; T=telocentric.

Order Suborder Family Species n Haploid 
chr. for. FN Chitonida

Chitonida Chitonina Chitonidae

Acanthopleura gemmata 
(Blainville, 1825) 13 10 M, 3 

SM 26 Yassen et al. 
(1995)

Chiton granosus 
Frembly, 1827 12 6 M, 6 SM 24

Northland-
Leppe et al. 

(2010)
Chiton kurodai Is. & Iw. 

Taki, 1929 12 7 M, 4 
SM, 1 ST 24 Yum and Choe 

(1996)
Chiton olivaceus 
Spengler, 1797 13 12M, 1 

SM 26 Vitturi et al. 
(1982)

Liolophura japonica 
(Lischke, 1873) 12 12 M/SM 24

Nishikawa and 
Ishida (1969), 
Kawai (1976)

Onithochiton hirasei 
Pilsbry, 1901 12 Nishikawa and 

Ishida (1969)



Chromosomes of Lepidochitona caprearum (Scacchi, 1836)... 399

Order Suborder Family Species n Haploid 
chr. for. FN Chitonida

Ischnochi-
tonidae

Ischnochiton boninensis 
Bergenhayn, 1933 12 Nishikawa and 

Ishida (1969)
Ischnochiton comptus 

(Gould, 1859) 12 Nishikawa and 
Ishida (1969)

Lepidozona albrechtii 
(von Schrenck, 1862) [= 
Tripoplax albrechtii (von 

Schrenck, 1862) ]

12 10 M, 1M/
SM, 1 SM 24

Choe et al. 
(1995), Yum 

and Choe 
(1996)

Lepidozona coreanica 
(Reeve, 1847) 12 8 M, 1 M/

SM, 3 SM 24

Nishikawa and 
Ishida (1969), 
Yum and Choe 

(1996)

Acantho-
chitonina

Acantho-
chitonidae

Acanthochitona achates 
(Gould, 1859) 8 5 M, 1 

SM, 2 ST 16 Rho et al. 
(1998)

Acanthochitoa circellata 
(A. Adams & Reeve MS, 

Reeve, 1847) 
8

1 M, 4 
SM, 2 ST, 

1 T
15 Rho et al. 

(1998)

Acanthochitona 
communis (Risso, 

1826) [= A. fascicularis 
(Linnaeus, 1767)]

12 2M, 5T, ? undefined Vitturi et al. 
(1982)

Acanthochitona crinita 
(Pennant, 1777) 9 5 M, 2 

SM, 2 ST 18
Colombera 

and Tagliaferri 
(1983)

Acanthochitona defilippii 
(Tapparone Canefri, 

1874) 
8

3 M, 3 
SM, 1 ST, 

1 T
15

Nishikawa 
and Ishida 

(1969),Kawai 
(1976), Rho et 

al. (1998)

Acanthochitona 
discrepans (Brown, 

1827) 
9 7 M, 1 St, 

1 T 17

Certain (1951) 
in Nishikawa 

and Ishida 
(1969)

Acanthochitona 
rubrolineata 

(Lischke, 1873)
8

5 M, 1 
SM, 1 SM/
ST, 1 ST

15

Nishikawa and 
Ishida (1969), 

Rho et al. 
(1998)

Mopaliidae

Katharina tunica 
(Wood, 1815) 6 4 M, 2 T 10

Dolph and 
Humphrey 

(1970)
Nuttallochiton mirandus 
(E. A. Smith MS, Thiele, 

1906)
16 1M, 1SM, 

14T 18 Odierna et al. 
(2008)

Placiphorella stimpsoni 
(Gould, 1859) 12 6 M, 1 ST, 

5 T 19

Nishikawa and 
Ishida (1969), 
Yum and Choe 

(1996)

Tonicellidae Lepidochitona caprearum 
(Scacchi, 1836)

12 4M/SM, ? undefined Vitturi et al. 
(1982)

12 4 M, 1 ST, 
7 T 17 present paper
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Material and methods

We studied 4 males and 3 females of L. caprearum from Seiano (Naples, Italy) and 3 
males and two females from Gaeta (Latina, Italy).

Gonads of each individual were excised and incubated for two hours in 1 ml of calf 
serum, previously heat inactivated at 56°C for 30 min, containing 50 ml of colcemid 
at 10 mg/ml. Then, the gonads were incubated for 30 min in hypotonic solution (KCl 
0.075 M + sodium citrate 0.5%, 1:1) and fixed for 15 min in methanol + acetic acid, 
3:1. After that, cell dissociations of gonads were made on a tea steel sieve and 20 μl of 
cell suspensions were dropped on clean slides (Petraccioli et al. 2010).

Standard chromosome staining was performed by using 5% Giemsa, pH 7.0. 
The following chromosome banding techniques also were used: Ag-NOR staining of 
Nucleolus Organizer Regions (Ag-NORs), chromomycin A3 (CMA3)/ methyl green 
staining, quinacrine (Q) banding, DA/DAPI, C-banding and sequential staining of C-
banding+CMA3+DAPI (details in Odierna et al. 2008), conducting the incubation in 
Ba(OH)2 for 2 min and at room temperature. Karyotypes were constructed from seven 
Giemsa-stained mitotic metaphase plates and used to measure chromosome centromeric 
index (CI) and relative length (RL) according to the nomenclature by Levan et al. (1964).

NOR-FISH was performed as described by Petraccioli et al. (2010), with slight 
modifications, using as probe PCR amplified and biotinaled 18S rRNA gene sequence 
units of the pectenid Adamussium colbecki (Smith, 1902). Slides were aged for a week 
at room temperature and two hours a 60°C, and then incubated for 30 min in Rnase at 
100 mg/ml in Tris-HCl pH 6.5. Slides were washed two min for each ethanol 50, 70, 
90 and 100% and air dried. Chromosomes and probe were denatured at 72°C with the 
hybridization mixture (10 ng/ml biotinylated 16 dUTP probe + 0.1 mg/ml shared E. 
coli DNA in 2xSSC with 50% formamide) for 2 min. The hybridizations were carried 
over-night at 40 °C. After washing in 1xSSC at 72°C for 5 min and at RT for 2 min in 
blocking solution (dry milk 2% + 0,1% of Tween 20 in 4xSSC), cytochemical detection 
was performed by incubating slides for 1 h with monoclonal anti-biotin (Sigma cod. 
B7653) diluted 1:500 in PTB (1 ml PTB= 5 μl of Tween 20% + 0.01 g of Dry milk + 
in 1 ml of PBS 0,2 M), washing in 1xPBS and incubating for 30 min in anti-anti-biotin 
diluted 1:50 in PTB. After washing in PBS, slides were counterstained with 5 μg/ml 
propidium iodide (PI) in 1xPBS for 15 min at room temperature and, finally, mounted 
with antifade (DABCO, Sigma). The hybridization signals were detected and recorded 
under an epifluorescent microscope (Axioscope Zeiss) equipped with a digital camera.

Results

Twelve bivalents, four larger than the other eight ones resulted present in 25 examined 
male, diakinetic, meiotic figures (Fig. 1). The diploid number of 2n=24 chromosomes 
was confirmed by the examination of 15 spermatogonial and ten oogonial metaphase 
plates. Independently of sex and provenance, karyotypes consisted of four pairs (1–4) 
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Table 2. Chromosome morphometric parameters of L. caprearum, according to Levan et al. (1964); M= 
metacentric, ST= subtelocentric, T= telocentric.

Chromosome Relative Length (RL) 
mean ± SD 

Centromeric index 
(CI) mean ± SD Chromosome type

1 18.2 ± 0.5 48.3 ± 3.0 M
2 17.0 ± 0.7 39.9 ± 2.8 M
3 15.2 ± 0.4 49.0 ± 3.1 M
4 12.8 ± 0.6 39.1 ± 2.9 M
5 7.7 ± 0.5 18.2 ± 2.0 ST
6 6.2 ± 0.4 0 T
7 5.3 ± 0.3 0 T
8 4.0 ± 0.5 0 T
9 3.9 ± 0.6 0 T
10 3.8 ± 0.4 0 T
11 3.2 ± 0.5 0 T
12 2.7 ± 0.4 0 T

Figure 1. Giemsa stained karyotype of a male of L. caprearum from Seiano (Naples, Italy).
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Figure 2. Male (A, C, E, F and G) from Seiano, Naples, Italy, and female, from Gaeta, Latina, Italy, 
(B, D and H) metaphase plates of L. caprearum, stained with Ag-NOR banding (A),CMA3 banding 
(B), NOR-FISH (C), C-banding + Giemsa (D); C+banding + CMA3 (E)+DAPI (F), Quinacrine (G) 
and DA/DAPI (H). Panels in A, B and C include their relative NOR bearing chromosome pair. Scale 
bar in H refers all images.

with metacentric elements, a pair (the fifth) with subtelocentric chromosomes, the 
remaining pairs (6–12) included telocentric elements (haploid chromosome formula: 
4M, 1ST, 7T; Arm number, FN=17 (Table 2; Fig. 1). One NOR bearing pair resulted 
evidenced after staining with Ag-NOR-, CMA3 banding and NOR-FISH; loci NORs 
were on pericentromeric regions of two medium sized telocentric chromosomes, tenta-
tively the pair eight or nine (Fig. 2 A, B and C). After C-banding staining or digestions 
with Restriction enzyme AluI, NOR associated heterochromatin only was well evident, 
resulting CMA3 positive and DAPI negative (Fig. 2 D, E and F). Quinacrine and DA/
DAPI banding uniformly stained the chromosomes (Fig. 2 G and H).
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Discussion

According to the classification by Kaas and Van Belle (1998) species of genus Lepi-
dochitona belong to the family Ischnochitonidae Dall, 1989, suborder Chitonina. In 
contrast, Sirenko (2006), in his classification, included Lepidochitona in the family 
Tonicellidae Simroth, 1894, suborder Acanthochitonina. In agreement with Vitturi et 
al. (1982) we find that L. caprearum possesses 2n=24 chromosomes. This chromosome 
number is also displayed by all the so far studied species of Ischnochitonidae, namely 
two species of Ischnochiton Gray, 1847 and two of Lepidozona Pilsbry,1892 (Nishi-
kawa and Ishida 1969, Choe et al. 1995, Yum and Choe 1996). Only for the two 
Lepidozona species the chromosome morphology is given (Yum and Choe 1996), and 
in both cases the elements only are metacentric or submetacentric. This kind of chro-
mosome sets can be ranked more or less symmetric (White 1978), that is karyotypes 
only including a series of elements gradually decreasing and with chromosome arms of 
almost equal length. Interestingly, the other so far investigated species of the suborder 
Chitonina possess karyotypes of 2n=24 or 26 elements metacentric or submetacentric, 
(see Table 1), excluding Chiton kurodai Is. & Iw. Taky, 1929, which has a karyotype 
with a pair of subtelocentric elements (Yum and Choe 1996). In contrast, even if pos-
sessing 2n=24 elements, the karyotype of L. caprearum strongly deviates from those of 
Chitonina species. In fact, other than biarmed chromosomes, its karyotype includes 
also subtelocentric and telocentric elements. Interestingly, a similar karyotype is also 
displayed from all Acanthochitonina species (see Table 1), to which, then, L. caprearum 
is karyologically related. Molecular phylogenetic study on chitons by Okusu et al. 
(2003) suggests a close relationship between Lepidochitona and the mopaliid species, 
Katharina tunicata (Wood, 1815), which, according to Dolph and Humphrey (1970), 
possesses 2n=12 chromosomes with a chromosome formula of 8M+4ST. However, 
both molecular relationship and chromosome record for K. tunicata have to be con-
sidered with caution. In fact, Mopaliidae in the molecular phylogeny by Okusu et 
al. (2003), appear polyphyletic, a state not considered in the systematic revision by 
Sirenko (2006), where Mopaliidae are monophyletic. Concerning chromosome data 
of K. tunicata, the record by Dolph and Humphrey (1970) needs confirmation, be-
cause from examination of the figure provided by the authors, all chromosome pairs 
are unpaired (each pair contains elements differing in length and/or shape). However, 
among Acanthochitonina a set with 2n=24 elements is shown by two species: one of 
the family of Acanthochitonidae, namely Acanthochitona communis (Risso, 1826) [= 
A. fascicularis (Linnaeus, 1767)], but with the chromosome formula not completely 
resolved (Vitturi et al. 1982); the second species of the family of Mopaliidae, namely, 
Placiphorella stimpsoni (Gould, 1859), which has a chromosome formula of 6M, 1ST, 
5T (Yum and Choe 1996) (Table 1). However, the karyotypes of P. stimpsoni and L. 
caprearum are strongly divergent (see Table 1). In fact their chromosome sets differ 
both in the number of metacentric and telocentric elements and because in the set 
of P. stimpsoni the first two pairs are markedly longer than the other pairs, while in L. 
caprearum are four the pairs clearly longer than the other ones (see Fig. 3 for a compari-
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son). So, multiple and complex chromosome rearrangements occur for the transition 
between karyotypes of L. caprearum and P. stimpsoni. A possible, alternative scenario 
for the origin of their chromosome set is given in Fig. 3. The scenario is based on the 
hypothesis, that we advanced in our previous study (Odierna et al. 2008), according to 
which a karyotype like that of Nuttallochiton mirandus (E. A. Smith MS, Thiele, 1906), 
of 2n=32 elements with a chromosome formula of 1M, 1SM, 14T, is primitive and the 
karyotypes with lesser chromosome number derived from it, mainly by a series of Rob-
ertsonian fusions. Accordingly, the karyotype of L. caprearum could have arisen from 
a N. mirandus like karyotype by four centric fusions plus one inversion (see Fig. 3). 
Similarly, one inversion and four centric fusions also could give rise to the karyotype 
of the P. stimpsoni from one N. mirandus like. In addition, a derivation from a karyo-
type N. mirandus like could also be supposed for that one of 2n=18 chromosomes of 
the Acanthochitonid species, Acanthochitona crinita (Pennant, 1777), (Colombera and 
Tagliaferri 1983): in fact, seven centric fusions occur for the transition from N. miran-

Figure 3. Hypothesis on the derivation of the karytotypes of L. caprearum, P. stimpsoni and A. crinita 
from that of N. mirandus. Haploid chromosome ideograms have been depicted according to the relative 
length and centromeric indexes given by Yum and Choe (1996) for P. stimpsoni, Colombera and Taglia-
ferri (1970) for A. crinita, Odierna et al. (2008) for N. mirandus and the present paper for L. caprearum. 
The numbers included in the chromosomes refer to those of N. mirandus supposed involved in the chro-
mosome changes.
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dus like karyotype to that of A. crinita (see Fig. 3). Moreover, in this genus a further 
reduction to 2n=16 chromosomes also occurred; since this chromosome number is 
showed by Acanthochitona achates (Gould, 1859), Acanthochitona circellata (A. Adams 
& Reeve MS, Reeve, 1847) Acanthochitona defilippi (Tapparone Canefri, 1874), and 
Acanthochitona rubrolineata (Lischke, 1873) (see Table 1). Interestingly, in this genus 
the reduction of chromosomes number to 2n=18 or 16 an intermediate step of 2n=24 
could not be ruled out, as suggested by the karyotype of A. communis, which has 
2n=24 elements (Vitturi et al. 1982). It should be noted that for the derivation of the 
chromosome set of L. caprearum, P. stimpsoni and A. crinita, different elements of the 
karyotype like that of N. mirandus have supposedly been involved both in the centric 
fusions and inversions, meaning that these rearrangements have occurred repeatedly 
and independently in the diverse lineages of suborder Acanthochitonina. This hypoth-
esis on the chromosome evolution in Acanthochitonina is also the most parsimonious 
and supports the inclusion of Lepidochitona in the suborder Acanthochitonina oper-
ated by Sirenko (2006) in his chiton systematic revision.

Studies on NOR localization and heterochromatin distribution and composition 
proved to be valuable in providing taxonomic, systematic and evolutionary infor-
mation in several taxa, including bivalves (Thiriot-Quievreux 2002, Wang and Guo 
2004) and gastropods (Thiriot-Quievreux 2003, Odierna et al. 2006 a, b). Conversely, 
comparable data on NOR loci and heterochromatin distribution and composition in 
chitons are only available for N. mirandus (Odierna et al. 2008). Two chitons species 
display quite different patterns of those chromatinic markers. In fact, in L. caprearum 
NORs are on the pericentromeric regions of a single pair and in at least three pairs 
in N. mirandus, karyological characters considered, respectively, a primitive and de-
rivate in several taxa, including mollusks (Thiriot-Quievreux 2002, 2003, Wang and 
Guo 2004, Odierna et al. 2006 a, b). Heterochromatin in L. caprearum is very scarce 
and with a uniform constitution with the exclusion of that associated with the NOR, 
which is CMA3 positive, then GC rich, as usually observed in several taxa, including 
mollusks (Odierna et al. 2006 a, b, Petraccioli et al. 2010). In contrast heterochroma-
tin in N. mirandus is abundant and has a compound composition with clusters AT 
and GC rich (Odierna et al. 2008). Further studies on localization of NORs and/or 
heterochromatin composition and distribution in other chitons could provide useful 
taxonomic and systematic information on this class of mollusks.
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Abstract
Few species of the tribe Lophiohylini have been karyotyped so far, and earlier analyses were performed 
mainly with standard staining. Based on the analysis of seven species with use of routine banding and 
molecular cytogenetic techniques, the karyotypes were compared and the cytogenetic data were evalu-
ated in the light of the current phylogenies. A karyotype with 2n = 24 and NOR in the chromosome 10 
detected by Ag-impregnation and FISH with an rDNA probe was shared by Aparasphenodon bokermanni 
Miranda-Ribeiro, 1920, Itapotihyla langsdorffii (Duméril and Bibron, 1841), Trachycephalus sp., T. mes-
ophaeus (Hensel, 1867), and T. typhonius (Linnaeus, 1758). Phyllodytes edelmoi Peixoto, Caramaschi et 
Freire, 2003 and P. luteolus (Wied-Neuwied, 1824) had reduced the diploid number from 2n = 24 to 2n = 
22 with one of the small-sized pairs clearly missing, and NOR in the large chromosome 2, but the karyo-
types were distinct regarding the morphology of chromosome pairs 4 and 6. Based on the cytogenetic and 
phylogenetic data, it was presumed that the chromosome evolution occurred from an ancestral type with 
2n = 24, in which a small chromosome had been translocated to one or more unidentified chromosomes. 
Whichever hypothesis is more probable, other rearrangements should have occurred later, to explain the 
karyotype differences between the two species of Phyllodytes Wagler, 1830. The majority of the species 
presented a small amount of centromeric C-banded heterochromatin and these regions were GC-rich. The 
FISH technique using a telomeric probe identified the chromosome ends and possibly (TTAGGG)n-like 
sequences in the repetitive DNA out of the telomeres in I. langsdorffii and P. edelmoi. The data herein 
obtained represent an important contribution for characterizing the karyotype variability within the tribe 
Lophiohylini scarcely analysed so far.
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Introduction

The hylids of the subfamily Hylinae Rafinesque, 1815 are grouped into four large 
tribes: Cophomantini, Dendropsophini, Hylini, and Lophiohylini (Faivovich et al. 
2005, Wiens et al. 2010). In the tribe Lophiohylini 11 genera are assigned and the ma-
jority of them included the known casque-headed frogs which are distributed through-
out Central and South America. According to Faivovich et al. (2005), despite the 
phylogenetic review based mainly on molecular gene sequencing, few morphological 
synapomorphies support the current taxonomy of the tribe Lophiohylini and many 
unresolved questions still remain. Recently, the separate genus Phytotriades Jowers, 
Downieb & Cohen, 2009 was erected for the species Phyllodytes auratus (Boulenger, 
1917) based on analysis of mitochondrial rDNA sequences.

About 70 species are recognised in the tribe Lophiohylini (Frost 2011), but 
only a dozen of them from seven genera have been karyotyped (Catroli and Ka-
sahara 2009). Earlier analyses, performed exclusively with standard staining, were 
conducted during the 1960s and 1970s in the species Aparasphenodon brunoi Mi-
randa-Ribeiro, 1920, Itapotihyla langsdorffii (Duméril & Bibron, 1841), Osteopi-
lus septentrionalis (Duméril & Bibron, 1841), Trachycephalus mesophaeus (Hensel, 
1867), and T. typhonius (Linnaeus, 1758), all of them with 2n = 24, and Osteopilus 
brunneus Trueb and Tyler, 1974 with 2n = 34 (Duellman and Cole 1965, Rabello 
1970, Bogart and Bogart 1971, Foresti 1972, Bogart 1973, Cole 1974). Subsequent-
ly studies were carried out with use of banding and FISH techniques on some of 
these species (A. brunoi, I. langsdorffii, O. septentrionalis, and O. brunneus) and also 
in Argenteohyla siemersi (Mertens, 1937), Corythomantis greeningi Boulenger, 1896, 
Osteocephalus taurinus Steindachner, 1862, O. dominicensis (Tschudi, 1838), and O. 
marianae (Dunn, 1926), all of them with 2n = 24, and in O. wilderi (Dunn, 1925) 
with 2n = 28 (Schmid 1978, 1980, Anderson 1996, Morand and Hernando 1996, 
Kasahara et al. 2003, Nunes and Fagundes 2008). The species of the Lophiohylini 
genera Nyctimantis Boulenger, 1882, Tepuihyla Ayarzagüena, Señaris and Gorzula, 
1993, Phyllodytes Wagler, 1830, and Phytotriades Jowers, Downieb et Cohen, 2008 
have never been karyotyped.

The present paper deals with the chromosome analysis of A. bokermanni Pombal, 
1993, I. langsdorffii, P. edelmoi Peixoto, Caramaschi et Freire, 2003, P. luteolus (Wied-
Neuwied, 1824), T. mesophaeus, T. typhonius, and Trachycephalus sp. (probably an 
undescribed species) with use of routine and molecular cytogenetic techniques. The 
aim was to analyze species never karyotyped before and to improve the cytogenetic 
data from some other species, in order to better characterizing the karyotype variabil-
ity within the tribe Lophiohylini and to carry out a more comprehensive comparative 
analysis in the light of the current phylogeny.
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Material and methods

Cytogenetic analyses were performed with specimens of Aparasphenodon Miranda-
Ribeiro, 1920, Itapotihyla Faivovich, Haddad, Garcia, Frost, Campbell, et Wheeler, 
2005, Phyllodytes, and Trachycephalus Tschudi, 1838 (Table 1) collected in the Brazil-
ian states of Alagoas (AL), Bahia (BA), Espírito Santo (ES), Mato Grosso (MS), and 
São Paulo (SP). The voucher specimens were deposited in the amphibian collection 
Célio Fernando Baptista Haddad (CFBH), housed in the Departamento de Zoologia, 
UNESP, Rio Claro, SP, Brazil.

Direct cytological suspensions of bone marrow, liver, and testes were prepared ac-
cording to the procedures described in Baldissera et al. (1993), and from the intestinal 
epithelium according to the method of Schmid (1978). The slides were subjected to 
standard Giemsa staining and to the techniques of Ag-NOR (Howell and Black 1980), 
C-banding (Sumner 1972), and double staining with the fluorochromes AT-specific 
DAPI and GC-specific CMA3 (Christian et al. 1998). Fluorescent in situ hybridisation 
(FISH) (Pinkel et al. 1986) was carried out using the ribosomal probe HM123 (Meu-
nier-Rotival et al. 1979) and a telomeric probe (TTAGGG)n according to the DAKO 
kit instructions (Denmark). The Ag-NOR technique was frequently performed using 
the same slide after Giemsa staining or FISH technique with the HM123 probe. In 
both cases, the slides were washed with xylol to remove the immersion oil and then 
submitted to the technique for obtaining Ag-NOR as usual but decreasing the time of 
incubation in all steps of the procedure. Chromosomal images were captured with an 
Olympus digital camera D71 with use of the DP Controller program. The bi-armed 
chromosomes were classified as metacentric, submetacentric or subtelocentric accord-
ing to the nomenclature proposed by Green and Sessions (1991, 2007).

Table 1. Species, number of individuals, sex, voucher numbers, and collection locations in Brazil.

species number sex voucher numbers 
CFBH collection locations

Aparasphenodon 
bokermanni 1 male 22575 Cananéia, SP (25°01'19"S; 47°55'41"W)

Itapotihyla 
langsdorffii

2 males 22369, 22370 Ilhéus, BA (14°47'29"S; 39°02'41"W)
1 female 30973 Rio Claro, SP (22°25'20"S; 47°34'23"W)

Phyllodytes edelmoi
2 females 22583, 22584 Maceió, AL (09°40'06"S; 35°43'59"W)
1 male 22585 Maceió, AL (09°40'06"S; 35°43'59"W)

Phyllodytes luteolus 2 males 22462, 22463 Guaraparí, ES (20°39'01"S; 40°29'10"W)
Trachycephalus sp. 1 male 20664 Paranaíta, MT (09°40'56"S; 56°28'50"W)

Trachycephalus 
mesophaeus

3 males 22366, 22367, 
22368 Ilhéus, BA (14°47'29"S; 39°02'41"W)

2 females 22371, 22372 Ilhéus, BA (14°47'29"S; 39°02'41"W)
1 juvenile 22484 Ubatuba, SP (23°26'19"S; 45°05'25"W)
1 male 24222 Biritiba Mirim, SP (23°34'17"S; 46°02'15"W)

Trachycephalus 
typhonius

1 female 22365 Porto Primavera, MS (22°26'01"S, 52°58'11"W)
1 male 10033 Rio Claro, SP (22°25'20"S; 47°34'23"W)

CFBH - Célio Fernando Baptista Haddad Collection, UNESP, Rio Claro, SP, Brazil.



Simone Lilian Gruber et al.  /  Comparative Cytogenetics 6(4): 409–423 (2012)412

Results

Specimens of Aparasphenodon bokermanni, Itapotihyla langsdorffii, Trachycephalus sp., 
T. mesophaeus, and T. typhonius had a diploid number of 2n = 24 (Fig. 1a–e) and a 
fundamental number FN = 48 and Phyllodytes edelmoi and P. luteolus had 2n = 22, 
FN = 44 (Fig. 1f–g). The Table 2 presents the relative length (RL), centromeric index 
(CI), and the centromeric position (CP) with morphologic classification of the chro-
mosomes of the seven species.

The technique of Ag-NOR was carried out in all species. In the 2n = 24 karyotypes 
the Ag-NORs were located on chromosome 10, at the terminal long arm in the case 
of A. bokermanni, Trachycephalus sp., T. mesophaeus, and T. typhonius (Fig. 1a, c–e), 
or at the interstitial short arm in I. langsdorffii (Fig. 1b). In P. edelmoi and P. luteolus 
Ag-NOR was located at the terminal long arm of chromosome 2 (Fig. 1f–g). The Ag-
impregnation occurred in the sites of the secondary constriction, although this marker 
was not always visualised in the standard stained chromosomes. In A. bokermanni and 
Trachycephalus sp. and in some individuals of the remaining species, there was vari-
ation in the pattern of Ag-NOR labelling. Within the same individual, metaphases 
exhibited Ag-NORs with conspicuous or slight difference in size or carried two Ag-

Table 2. Relative length (RL), centromeric index (CI), and nomenclature for centromeric position (CP) 
on mitotic chromosomes according to Green and Sessions (1991, 2007).

Species
Chromosome number

1 2 3 4 5 6 7 8 9 10 11 12
A. bokermanni RL 15.57 12.93 10.65 9.63 9.48 7.48 5.68 6.78 6.27 6.5 4.12 3.83

CI 0.479 0.459 0.396 0.263 0.344 0.286 0.321 0.464 0.487 0.284 0.420 0.465
CP m m m sm sm sm sm m m sm m m

I. langsdorffii RL 15.06 13.52 11.50 10.41 9.82 7.68 6.59 6.35 5.17 5.00 5.02 3.90
CI 0.460 0.421 0.355 0.241 0.361 0.225 0.391 0.483 0.472 0.472 0.460 0.467
CP m m sm st sm st m m m m m m

Trachycephalus sp. RL 14.57 11.79 11.57 9.95 9.18 7.81 6.75 6.06 4.43 5.15 4.65 4.30
CI 0.430 0.429 0.383 0.257 0.319 0.261 0.344 0.453 0.456 0.301 0.443 0.461
CP m m m sm sm sm sm m m sm m m

T. mesophaeus RL 14.33 13.57 10.66 10.47 9.04 7.98 6.76 6.35 5.94 6.97 4.72 3.83
CI 0.457 0.435 0.366 0.268 0.370 0.224 0.338 0.481 0.424 0.351 0.353 0.414
CP m m sm sm sm st sm m m sm sm m

T. typhonius RL 15.63 12.80 11.05 10.51 10.06 8.16 7.07 6.02 5.02 5.23 4.59 4.10
CI 0.462 0.397 0.364 0.236 0314 0.200 0.317 0.424 0.444 0.304 0.461 0.485
CP m m sm st sm st sm m m sm m m

P. edelmoi RL 18.38 13.74 12.88 9.90 9.74 7.73 6.86 6.77 4.88 4.06 3.74 --
CI 0.453 0.403 0.335 0.430 0.341 0.414 0.367 0.404 0.440 0.444 0.472 --
CP m m sm m sm m sm m m m m --

P. luteolus RL 16.62 12.56 11.11 10.65 9.57 8.72 8.38 7.05 5.38 4.80 4.56 --
CI 0.450 0.422 0.370 0.249 0.352 0.237 0.336 0.354 0.472 0.430 0.443 --
CP m m sm st sm st sm sm m m m --

m = metacentric; sm = submetacentric; st = subtelocentric.
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NORs with equivalent sizes; occasionally a single Ag-NOR per metaphase was also ob-
served in the same cytological preparation. FISH with an rDNA probe was performed 
in six species, with exception of P. edelmoi. Two fluorescent signals were observed in all 
analysed metaphases (Fig. 1a–e, g). In the species Trachycephalus sp. and T. mesophaeus 
the hybridisation signals always presented the same size and in A. bokermanni, I. langs-
dorffii, T. typhonius, and P. luteolus the labelling was heteromorphic in all metaphases.

The C-banding in A. bokermanni, I. langsdorffii, Trachycephalus sp., T. mesophaeus, 
and T. typhonius showed heterochromatin distribution in the pericentromeric regions 
of all chromosomes (Fig. 2). In I. langsdorffii additional C-bands were noticed at ter-
minal (chromosomes 1 and 4) and interstitial (chromosome 5) regions. This technique 
was carried out in mitotic and meiotic cytological preparations of P. edelmoi and P. 
luteolus, but no C-banded region was demonstrated in the chromosomes of these spe-
cies. The NOR site in all species was brilliant with CMA3, as well as the chromosome 
pericentromeric region (Fig. 3a, c–h). The pericentromeric fluorescence was in general 
faint and not visualised in all chromosomes. In A. bokermanni the centromeric signals 
were particularly prominent in size and brightness (Fig. 3a). No brilliant labelling was 
observed after DAPI staining in any species, except in A. bokermanni which showed 

Figure 1. Giemsa-stained karyotypes. a Aparasphenodon bokermanni, male, 2n = 24 b Itapotihyla langs-
dorffii, male, 2n = 24 c Trachycephalus sp., male, 2n = 24 d T. mesophaeus, male, 2n = 24 e T. typhonius, 
male, 2n = 24; f. Phyllodytes edelmoi, male, 2n = 22 g P. luteolus, male, 2n = 22. The insets show the chro-
mosome pairs with Ag-NOR and FISH using the rDNA probe. Bar = 10 mm.
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Figure 2. C-banded karyotypes. a Aparasphenodon bokermanni b Itapotihyla langsdorffii c Trachycephalus sp. 
d T. mesophaeus e T. typhonius. Bar = 10 mm.

Figure 3. Fluorochrome-stained metaphases. a, c-h CMA3 b DAPI a–b Aparasphenodon bokermanni 
c I. langsdorffii d Trachycephalus sp. e T. mesophaeus f T. typhonius g Phyllodytes edelmoi h P. luteolus. Bright 
DAPI fluorescence at the terminal short arms of chromosomes 10 (arrows) and the negative centromeric 
region are shown in a. CMA3 fluorescent labelling of the NOR site (arrows) and in the centromeric region 
of chromosomes in a, c–h. Bar = 10 mm.
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slight fluorescence at the terminal short arm of chromosome 10 (Fig. 3b). The chro-
mosome pericentromeric region of this species was DAPI-negative.

The telomeric probe hybridized on the chromosome ends in six of the species, ex-
cepting in P. luteolus without cytological material available for the FISH technique. 
Figure 4a–e showed metaphases of A. bokermanni, I. langsdorffii, Trachycephalus sp., 
T. mesophaeus, and T. typhonius with probe labelling at the chromosome ends and, 
in the case of I. langsdorffii (Fig. 4b), also in the pericentromeric region. In P. edel-
moi no good metaphases were obtained, but the chromosomes showed telomeric 
labelling. In one metaphase of this species, however, the large-sized chromosome 
pair 1 and 2 had probe hybridization at the proximal short and long arms (Fig. 4f).

No sex-chromosome pairs were detected in male or female specimens of I. langs-
dorffii, T. mesophaeus, T. typhonius, and P. edelmoi. In the remaining three species 
only males were karyotyped with no evidence of sex related heteromorphism. Meiotic 
analysis confirmed the diploid number in all species (Fig. 5a–g). Aparasphenodon bok-
ermanni, I. langsdorffii, Trachycephalus sp., T. mesophaeus, and T. typhonius showed 12 
bivalents. Phyllodytes edelmoi and P. luteolus showed 11 bivalents.

The main cytogenetic data obtained in the present study are summarized in the 
Table 3.

Figure 4. FISH using a telomeric probe. a Aparasphenodon bokermanni b Itapotihyla langsdorffii c Tra-
chycephalus sp. d, T. mesophaeus e T. typhonius f P. edelmoi. In b hybridisation labelling is visible in the 
centromeric region of the chromosomes and in f, at the proximal short and long arms of chromosomes 1 
and 2 observed with telomeric probe hybridisation (left) and with DAPI staining (right). Bar = 10 mm.
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Table 3. Data on chromosome number, chromosome formula, NOR and telomeric sequence localiza-
tion, C-band distribution and molecular content of repetitive DNA sequences of studied species.

species 2n fomula NOR Tel C bands DAPI CMA3

A. bokermanni 24 7m+5sm 11qt T C+NOR 10pt C*+NOR
I. langsdorffii 24 8m+2sm+2st 11pi T+C C+NOR  -- C+NOR
Trachycephalus sp. 24 7m+5sm 11qt T C+NOR  -- C+NOR
T. mesophaeus 24 5m+6sm+1st 11qt T C+NOR  -- C+NOR
T. typhonius 24 6m+4sm+2st 11qt T C+NOR  -- C+NOR
P. edelmoi 22 8m+3sm 2qt T+C C+NOR  -- C+NOR
P. luteolus 22 5m+4sm+2st 2qt --- C+NOR  -- C+NOR

m = metacentric; sm = submetacentric; st = subtelocentric; p = short chromosome arm; q = long chromo-
some arm; i = interstitial region; t = terminal region; T = telomere; C = centromeric/ pericentromeric 
region; * intense mark.

Figure 5. Giemsa-stained diakinesis and metaphases I cells. a Aparasphenodon bokermanni, 2n = 24 
b Itapotihyla langsdorffii, 2n = 24 c Trachycephalus sp., 2n = 24 d T. mesophaeus, 2n = 24 e T. typhonius, 
2n = 24 f Phyllodytes edelmoi, 2n = 22 g P. luteolus, 2n = 22. Bar = 10 mm.

Discussion

The species of the tribe Lophiohylini A. bokermanni, I. langsdorffii, Trachycephalus sp., 
T. mesophaeus, and T. typhonius with 2n = 24 shared indistinguishable karyotypes even 
though there was discrepancy in morphological classification shown in Table 2 for 
some chromosomes, as the chromosome 3 of the species, due to slight differences in 
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the chromosome arm proportion. No evidence of population karyotype difference was 
observed for I. langsdorffii, T. mesophaeus, and T. typhonius sampled in distinct loca-
tions. Considering previous data for these three species (Rabello 1970, Foresti 1972, 
Bogart 1973, Kasahara et al. 2003, Nunes and Fagundes 2008), no difference was no-
ticeable in the karyotypes, although the morphological classification of chromosomes 
and the ordering of the pairs in the distinct karyograms were not the same.

The chromosome constitution with 2n = 24 herein described is the same as found 
for the remaining eight species of Lophiohylini analysed so far, corresponding to Apar-
asphenodon brunoi, Argenteohyla siemersi, Corythomantis greeningi, Osteocephalus tauri-
nus, Osteopilus dominicensis, O. marianae, O. septentrionalis, and an unidentified species 
of Trachycephalus (see Catroli and Kasahara 2009 for references). This finding suggests 
a high degree of karyotype conservation within the tribe. Actually, a detailed compara-
tive analysis of the replication banding obtained by BrdU incorporation had shown 
unequivocal homeology at least among the chromosomes of A. brunoi, C. greeningi, 
and I. langsdorffii (Kasahara et al. 2003). It is important to emphasise that this con-
servative pattern of chromosome constitution has been observed in representatives of 
Hylinae and, according to the molecular phylogeny of Faivovich et al. (2005), a karyo-
type with 2n = 24 could be a synapomorphic condition within this subfamily. Another 
karyotype characteristic shared by the majority of the Lophiohylini species with 2n = 
24 is the NOR site in a small-sized chromosome (Schmid 1978, 1980, Anderson 1996, 
Kasahara et al. 2003, Nunes and Fagundes 2008), with the exception of Argenteohyla 
siemersi (Morand and Hernando 1996) with NOR in the chromosome pair 4.

Phyllodytes edelmoi and P. luteolus, the first two species of the genus that were ana-
lysed so far, had reduced the diploid numbers from 2n = 24 to 2n = 22 and the NOR 
site was in the large-sized chromosome 2. Nevertheless, the karyotypes of these two 
species were distinct regarding the morphology of pairs 4 and 6, that is, in P. edelmoi 
these pairs were metacentric and in P. luteolus they were subtelocentric, as it has been 
usually observed in Hylinae species with 2n = 24. The discrepancy in the morphology 
of the chromosome pairs 4 and 6 was supported by the chromosome measurements 
and the mechanism responsible for these differences might be, for example, a pericen-
tric inversion or another type of chromosome rearrangement, but this could not be 
determined at least with the cytogenetic techniques used here.

Within the sub-family Hylinae, variation as resulted of fusion events from an 
ancestral karyotype with 24 chromosomes was described for Hypsiboas albopunctatus 
(Spix, 1824) (2n = 22) and for species of the genus Aplastodiscus (2n = 18, 20, 22) 
(Gruber et al. 2007, Gruber et al. 2012). Although the chromosomes involved in the 
rearrangements could not be recognized with certainty in neither case, the derived 
chromosomes in H. albopunctatus and in Aplastodiscus species were tentatively identi-
fied by their altered morphology regarding the presumed ancestral. The reduction in 
the diploid number to 2n = 22 in Phyllodytes might also be due to fusion rearrange-
ment of end-to-end or centric type from the ancestral 2n = 24 karyotype. Taking into 
account that the two analysed species presented four small pairs instead of five and 
the NOR was on large-sized pair, the fusion, at first sight, occurred between a small 
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NOR-bearing chromosome and chromosome 2. Nevertheless, the NOR-bearing chro-
mosome 2 of Phyllodytes had no noticeable relative size differences regarding the chro-
mosome 2, not carrying NOR, of the 2n = 24 species. Another possibility is the trans-
location of one of the smallest chromosomes to chromosome 1, since this element in 
the Phyllodytes species has a larger relative length when compared to the chromosome 
1 of 2n = 24 karyotypes. The translocation of a small pair to more than one unidenti-
fied chromosomes, leading to the reduction in the diploid number to 2n = 22 could 
not be discarded. Whichever of the hypotheses is more probable, other rearrangements 
should have occurred later, to explain the differences observed between the karyotypes 
of the two species of Phyllodytes. Certainly, additional cytogenetic analyses within the 
genus are necessary to outline the events occurred during the chromosome evolution.

In males and females of I. langsdorffii, P. edelmoi, T mesophaeus, and T. typhonius 
and in males of A. bokermanni, Trachycephalus sp., and P. luteolus heteromorphic sex 
chromosomes were not observed. Nevertheless in females of these three latter species 
sex chromosomes could not be discarded. Anurans, in general, do not present cytologi-
cal sex chromosome differentiation and both male or female heterogamety has been 
described in some species (Schmid et al. 2010).

A single NOR pair located in a small-sized chromosome (Schmid 1978, Green 
and Sessions 2007, Schmid et al. 2010) is a shared characteristic for the majority of 
the Lophiohylini species and this condition has also been frequently observed in other 
Hylinae of the genera Bokermannohyla Faivovich, Haddad, Garcia, Frost, Campbell et 
Wheeler, 2005, Hyla Laurenti, 1768, Hypsiboas Wagler, 1830, and Scinax Wagler, 1830 
(clade S. ruber) (Catroli et al. 2011, Cardozo et al. 2011). Although the NOR-bearing 
pair has been referred in the literature to as chromosome pairs 10, 11, or 12, most prob-
ably we are dealing with the same pair. In fact, Kasahara et al. (2003) demonstrated 
close correspondence in the replication banding patterns between the NOR-bearing 
chromosomes 10 of the Lophiohylini A. brunoi, C. greeningi, and I. langsdorffii and 
the NOR-bearing chromosomes 12 of the Dendropsophini Scinax fuscovarius (Lutz, 
1925). As stressed by Cardozo et al. (2011), NOR in a small-sized chromosome is 
considered a plesiomorphy within the subfamily, wherefore NOR location out of small 
element, as observed in Argenteohyla siemersi and in Phyllodytes, is a derived condition.

The NOR marker chromosome in our species of Lophiohylini with 2n = 24 was 
considered as the 10 and the rDNA sequences were at the interstitial short arm or at 
the terminal long arm, but no major differences were observed in the morphology of 
the chromosomes 10 among distinct species. Therefore, the mechanism that changed 
the NOR sites apparently was not a gross rearrangement, but minute structural rear-
rangements or transposition by means of mobile elements could not be discarded. If 
the movement of the NOR from chromosome 10 to chromosome 2 in Phyllodytes 
species was not a direct consequence of the rearrangement which reduced the diploid 
number in the genus, one of the two mentioned mechanisms would also be a reason-
able explanation for the discrepant NOR site, in P. edelmoi and in P. luteolus.

The technique of Ag-impregnation showed large variation in the Ag-NOR pattern 
within the same individual. Nevertheless, the FISH with an rDNA probe revealed that 
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the NOR labelling in each individual had either equivalent or distinct size in all the 
analysed cells. Such data allowed us to conclude that most probably the Ag-NOR vari-
ation was a result of differential activity of ribosomal gene in Trachycephalus sp. and T. 
mesophaeus because the hybridization labelling had the same size in both homologues; 
on the other hand, different amounts of repetitive rDNA units would be responsible 
for the observed Ag-NOR variation in A. bokermanni, I. langsdorffii, and T. typhonius 
because hybridization labelling had distinct sizes in both homologues. The single Ag-
NOR seen occasionally in some metaphases could be attributed to the lacking or insuf-
ficient amount of the non-histone proteins available for the Ag-impregnation.

The chromosomes of the species herein analysed produced C-banding results only 
after over treatment of the distinct steps of the technique. However, it was undoubt-
edly demonstrated that heterochromatin was distributed mainly in the centromeric 
regions. A similar centromeric C-banding pattern had been described in A. brunoi, C. 
greeningi, and I. langsdorffii (Kasahara et al. 2003) besides some interstitial and termi-
nal additional C-bands in the latter species. The lack of C-bands in the chromosomes 
of P. edelmoi and P. luteolus might be due to the absence of repetitive DNA identifiable 
by means of C-banding technique. Nevertheless, it will be important to confirm such 
possibility or if we are dealing with some technical difficulty, since CMA3 staining at 
the centromeres in both species, albeit with faint fluorescence, confirmed the presence 
of repetitive sequences in these regions.

Surprisingly, in spite of the low amount of C-banded heterochromatin, A. boker-
manni showed conspicuous bright fluorescence at the centromeres, similar to that ob-
served in A. brunoi (Kasahara et al. 2003). This result and the corresponding DAPI-
negative fluorescence in both species indicated presence of a particular repetitive DNA 
characteristic of the genus Aparasphenodon with an exceptional GC-content. Besides the 
centromere, each of these two species had own fluorescent markers in other chromosome 
regions: Aparasphenodon brunoi exhibited a bright CMA3 site in the long arm of chromo-
some 5 (Kasahara et al. 2003), whereas A. bokermanni had bright CMA3 site in the long 
arm of chromosome 10 and bright DAPI site in the short arm of the same chromosome 
10. Itapotihyla langsdorffii and the species of Trachycephalus and Phyllodytes showed faint 
centromeric fluorescence with CMA3 indicating that the GC-content was not high.

Although the FISH with the telomeric probe is primarily designed for identification of 
chromosome-ends, this procedure may provide information about the molecular nature of 
some repetitive sequences. As far as it has been shown, distinct organisms, including frogs 
(Meyne et al. 1990, Wiley et al. 1992, Nanda et al. 2008, Gruber et al. 2012), disclosed 
hybridization out of the telomeres, even in the cases without evidence of chromosome re-
arrangements. This would mean presence of telomere-like sequences (TTAGGG)n in sites 
of repetitive DNA and it seems to explain the labelling out the telomere sites in I. langs-
dorffii and P. edelmoi. These data reinforce the importance of the FISH with the telomeric 
probe used in combination with base-specific fluorochrome staining and C-banding for 
obtaining information on the content of distinct repetitive regions.

The interstitial hybridization signals of telomeric probe could correspond to vestig-
es of true telomeres, as reported in rodents (Fagundes et al. 1997, Ventura et al. 2006), 
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but in our sampled species, there was no evidence of telomere remnants resulted prob-
ably from chromosome rearrangements. Despite presumed fission and fusion during 
the chromosome evolution, Anderson (1996) noticed no hybridisation interstitial la-
belling in the Lophiohylini Osteopilus septentrionalis (2n=24) and O. brunneus (2n=34).

Based on the data of 22 species, a phylogenetic tree of the Lophiohylini was pro-
vided by Faivovich et al. (2005). Later, Jowers et al. (2008) added the molecular in-
formation of Phytotriades auratus and, more recently, the phylogeny of Lophiohylini 
was expanded by Wiens et al. (2010) for a total of 35 representatives. All these trees 
support the monophyly of the tribe, although the relationships of the distinct genera 
remain unclear. In the phylogeny of Faivovich et al. (2005) Phyllodytes appears in an 
isolated clade at a basal position. In the phylogeny of Wiens et al. (2010) the repre-
sentatives of Lophiohylini are grouped into two major sister-clades and the species of 
Phyllodytes and Osteopilus are included in one of these clades, along with the species 
with 2n =24. Regardless of which of the two phylogenetic hypotheses is most accurate, 
it is clear that 2n = 22 exhibited by the species of Phyllodytes is a derived condition.

The present study showed that in spite of the high similarity of the chromosome con-
stitution and of the NOR pattern among the species of Lophiohylini with 2n = 24, the 
karyotypes could be recognized by the nature of the repetitive sequences, as differentiated 
through C-banding, base-specific fluorochrome staining, and, in a certain extension, by 
FISH with telomeric probe. Cytogenetic information on the tribe is still minimal, but 
the analyses of the available data in light of the phylogeny allowed for visualization of the 
occurrence of karyotypic variations restricted to the clades of the genera Phyllodytes and 
Osteopilus. It would be interesting to enlighten the chromosome evolution with other 
accurate technical approaches and to extend the karyotyping to other species of Lophio-
hylini, especially new representatives of Phyllodytes and Phytotriades auratus.
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Abstract
Ginseng has long been considered a valuable plant owing to its medicinal properties; however, genomic 
information based on chromosome characterization and physical mapping of cytogenetic markers has 
been very limited. Dual-color FISH karyotype and DAPI banding analyses of Panax ginseng C. A. Meyer, 
1843 were conducted using 5S and 45S rDNA probes. The somatic chromosome complement was 2n=48 
with lengths from 3.3 μm to 6.3 μm. The karyotype was composed of 12 metacentric, 9 submetacentric, 
and 3 subtelocentric pairs. The 5S rDNA probe localized to the intercalary region of the short arm of 
pair 11, while the 45S rDNA was located at the secondary constriction of the subtelocentric satellited 
chromosome 14. DAPI bands were clearly observed for most chromosomes, with various signal intensi-
ties and chromosomal distributions that consequently improved chromosome identification. As a result, 
all 24 chromosomes could be distinguished and numbers were assigned to each chromosome for the first 
time. The results presented here will be useful for the on-going ginseng genome sequencing and further 
molecular-cytogenetic studies and breeding programs of ginseng.

Keywords
Panax ginseng, FISH, 5SrDNA, 45S rDNA, DAPI band, Araliaceae

CompCytogen 6(4): 425–441 (2012)

doi: 10.3897/CompCytogen.v6i4.3740

www.pensoft.net/journals/compcytogen

Copyright Nomar Espinosa Waminal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Research article

Comparative

Cytogenetics
International Journal of Plant & Animal Cytogenetics, 

Karyosystematics, and Molecular Systematics

A peer-reviewed open-access journal



Nomar Espinosa Waminal et al.  /  Comparative Cytogenetics 6(4): 425–441 (2012)426

Introduction

Ginseng (Panax ginseng C.A.Meyer, 1843) is highly valued owing to its medicinal 
properties (Zhang et al. 2011), and the ginsenosides found in the plant contribute 
greatly to its pharmacological value (Court 2000, Leung and Wong 2010, Yuan et al. 
2010). Along with 15–17 other species, ginseng belongs to the genus Panax in the 
family Araliaceae (Ho and Leung 2002, Yi et al. 2004). This genus is only one of the 
approximately 120 genera of angiosperms with a disjunct distribution pattern between 
eastern North America and eastern Asia (Wen and Zimmer 1996). Most of the species 
of Panax are geographically distributed in eastern Asia, but two (P. trifolius Linnaeus, 
1753 and P. quinquefolius Linnaeus, 1753) are isolated in eastern North America (Ho 
and Leung 2002). American ginseng (P. quinquefolius) is morphologically similar to 
ginseng (Ngan et al. 1999), and both are regarded as polyploid (Court 2000); however, 
their origin (auto- vs. allopolyploidy) is not yet fully understood (Yi et al. 2004, Choi 
et al. 2009). Cytogenetic data have been employed in an attempt to explain the pos-
sible origins of their disjunct distribution (Yang 1981, Wen and Zimmer 1996, Yi et 
al. 2004), but these did not sufficiently resolve the question. Apparently, more research 
is needed to fully understand their phylogenetic relationship.

Information regarding the chromosome number of ginseng has been available 
since 1936 (Darlington and Wylie 1956, Yi et al. 2004). However, data reported by 
different researchers have been inconsistent. For example, Graham (1966) and Yang 
(1981) reported 2n=44, while Ko et al. (1993) and Choi et al. (2009) reported a 
complement of 2n=48. Regardless of whether or not the discrepancy in the reported 
chromosome number is caused by intraspecific variation (Blair 1975), it is essential to 
establish a detailed karyotype for ginseng.

The translocation of DNA blocks in some plants have been observed through cy-
togenetic investigations (e.g. Han et al. 2009, Huang et al. 2009, Topp et al. 2009), 
and helped us to understand the genomic relationships among several plants (Leflon 
et al. 2006, Snowdon 2007, Xiong and Pires 2011, Chester et al. 2012), making 
cytogenetics an essential tool to the overall understanding of a genome. Moreover, 
fluorescence in situ hybridization (FISH) is an excellent technique for use in plant 
cytogenetics (Sadder and Weber 2001, Capdeville et al. 2008, Vasconcelos et al. 2010) 
because it allows physical mapping of a particular DNA sequence along the chromo-
some complement. Examples include the repetitive sequences of ribosomal RNA genes 
(rDNA), centromeric and telomeric repeats (e.g. Kato et al. 2004, Lim et al. 2005), 
and single-copy genes (e.g. Fransz et al. 1996, Kharb et al. 2001). Owing to their 
sequence conservation among eukaryotic genomes despite the repeating unit copy 
number, loci number, and distribution pattern variations, the multiple tandem repeats 
of the 5S and 45S rDNA are the most widely used probes in molecular cytogenetic 
analyses (e.g. Chen et al. 1999, Hwang et al. 2009, Waminal et al. 2011). Indeed, 
these cytogenetic markers are invaluable in cytogenetic studies such as karyotyping, 
investigations of chromosomal organizational changes, and physical mapping of DNA 
sequences (Huang et al. 2009, Park et al. 2012).
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Probes labeled with different fluorophores for simultaneous detection have been 
widely employed in rDNA loci distribution analyses and dual-color FISH karyotyp-
ing (e.g. Ali et al. 2005, Lan and Albert 2011, Xiang-Hui 2011, Waminal and Kim 
2012). Choi et al. (2009) recently reported the number of rDNA loci in ginseng using 
dual-color FISH; however, no detailed karyotype or chromosome characterization was 
presented. To date, molecular cytogenetic information pertaining to ginseng, despite 
recent development of molecular markers (Choi et al. 2011, Kim et al. 2012a, 2012b), 
has been very limited causing the slow progress of genomic studies.

Here, we used dual-color FISH to analyze the distribution of rDNA loci in P. 
ginseng. In addition, we used the DAPI banding pattern to pair homologous chromo-
somes. Collectively, this made numbering of the chromosome of P. ginseng possible 
for the first time. These data will be useful for future cytogenetic analyses and should 
enable a better understanding of the genomic history of ginseng, and can be used for 
subsequent distribution analyses of repeat sequences, retrotransposons, and chromo-
some-specific cytogenetic markers. Consequently, the results presented here will make 
a significant contribution to studies related to the on-going ginseng genome sequenc-
ing and the overall understanding of the P. ginseng genome.

Material and methods

Root sample preparation

Stratified seeds of three ginseng cultivars ‘Sunun’, ‘Chunpoong’, ‘Gopoong’, and a 
local landrace ‘Hwangsook’ were provided by the Korea Ginseng Corporation (KGC) 
Natural Resources Research Institute (Daejeon, Korea). Stratified seeds were allowed to 
germinate in petri dishes with wet filter papers at 10–15°C. The root meristems were 
then excised (about 2 cm from the root tips), pretreated with 0.002M 8-hydroxyqui-
noline for 5 hours at 18°C, fixed in 90% acetic acid for 15 min at room temperature 
(RT, ~24°C), and then stored in 70% ethanol until use.

Chromosome spread preparation

Somatic chromosome spreads were obtained using a modified version of the tech-
nique described by Kato et al. (2004). After thorough washing with distilled water, 
the meristematic regions of the fixed root tips (~2 mm) were excised and digested in 
a pectolytic enzyme mix [2% cellulase (MB Cell, Korea), 1.5% macerozyme (Maxim 
Bio, USA) and 1% pectolyase (Sigma, Japan) in 150 mM Citrate Buffer, pH 4.5] for 
75 min at 37°C. The digested meristems were then pipetted into a petri dish with 
chilled distilled water and incubated on ice for 15 min to wash out the enzymes. 
Using a stereomicroscope, the root epidermis was removed, and the protoplasts were 
gently pipetted into a 1.5 ml tube containing 40 μl chilled Carnoy’s fixative. The 
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protoplasts were then suspended by gently vortexing the tube for 30 sec at room 
temperature, after which the sample was centrifuged at 4,000 ×g for 3 min and the 
pellet was resuspended in acetic acid-ethanol (9:1) solution. Finally, the protoplast 
suspension was pipette-mounted onto ethanol cleaned glass slides, which were placed 
in a humid chamber to facilitate spreading of the chromosomes and allowed to dry.

Probe labeling

A 9-kb fragment of 45S rDNA (18S-5.8S-25S) (Gerlach and Bedbrook 1979) was 
labeled with biotin-16-dUTP (Roche, Germany) by nick translation. The 5S rDNA 
was obtained according to the procedure described by Hwang et al. (2009) and then 
labeled with digoxigenin-11-dUTP (Roche, Germany) by nick translation. Labeled 
DNA fragments within the range of 200–500 bp were used as probes.

Fluorescence in situ hybridization

Slide pretreatment. To remove contaminating RNA, the slides were treated with 
RNase A buffer (RNase A final conc. 100 μg ml-1 in 2× SSC) for 1 hr at 37°C. The 
slides were then incubated in 0.01 M HCl for two minutes, followed by subsequent 
treatment in pepsin buffer [stock: 10% (w/v) pepsin in dH2O, working: 1:100 di-
lution in 0.01 M HCl] for 10 min at 37°C to lyse endogenous proteins that could 
cause background signals. Next, the chromosomes were fixed by treating the slides 
with 4% paraformaldehyde in 2× SSC. Finally, the slides were dehydrated in ethanol 
series (70%, 90%, 100%, 3 min each) and air-dried. The slides were washed in 2× 
SSC for 5 min (3×) between each step. All incubation steps at 37°C were conducted 
in a humidified chamber.

Probe hybridization. The hybridization mixture contained 50% formamide, 10% 
dextran sulfate, 2× SSC, 5 ng μl-1 salmon sperm DNA and 500 ng μl-1 of each probe 
DNA adjusted with DNase- and RNase-free water (Sigma, USA, #W4502) to a total 
volume of 40 μl/slide. The mixture was denatured at 90°C for 10 min and immediately 
kept on ice for at least 5 min prior to mounting on slides. After covering with a glass 
cover slip, the chromosomes were denatured at 80°C for 3–5 min on a hot plate. The 
slides were then immediately transferred into a humid chamber preset at 37°C and 
incubated overnight (~16 hr). The following day, the slides were washed in 2× SSC (15 
min at RT), 0.1× SSC (35 min at 42°C), and finally 2×SSC (30 min at RT).

Signal detection. The slides were treated with TNB [0.1 M Tris-HCl, 0.15 M NaCl, 
1% (w/v) blocking reagent] at RT for 5 min, after which they were subjected to an-
tibody detection. Briefly, biotinylated 45S rDNA probe was detected with streptavi-
din-Cy3 conjugate (Zymed, USA), while digoxigenin-labeled 5S rDNA probe was 
detected using anti-digoxigenin-FITC conjugate (Sigma, USA). Both antibodies were 
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diluted in TNB to a ratio of 1:100, and the slides were then incubated at 37°C for one 
hour. Excess reagents were subsequently washed off in TNT [0.1 M Tris-HCl, 0.15 M 
NaCl, 0.2% (v/v) Tween-20] at 37°C for 5 min (3×), after which they were subjected 
to dehydration in ethanol series (70%, 90%, 100%, 3 min each) and air-dried. Chro-
mosomes were then counterstained with a premixed DAPI solution [1 μg ml-1 DAPI 
in Vectashield (Vector Laboratories, USA)].

Karyotyping

Image capture and measurement. Well-spread chromosomes with well-preserved chro-
mosome morphology were observed and captured using an Olympus BX51 fluo-
rescence microscope equipped with a CCD camera (CoolSNAP™ cf ) and filters for 
DAPI, FITC, and Cy3. The captured FISH images were analyzed, after which each 
homologue was measured 3–7 times using Genus™ version 3.1 (Applied Imaging, 
USA) to obtain the mean values. Raw images for each probe were saved separately 
and a pseudo-colored image of the merged signals was obtained for each chromosome 
spread. The sharpness value in Genus™ was set to 7 to enhance the details and texture 
of the chromosomes. Final images were edited using Adobe Photoshop CS3.

Chromosome numbering and pairing. Chromosome number assignment was based 
on the decreasing order of chromosome lengths, while homologous chromosome pair-
ing was achieved according to the centromeric position (Levan et al. 1964), DAPI 
band and rDNA loci distribution. Chromosomes were grouped according to the num-
ber of DAPI bands in each arm. As demonstrated by Costa Silva et al. (2011), the 
estimated DNA content in each chromosome was calculated by distributing the 1C 
DNA content of P. ginseng (3.12×103 Mb, Hong et al. 2004) relative to the length of 
each chromosome.

Results

Chromosome complement composition and rDNA localization

The three cultivars and one landrace of P. ginseng evaluated in this study were all con-
firmed to have a chromosome complement of 2n=48 (Fig. 1). With reference to the 
centromere position (i.e. arm ratio), the complement comprised 12 metacentric (1–7, 
11–13, 15, and 18), 9 submetacentric (8–10, 16–17, 19, and 22–24), and 3 subtelo-
centric (14 and 20–21) homologous pairs with a karyotype formula of 24m+18sm+6st. 
The chromosome lengths ranged from 3.27 to 6.30 μm (Table 1).

Only one pair of satellited chromosomes (pair 14) was observed, and the only locus 
of 45S rDNA in the genome was localized at the secondary constriction of this subtelo-
centric chromosome (Figs 2, 3 and Table 2). Moreover, one locus of 5S rDNA signal was 
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Figure 1. Chromosome complement of three P. ginseng cultivars, ‘Sunun’ (a), ‘Gopoong’ (b), ‘Chun-
poong’ (c), and one local landrace, ‘Hwangsook’ (d) showing 2n=48. One pair of 45S rDNA (red signals, 
yellow arrows) and one pair of 5S rDNA (green signals, white arrows) was observed among the four 
samples. Bar = 10 μm.

detected at the intercalary region of the short arm of chromosome 11. This locus was 
flanked by two DAPI bands. There was no variation in the number of rDNA loci among 
the three cultivars and one landrace of P. ginseng investigated in this study (Fig. 1).

DAPI band distribution

Numerous DAPI-binding heterochromatic regions were dispersed along all chromo-
somes and were visible as DAPI dots. These dots, similar to those in chromosomes 5 
and 8, did not form distinct DAPI bands. Both the DAPI dots and bands were made 
more easily visible by inverting the images (Fig. 2c and d).

In addition to the rDNA loci, the presence of several observable DAPI bands 
along the chromosome complement made identification of homologous pairs possi-
ble. The number of the observed bands further increased as the resolution increased 
after subsequent enhancement of the image sharpness in Genus™. A total of 32 
DAPI bands were initially observed in the sharpness-enhanced DAPI images, but 
six additional DAPI bands were observed after using the inverse tool of Genus™ 
with adjustment to the brightness and contrast, resulting in a total of 38 bands 
(Fig. 2b and d).

Twelve of the observed DAPI bands were localized on the short arms, while 26 
were on the long arms (Table 2). Among the 24 chromosomes, four had no band 
(5, 8, 15, and 23), six had one band (2, 3, 9, and 12–14), 11 had two bands (1, 4, 
7, 16–22, 24), two had three bands (6 and 10), and one had four bands (11). Fur-
thermore, chromosomes were grouped according to the presence or absence of DAPI 
bands on each arm (Fig. 3). Group A had no band on either arm (pairs 5, 8, 15, and 
23), group B had no band on the short arm, but one band on the long arm (2, 3, 9, 
and 12), group C had no band on the short arm, but two bands on the long arm (7, 
17, and 21), group D had no band on the short arm, but three bands on the long 
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Table 1. Chromosome analyses of P. ginseng based on chromosome length and centromeric position.

Chr. 
no. 

Chr. length (μm) Arm ratio 
(q/p) Type

Short arm (p) Long arm (q) Total
1 3.16 ± 0.12 3.17 ± 0.11 6.30 ± 0.22 1.002 m
2 2.64 ± 0.08 3.27 ± 0.12 6.05 ± 0.06 1.237 m
3 2.52 ± 0.23 3.61 ± 0.11 5.88 ± 0.18 1.434 m
4 2.54 ± 0.20 3.27 ± 0.22 5.64 ± 0.07 1.289 m
5 2.23 ± 0.27 3.35 ± 0.12 5.41 ± 0.17 1.506 m
6 2.05 ± 0.11 3.30 ± 0.06 5.31 ± 0.23 1.609 m
7 2.09 ± 0.07 3.35 ± 0.22 5.30 ± 0.14 1.605 m
8 1.54 ± 0.32 3.66 ± 0.13 5.23 ± 0.40 2.378 sm
9 1.52 ± 0.19 3.82 ± 0.13 5.08 ± 0.21 2.515 sm
10 1.77 ± 0.04 3.49 ± 0.06 5.04 ± 0.28 1.965 sm
11† 2.13 ± 0.12 2.91 ± 0.13 4.94 ± 0.12 1.363 m
12 1.96 ± 0.07 3.03 ± 0.12 4.83 ± 0.28 1.547 m
13 2.04 ± 0.05 3.05 ± 0.04 4.82 ± 0.07 1.492 m
14‡ 1.99§ ± 0.21 3.21 ± 0.14 4.80 ± 0.31 1.612| st
15 2.26 ± 0.17 2.58 ± 0.28 4.73 ± 0.49 1.143 m
16 1.55 ± 0.09 3.33 ± 0.10 4.72 ± 0.08 2.157 sm
17 1.59 ± 0.15 3.05 ± 0.07 4.50 ± 0.11 1.919 sm
18 2.09 ± 0.25 2.54 ± 0.19 4.50 ± 0.06 1.214 m
19 1.39 ± 0.12 2.78 ± 0.17 4.11 ± 0.21 1.998 sm
20 1.05 ± 0.04 3.24 ± 0.07 4.09 ± 0.06 3.067 st
21 0.90 ± 0.05 3.02 ± 0.21 3.80 ± 0.13 3.355 st
22 1.32 ± 0.06 2.32 ± 0.10 3.56 ± 0.09 1.761 sm
23 1.25 ± 0.11 2.30 ± 0.22 3.38 ± 0.09 1.836 sm
24 1.13 ± 0.25 2.08 ± 0.24 3.27 ± 0.10 1.840 sm

†5S rDNA, ‡45S rDNA, §satellite length, |value obtained using satellite instead of short arm, m: metacentric, 
sm: submetacentric, st: subtelocentric (Levan et al. 1964)

arm (6 and 10), group E had one band on the short arm, but none on the long arm 
(13 and 14), group F had two bands on both arms (11), and group G had one band 
on each arm (1, 4, 16, 18–20, 22, and 24).

Chromosome characterization

In addition to the chromosome length, centromeric position, and rDNA loci distri-
bution, we utilized the observed DAPI bands to characterize the chromosomes. Col-
lectively, these DAPI bands could be very useful in identifying homologues for fur-
ther cytogenetic analyses, especially of the P. ginseng genome, which comprises a large 
number of chromosomes with mostly similar sizes. The distinguishing features of each 
chromosome are presented in Table 2.
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Figure 2. Metaphase spread of P. ginseng 2n=48 chromosomes (a and c) and the karyotype idiogram show-
ing 24 homologous pairs (enlarged; b and d) arranged in decreasing lengths. The 5S and 45S rDNA loci 
are shown as green and red signals, respectively. DAPI bands (arrows) were detected in various intensities 
and inverse images (c and d) were obtained to emphasize these DAPI bands. Note the heterochromatic dots 
(dark dots in d). The red arrows in d indicate the six bands observed after inversing the image. Bar=5 μm.

Figure 3. Diagrammatic idiogram of the P. ginseng karyotype showing the 5S (green) and the 45S (red) 
rDNA loci, and the 38 observed DAPI bands (dark blue), 12 on the short arm and 26 on the long arm. 
The satellited chromosome is indicated by the red arrow. DAPI band depths indicate relative intensities. 
Chromosomes were grouped according to the DAPI band pattern on each arm. The estimated relative size 
of each chromosome is presented in mega base-pairs.

Discussion

There is currently not much genomic or cytogenetic information available for ginseng. 
Consequently, there are no established cytogenetic markers for the identification of 
homologous chromosomes. This lack of data has limited our understanding of the 
karyotype of ginseng and therefore its phylogenetic relationship with other species in 
the genus Panax. In this study, we exploited the usefulness of the 5S and 45S rDNA 
and the DAPI-binding heterochromatins as molecular cytogenetic markers in pairing 
homologous chromosomes by analyzing their distribution in the P. ginseng genome.
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Table 2. Summary of the rDNA and DAPI band distribution patterns.

Chr. 
no.

rDNA 
distribution

DAPI band 
distribution

Remarks
5S 45S Short 

arm
Long 
arm

1 - - 1 1 Pericentric on short arm, more intense intercalary on long 
arm

2 - - - 1 Dispersed, weak,subtelomeric 
3 - - - 1 Subtelomeric, average intensity
4 - - 1 1 Pericentric on both arms. Weaker on short arm
5 - - - -

6 - - - 3 One intense pericentric, two intercalary with weaker 
proximal

7 - - - 2 intense pericentric, weak distal
8 - - - -
9 - - - 1 Weak, intercalary

10 - - - 3 Weak pericentric, two intercalary with very intense middle 
and weak distal

11 1 - 2 2
Two moderate intensity flanking 5S rDNA on short arm, 
one weak intercalary and one weak subtelomeric on long 
arm. 5S rDNA moderate intensity

12 - - - 1 Intercalary, moderate intensity
13 - - 1 - Pericentric, weak
14† - 1 1 - Subtelomeric on satellite, weak; intense 45S rDNA
15 - - - -

16 - - 1 1 Weak subtelomeric on short arm, more intense intercalary 
on long arm

17 - - - 2 Weak pericentric, weak intercalary

18 - - 1 1 Weak intercalary on short arm, weak pericentric on long 
arm

19 - - 1 1 Intercalary on both arms, more intense on short arm
20 - - 1 1 Intercalary on both arms, more intense on long arm
21 - - - 2 Intercalary, proximal more intense than distal

22 - - 1 1
Intercalary on both arms, more intense on long arm, long 
arm signal more intense than that on chromosome 20 
long arm

23 - - - -

24 - - 1 1 Weak subtelomeric on short arm, more intense intercalary 
on long arm

Total 1 1 12 26

†satellited chromosome
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Ribosomal DNA and DAPI-binding heterochromatin distribution

We detected only one locus each for 5S and 45S rDNA, which is in agreement with 
the results reported by Choi et al. (2009). However, the 45S rDNA signal was more 
intense than the 5S rDNA signal. Owing to the semi-quantitative nature of FISH 
(Maluszynska and Heslop-Harrison 1991), this could indicate that the 45S rDNA has 
more repeating units than the 5S rDNA in the ginseng genome.

Localization of the rDNA resulted in our only being able to easily pair two out of 
the 24 homologues. However, the existence of several DAPI bands distributed along 
most of the chromosomes greatly facilitated the identification of the other homologous 
pairs, which otherwise would have been challenging owing to the very low size diffe-
rence among most ginseng chromosomes. As a result, DAPI banding, which has been 
utilized in several previously conducted studies (e.g. Schweizer 1976, Heng and Tsui 
1993, Costa Silva et al. 2011),was found to also be an excellent cytogenetic marker 
in ginseng. Further analysis of the chromosomes based on the DAPI banding pattern 
on each arm enabled us to categorize them into seven groups (Fig. 3). This technique, 
which utilizes the presence or absence of DAPI-binding heterochromatin, has the po-
tential for use in future karyotype analyses of ginseng varieties and other Panax species.

Chromosomal DAPI bands are caused by the preferential binding of DAPI to AT-
rich heterochromatic DNA segments (Schweizer 1976, Eriksson et al. 1993, Heng and 
Tsui 1993, Kubota et al. 2000) that are long enough to be seen using a fluorescence 
microscope, suggesting that these DAPI-intense heterochromatic regions in ginseng 
are AT-rich DNA segments. This information should be useful in the ongoing gin-
seng genome sequencing because it enables identification of possible characteristics of 
heterochromatin types present in its genome. Nevertheless, further molecular and cy-
togenetic analyses are necessary to quantify the AT content of these regions and isolate 
DNA sequences specific to these heterochromatic bands, like the DAPI-intense signal 
of the 180-bp knob-specific satellite repeat in maize (Lamb et al. 2007), which is about 
56% AT (Peacock et al. 1981, Ananiev et al. 1998).

The use of the rDNA loci number and distribution pattern of other Panax species 
can be useful in deducing the phylogenetic relationship among these species. Choi et 
al. (2009) showed that wild ginseng and American ginseng (P. quinquefolius), although 
geographically isolated, have equal numbers of 5S and 45S rDNA loci (2 and 1, respec-
tively), while the cultivated ginseng, although found in the same geographic area with 
the wild ginseng has only one locus of each rDNA. Although further research is needed 
to confirm the possible phylogenetic significance of this report, we found only one 
locus for each type of rDNA in all three cultivars and one local landrace of P. ginseng.

Ginseng karyotype and ploidy

Karyotype data are essential to understanding the phylogenetic relationships among 
species belonging to the same family (Heslop-Harrison and Schwarzacher 2011, 
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Mendes et al. 2011), making them useful to cyto-taxonomic studies (Pinto et al. 
2012). Additionally, comparative cytogenetics provide knowledge regarding the cy-
togenetic relationships between diploid species and their polyploid cytotypes, as well as 
between allopolyploids and their ancestral genomes (Kovarik et al. 2005, Leflon et al. 
2006, Snowdon 2007, Wang et al. 2007, Kolano et al. 2008, Xiong and Pires 2011).

Most species belonging to the family Araliaceae are 2n=24 or 2n=48, except for 
a few genera that have little chromosomal number variation (Yi et al. 2004). In a 
review of the chromosomal evolution of the family Araliaceae, Yi et al. (2004) dis-
cussed that, although the actual basic chromosome number of the family was thought 
to be x=12, some species were 2n=36. These species would be triploids if the basic 
chromosome number 12 is considered, but triploids are genetically unstable. This 
caused a challenge in establishing the basic chromosome number of the family. The 
x=12 hypothesis was further challenged after the genus Hydrocotyle which has several 
taxa with 2n=18, 36, and 60 were moved into Araliaceae form Apiaceae, giving an 
alternative basic chromosome number x=9 and x=6. Nevertheless, x=12 is generally 
accepted as the basic chromosome number in the family, but this does not eliminate 
the possible ancestral x=6 (Yi et al. 2004). One hypothesis cannot easily rule out the 
other but further phylogenetic and karyotype analyses in the family are necessary to 
resolve these competing hypotheses.

Considering a basic chromosome number of 12 or 6, ginseng would be consid-
ered a tetraploid or octoploid, respectively; the latter having a more ancient nature. 
Recently, Choi et al. (2011) showed the high replication of homologous genes in gin-
seng using SSR markers and suggested that the polyploidy could range from tetra- to 
octoploidy. Nevertheless, in practice, Panax ginseng is regarded as a tetraploid species 
with a basic chromosome number of 12 (Wen and Zimmer 1996, Court 2000, Yi et 
al. 2004, Choi et al. 2009).

Our data showed a somatic cell chromosome complement of 2n=48, supporting 
previously reported chromosome numbers (Ko et al. 1993, Choi et al. 2009) and poly-
ploidy (Wen and Zimmer 1996, Court 2000, Yi et al. 2004, Choi et al. 2009). How-
ever, evaluation of the rDNA loci number revealed only one locus for each 5S and 45S 
rDNA, despite its polyploid nature. This reduction of rDNA loci may be explained by 
the non-additive nature of rDNA loci and other genomic DNA segments after poly-
ploidization (Snowdon et al. 1997, Ozkan et al. 2003, Yoshikazu et al. 2006). More 
over, loss of the duplicate loci may be brought about by single-generation or rapid 
genome/chromosomal reorganization (Wendel 2000, Heslop-Harrison and Schwar-
zacher 2011), or from the gradual action of concerted evolution after genome duplica-
tion or alloploidization (Kovarik et al. 2005). In the former case, it would be difficult 
to tell whether ginseng is an ancient polyploid, while in the latter, the loss of these loci 
would provide obvious evidence of an ancient polyploidization event. However, some 
species do not really reflect a correlation between the rDNA loci number and the level 
of ploidy; in fact, polyploids can even have half the number of rDNA signals than their 
diploid counterparts (Yoshikazu et al. 2006). This rDNA reduction phenomenon has 
been well-documented in the Artemisia species (Pellicer et al. 2010).
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Additionally, based on localization of the 45S rDNA near the centromere area and 
the intercalary position of the 5S rDNA, it is just as likely that these loci were favored 
to survive locus loss from non-additive recombination over their duplicated coun-
terparts, which probably would have been in more distal positions, or epigenetically 
silenced (Kovarik et al. 2008).

Conclusion

The first report of P. ginseng karyotype using ribosomal DNA and DAPI bands as cy-
togenetic markers is presented here. The presence of long stretches of DAPI-binding 
heterochromatin was useful in the detailed karyotyping. The results presented here 
will be useful in further cytogenetic analyses and the on-going genome sequenc-
ing of ginseng. More cytogenetic research is needed to understand the cytogenetic 
history of ginseng and other species in the genus Panax. Further comparative cy-
togenetic analyses among its close relatives will provide more insight, and further 
genomic analyses of the heterochromatin distribution will enhance our knowledge 
of its genomic history.
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Abstract
The family Loricariidae with 813 nominal species is one of the largest fish families of the world. Hy-
postominae, its more complex subfamily, was recently divided into five tribes. The tribe Hypostomini is 
composed of a single genus, Hypostomus Lacépède, 1803, which exhibits the largest karyotypic diversity in 
the family Loricariidae. With the main objective of contributing to a better understanding of the relation-
ship and the patterns of evolution among the karyotypes of Hypostomus species, cytogenetic studies were 
conducted in six species of the genus from Brazil and Venezuela. The results show a great chromosome 
variety with diploid numbers ranging from 2n=68 to 2n=76, with a clear predominance of acrocentric 
chromosomes. The Ag-NORs are located in terminal position in all species analyzed. Three species have 
single Ag-NORs (Hypostomus albopunctatus (Regan, 1908), H. prope plecostomus (Linnaeus, 1758), and 
H. prope paulinus (Ihering, 1905)) and three have multiple Ag-NORs (H. ancistroides (Ihering, 1911), 
H. prope iheringi (Regan, 1908), and H. strigaticeps (Regan, 1908)). In the process of karyotype evolu-
tion of the group, the main type of chromosome rearrangements was possibly centric fissions, which may 
have been facilitated by the putative tetraploid origin of Hypostomus species. The relationship between the 
karyotype changes and the evolution in the genus is discussed.
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Introduction

The subfamily Hypostominae with about 386 species (Reis et al. 2006) is the largest 
one in the family Loricariidae. The subfamily Hypostominae can only be recognized as 
monophyletic with the inclusion of the old subfamily Ancistrinae and the exclusion of 
some genera more related to the subfamily Neoplecostominae (Armbruster 2004). This 
subfamily is divided into five tribes: Corymbophanini, Rhinelepini, Hypostomini, An-
cistrini, and Pterygoplichithini (Armbruster 2004) (Fig. 1). The tribe Hypostomini, 
with the only genus Hypostomus, has the greatest number of Hypostominae species 
(Reis et al. 2003).

The genus Hypostomus is the most representative in the family (Weber 2003, Hol-
landa Carvalho et al. 2010) with 126 species distributed from Central America to 
southern South America (Zawadzki et al. 2010). Species of the genus display phe-
notypic plasticity that makes difficult to obtain diagnostic characters for the group 
(Armbruster 2004).

Recent studies suggested that the genus Hypostomus might be composed of some 
monophyletic groups (Muller and Weber 1992, Montoya-Burgos 2003, Armbruster 
2004, Zawadzki et al. 2004, Alves et al. 2006). This suggestion is confirmed by extensive 
morphological variation in the genus combined with a largest variety of diploid numbers 
and karyotype formulae in Loricariidae (Artoni and Bertollo 1996, Alves et al. 2006), 
with diploid numbers ranging from 2n=52 in Hypostomus emarginatus (Valenciennes, 
1840) (Artoni 1996) to 2n=84 in Hypostomus sp. 2 (Cereali et al. 2008) (Table 1).

Cytogenetic studies in Hypostomus are relatively well documented (Table 1). In a 
review of genus cytogenetic data by Bueno et al. (2011) the relations between diploid 
number and karyotypic formulae of genus were established. However, several problems 
were not yet solved, including the pattern of karyotype evolution in Hypostomini. In 
the present study, six species of Hypostomus were karyotyped and the results employed 
to discuss the karyotype evolution of the genus.

Figure 1. Phylogeny of the family Loricariidae proposed by Armbruster (2004).
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Table 1. A summary of the cytogenetic data available for the genus Hypostomus. 2n = diploid 
number; M = metacentric; SM = submetacentric; ST = subtelocentric; A = acrocentric.

Species Locality 2n Karyotypic formulae References

Hypostomus affinis 
(Steindachner, 1877)

Paraitinga River, 
São Paulo, Brazil 66 14M, 14SM, 12ST, 26A Kavalco et al. (2004)

Jacuí stream (SP) 66 14M, 14SM, 12ST, 26A Fenerich et al. (2004)

H. albopunctalus 
(Regan, 1908)

Mogi-Guaçu River, 
São Paulo, Brazil 74 10M, 20SM, 44ST/A Artoni and Bertollo 

(1996)
Corumbataí River, 
São Paulo, Brazil 74 10M, 20M, 16ST, 28A Present study

H. ancistroides 
(Ihering, 1911)

-- 68 10M, 28SM, 30ST/A Michele et al. (1977)
Araquá River, São 
Paulo, Brazil 68 18M, 10SM, 12ST, 28A Alves et al. (2006)

Corumbataí River, 
São Paulo, Brazil 68 16M, 4SM, 16ST, 32A Present study

Mogi-Guaçu River, 
São Paulo, Brazil 68 16M, 18SM, 34ST/A Artoni and Bertollo 

(1996)
Paranapanema River, 
São Paulo, Brazil 68 10M, 26SM, 32ST/A Rubert et al. (2011)

H. prope auroguttatus 
(Kner, 1854)

Mogi-Guaçu River, 
São Paulo, Brazil 76 8M, 30SM, 38ST/A Artoni and Bertollo 

(1996)

Hypostomus
cochliodon (Kner, 1854)

Salobra river and
Salobrinha stream
(MS)

64

16M, 20SM,
28ST-A (male)/ 16M, 

19SM,
27ST-A (female)

Cereali (2006)

H. emarginatus 
(Valenciennes, 1840)

Araguaia River, 
Mato Grosso, Brazil 52 16M, 30SM, 6ST Artoni (1996)

H. goyazensis 
(Regan, 1908)

Vermelho River, 
Goiás, Brazil 72 10M, 16SM, 10ST, 36A Alves et al. (2006)

H. prope iheringi 
(Regan, 1908)

Corumbataí River, 
São Paulo, Brazil 74 10M, 14M, 20ST, 30A Present study

H. macrops (Eigenmann 
& Eigenmann, 1888) -- 68 10M, 14SM, 44ST/A Michelle et al. (1977)

H. nigromaculatus 
(Schubart, 1964)

Tibagi River, Paraná, 
Brazil. 76 6M, 20SM, 50ST/A Rubert et al. (2008)

Mogi-Guaçu River, 
São Paulo, Brazil 76 8M, 20SM, 48ST/A Rubert et al. (2008)

H. paulinus (Ihering, 
1905) -- 74 10M, 20SM, 44ST/A Michele et al. (1977)

H. prope paulinus 
(Ihering, 1905)

Corumbataí River, 
São Paulo, Brazil 76 6M, 18M, 12ST, 40A Present study

H. prope paulinus 
(Ihering, 1905)

Corumbataí River, 
São Paulo, Brazil 76 6M, 18M, 12ST, 40A Present study

H. plecostomus 
(Linnaeus, 1758) -- 54 24M/SM, 12ST, 18A Muramoto et al. 

(1968)
H. prope plecostomus 
(Linnaeus, 1758)

Orinoco River, 
Bolivar, Venezuela 68 12M, 16M, 12ST, 28A Present study

H. regani (Ihering, 1905)

Mogi-Guaçu River, 
São Paulo, Brazil 72 10M, 20SM, 42ST/A Artoni and Bertollo 

(1996)
Paranapanema River, 
São Paulo, Brazil 72 10M, 18SM, 44ST/A Rubert et al. 2011

Araguá River, São 
Paulo, Brazil 72 12M, 18SM, 26ST, 16A Alves et al. (2006)
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Species Locality 2n Karyotypic formulae References

H. strigaticeps 
(Regan, 1908)

Corumbataí River, 
São Paulo, Brazil 74 10M, 14M, 14ST, 36A Present study

Mogi-Guaçu River, 
São Paulo, Brazil 74 8M, 4SM, 62ST/A Michele et al. (1977)

Paranapanema River, 
São Paulo, Brazil 72 10M, 16SM, 46ST/A Rubert et al. (2011)

Hypostomus sp. 2
Salobrinha stream, 
Mato Grosso do Sul, 
Brazil

84 6M, 16SM, 62ST/A Cereali et al. (2008)

Hypostomus sp. 3 Perdido River, Mato 
Grosso do Sul, Brazil 82–84 6M, 16SM, 64ST/A - 6M, 

12SM, 66ST/A Cereali et al. (2008)

Hypostomus sp. A Rincão Stream, 
São Paulo, Brazil 70 18M, 14SM, 38ST/A Artoni and Bertollo 

(1996)

Hypostomus sp. B Mogi-Guaçu River, 
São Paulo, Brazil 72 12M, 18SM, 42ST/A Artoni and Bertollo 

(1996)

Hypostomus sp. C Mogi-Guaçu River, 
São Paulo, Brazil 68 10M, 18SM, 40ST/A Artoni and Bertollo 

(1996)

Hypostomus sp. D1 Mogi-Guaçu River, 
São Paulo, Brazil 72 10M, 26SM, 36ST/A Artoni and Bertollo 

(1996)

Hypostomus sp. D2 Mogi-Guaçu River, 
São Paulo, Brazil 72 14M, 20SM, 38ST/A Artoni and Bertollo 

(1996)

Hypostomus sp. E Mogi-Guaçu River, 
São Paulo, Brazil 80 8M, 16SM, 56ST/A Artoni and Bertollo 

(1996)

Hypostomus sp. F São Francisco River, 
Minas Gerais, Brazil 76 10M, 16SM, 50ST/A Artoni (1996)

Hypostomus sp. G Araguaia River, 
Mato Grosso, Brazil 64 14M, 24SM, 26ST/A Artoni (1996)

Hypostomus sp. Xingu-1 Xingu River, Pará, 
Brazil 64 32M/SM, 32ST/A Milhomem et al. 

(2010)

Hypostomus sp. Xingu-2 Xingu River, Pará, 
Brazil 66 32M/SM, 34ST/A Milhomem et al. 

(2010)

Hypostomus sp. Xingu-3 Xingu River, Pará, 
Brazil 65 38M/SM, 26ST/A, 1b Milhomem et al. 

(2010)

Material and methods

Cytogenetic analyses were performed on chromosomal preparations obtained from six 
species. Five species were collected in the Corumbataí River, São Paulo, Brazil: Hypos-
tomus ancistroides (Ihering, 1911) (6 males and 4 females) (LBP 2544), H. albopuncta-
tus (Regan, 1908) (5 males and 6 females) (LBP 2547), H. strigaticeps (Regan, 1908) 
(6 males and 7 females) (LBP 2545), H. prope iheringi (Regan, 1908) (5 males and 4 
females) (LBP 1674), and H. prope paulinus (Ihering, 1905) (5 males and 6 females) 
(LBP 2548). One species of H. prope plecostomus (Linnaeus, 1758) (3 males and 2 
females) (LBP 2198) was collected in the Orinoco River, Bolivar, Venezuela. Vouchers 
were deposited in the fish collection of Laboratório de Biologia e Genética de Peixes 
(LBP), UNESP, Botucatu, São Paulo, Brazil.

Chromosome preparations were obtained from kidney tissues using the technique 
described by Foresti et al. (1993). Silver staining of the nucleolus organizer regions 
(Ag-NORs) was performed according to the technique proposed by Howell and Black 
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(1980). Chromosome morphology was determined on the basis of arm ratio, as pro-
posed by Levan et al. (1964) and the chromosomes were classified as metacentrics (M), 
submetacentrics (SM), subtelocentrics (ST) and acrocentrics (A).

Results and discussion

Hypostomus ancistroides has karyotype with 2n=68 (16M, 4SM, 16ST, 32A) and terminal 
Ag-NORs on the short arm of the chromosome pair 1 (M) and pair 10 (SM) (Fig. 2a).

H. albopunctatus has 2n=74 (10M, 20SM, 16ST, 28A) and terminal Ag-NORs on 
the short arm of the chromosome pair 15 (SM) (Fig. 2b).

H. prope iheringi has 2n=74 (10M, 14SM, 20ST, 30A) and terminal Ag-NORs on 
the long arms of the chromosome pairs 23, 24, 25, 30 (A) (Fig. 3a).

H. prope paulinus has 2n=76 (6M, 18SM, 12ST, 40A) and terminal Ag-NORs on 
the long arm of the chromosome pair 20 (A) (Fig. 4b).

H. prope plecostomus has 2n=68 (12M, 16SM, 12ST, 28A) and terminal Ag-NORs 
on the short arm of the chromosome pair 16 (ST) (Fig. 4a).

Figure 2. Giemsa stained karyotypes of Hypostomus a H. ancistroides, 2n=68 b H. albopunctatus, 2n=74. 
Ag-NOR-bearing chromosome pairs in the insets. Bar = 10µm.
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H. strigaticeps has 2n=74 (10M, 14SM, 14ST, 36A) and terminal Ag-NORs on 
the short arm of the chromosome pair 14 (ST) and on the long arm of the chromo-
some pairs 21, 22 e 24 (A) (Fig. 3b).

The genus Hypostomus seems to be the karyotypically most derived genus in 
Loricariidae (Rubert et al. 2011), the variation of diploid number observed in the 
six species of Hypostomus analyzed (2n=68 to 2n=76) confirms this hypothesis. All 
species analyzed exhibited a large number of acrocentric chromosomes, reinforcing 
the hypothesis that higher diploid numbers are positively related to higher number 
of acrocentric chromosomes in Hypostomus (Artoni and Bertollo 2001). According 
to Oliveira and Gosztonyi (2000), high diploid numbers may represent a derived 
characteristic in siluriforms.

Three species had single Ag-NORs (H. albopunctatus, H. prope plecostomus, and 
H. prope paulinus); and the three others had multiple Ag-NORs (H. ancistroides, H. 
prope iheringi, and H. strigaticeps). All species presented terminal Ag-NORs, a marked 
characteristic of the species of this genus. The occurrence of multiple Ag-NORs is 
the most common characteristic among the Hypostomini, however, this phenotype is 

Figure 3. Giemsa stained karyotypes of Hypostomus a H. prope iheringi, 2n=74 b H. strigaticeps, 2n=74. 
Ag-NOR-bearing chromosome pairs in the insets. Bar = 10µm.
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considered a derived characteristic among siluriforms (Oliveira and Gosztonyi 2000), 
which usually predominate single Ag-NORs.

Differences in the karyotype formulae or in the number and position of Ag-
NORs are common in species that do not present extensive migration behaviour, 
since isolated populations are more commonly involved in inbreeding processes, 
which makes the fixation of chromosome rearrangements easier (Almeida-Toledo et 
al. 2000). This kind of phenomenon has been extensively documented in fishes as 
in Astyanax scabripinnis (Jenyns, 1842) (Moreira-Filho and Bertollo 1991, Maistro 
et al. 1998, Alves and Martins-Santos 2002). On the other hand one of the most 
important problems associated with the study of the genus Hypostomus is the correct 
species identification due to the large number of species as well as the close mor-
phological similarity among species (Armbruster 2004). Thus, Table 1 shows many 
samples identified as Hypostomus sp., which reflects our poor taxonomic knowledge 
of the group. Among the Hypostomus species, the high diploid number is coinci-
dent with a high the number of uniarmed chromosomes (Table 1), suggesting the 

Figure 4. Giemsa stained karyotypes of Hypostomus a H. prope plecostomus, 2n=68 b H. prope paulinus, 
2n=76. Ag-NOR-bearing chromosome pairs in the insets. Bar = 10µm.
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occurrence of a large number of centric fissions in the karyotypic evolution of the 
group (Artoni and Bertollo 1996). This hypothesis is reinforced considering that the 
species of Rhinelepini, the sister group of Hypostomini, has 2n=54 chromosomes 
(Alves et al. 2003, Alves et al. 2005, Alves et al. 2006). The occurrence of a poly-
ploidy event in the origin of the tribe Hypostomini may explain the existence of 
duplicated centromeres and telomeres that could have been activated in the centric 
fissions rearrangements.

Thus, in the ancestor of Hypostomini an extensive process of chromosome fusions 
should have occurred changing a putative original karyotype with 2n=108 chromo-
somes into a karyotype with 2n=54 chromosomes. The alternative hypothesis that 
species of Hypostomus with high diploid numbers are the most primitive, suggesting 
that new chromosome fusions are reducing the diploid numbers in the genus, is not 
corroborated by the phylogenies available for the genus (Montoya-Burgos 2003, Arm-
bruster 2004). Considering that the available phylogenies for the genus Hypostomus 
are very limited regarding the number of species and precise fish identification, further 
phylogenetic studies including karyotyped fishes are fundamental for a better under-
standing of the chromosome evolution in Hypostomus.
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Abstract
Understanding the genetic resources and diversity is very important for the breeding programs and 
improvement of several economically important orchids like Cymbidium. Karyomorphological studies 
have been carried out on seven Cymbidium species, C. aloifolium (Linnaeus, 1753), C. devonianum Pax-
ton,1843, C. elegans Lindley, 1828, C. iridioides D. Don, 1825, C. lowianum Rchb. f.,1877, C. tigrinum 
Parish ex Hook. f., 1864, and C. tracyanum L. Castle,1890, most of them endangered/threatened in their 
natural habitat. As reported earlier, the somatic chromosome number (2n = 40) has been observed in all 
the seven species. Distinct inter-specific variation was recorded in the arm ratio of few homologous pairs 
in the complements. Symmetrical or almost symmetrical karyotypes were prevalent; however significant 
asymmetry was reported in C. iridioides and C. tracyanum. The significance of karyotypic variation in 
speciation of the genus Cymbidium has been discussed. This study provides useful chromosome landmarks 
and evidence about genome evolution, heteromorphic chromosomes based heterozygosity, basic chromo-
some number and ploidy level in the genus Cymbidium.
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Introduction

Cymbidium, or boat orchid, is a myriad orchid with evergreen foliage and arching 
sprays of delicately colored and waxy flowers, comprising of 52 evergreen species in the 
subtribe Cyrtopodiinae of tribe Cymbidieae (Orchidaceae). Cymbidiums are renowned 
for an abundance of morpho-types, with a seemingly unending array of strange and 
often impressive variations, and represent a highly advanced terminal line of floral 
evolution in the family. The genus is characterized by a broad geographical distribu-
tion encompassing tropical and subtropical Asia, South of Papua, New Guinea and 
Northern Australia, and exhibits a tremendous diversity in growth habits. It comprises 
several such representatives capable of occupying almost every conceivable ecological 
situation, apart from marine environments and habitats characterized by extreme cold 
throughout the year. Inter-generic compatibility is giving rise to hybrid groups, which 
are characterized by both greater size and hybrid vigor vis-à-vis their putative parental 
species. Therefore, characterization of genetic resources and diversity is a clue for fram-
ing meaningful breeding programs of economically important orchids like Cymbidium 
(Wang et al. 2009, Sharma et al. 2010, 2011, 2012a, b, c, d).

A number of workers from Asiatic regions especially China and Japan focused on cy-
togenetical aspects of several Cymbidium species: C. cyperifolium Lindly, 1833, C. faberi 
Rolfe, 1896, C. goeringii Rchb. f., 1852, C. kanran Makino, 1902, C. longibracteatum Y.S. 
Wu et S.C. Chen, 1966, C. qiubeiense K.M. Feng et Li, 1980 and C. serratum Schlechter, 
1919 (Aoyama and Tanaka 1988, Li et al. 2002a, 2002b, 2003, Long et al. 2000), and 
reported extensive details on chromosome counts in somatic as well as gametic cells, pres-
ence of B-chromosomes and aneuploidy/polyploidy. Conversely, data on Indian cym-
bidiums mostly restrict to chromosome counts (Mehra and Yashpal 1961, Mehra and 
Bawa 1962, Chennaveeraiah and Jorapur 1966, Singh 1984, Mehra and Kashyap 1983, 
1984a, b, c, d). Vij and Shekhar (1987) did an enormous investigation on cytogenetical 
aspects of Indian cymbidiums. Recently, our group reported the karyomorphological 
characterization of three species of Asiatic cymbidiums: C. eburneum, C. hookerianum 
and C. mastersii (Sharma et al. 2010), as well as endomitotic events in tapetal cells of 
some Cymbidium species (Sharma et al. 2012c). The unequivocal species differentiation 
on the base of karyological has been hampered by almost identical chromosome numbers 
(2n = 40), minute differences in chromosome morphology and low heteromorphism 
with no clear indications for morphologically distinct satellite chromosomes.

The karyomorphological details of Indian representatives of Cymbidium are still 
ambiguous, which make it difficult to correctly estimate ploidy levels vis-à-vis karyo-
logical evolution. In addition to our earlier efforts (Sharma et al. 2010), the present 
study focuses on seven more Cymbidium species, most of them are endangered/threat-
ened in their natural habitat namely C. aloifolium, C. devonianum, C. elegans, C. iridi-
oides, C. lowianum, C. tigrinum, and C. tracyanum, found in India, are expected to 
provide valuable baseline genetic data of the genus Cymbidium.

Cytological data on the Indian orchid flora are available for relatively few genera and 
most of them are restricted to chromosome counts only (Arora 1960, Sharma and Chat-
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terji 1961, Mehra and Yashpal 1961, Mehra and Bawa 1962, Chennaveeraiah and Jorapur 
1966). Sharma and Chatterji (1966), from their investigations encompassing 35 species of 
orchids belonging to 17 genera, reported the occurrence of a wide spectrum of basic num-
bers within each tribe and genus of family Orchidaceae. The genus Cymbidium has attract-
ed a number of biologists from time to time to study a range of genetic aspects. However, 
from a cytogenetical and karyological point of view, scant reports are available (Singh 1984, 
Vij 1985, Vij and Shekhar 1987, Sharma et al. 2010). This genus has not found favor with 
cytogeneticists, perhaps owing to restricted geographical distribution, rarity of the plants in 
nature and difficulties in maintaining them under cultivation. Thus, the present investiga-
tion is an attempt to record karyomorphological details in more precise manner with prime 
objective of chromosome based genetic variation analysis in seven species of Cymbidium.

Methods

The young plants belonging to seven species of Cymbidium were collected mainly from 
Arunachal Pradesh, Meghalaya and Sikkim provinces of Northeastern region of India. 
The plants were grown in greenhouses of North-Eastern Hill University, Shillong. For 
each species, a minimum of five individuals belonging to more than one population 
were studied. Details regarding collection of root tips, staining, chromosome comple-
ment preparation and their analysis are as described than described in Sharma et al. 
(2010). A minimum of five chromosome plates were analyzed per individual of the 
species. The standard method of chromosome classification (Battaglia 1955) of median 
(V), submedian (L), subtelocentric (J) and telocentric (I) based on the arm ratio of 1:1, 
>1:1<1:3, >1:3<1:0 and 1:0 respectively, was used for comparison. The degree of sym-
metry was estimated as per the scheme proposed by Stebbins (1971). The karyotype 
asymmetry indices were calculated following Paszko (2006) method considering the 
parameters: (1) shortest (SC) and longest (LC) chromosome length; (2) ratio of longest 
to shortest chromosome (LC/SC); (3) mean long arm length (p); (4) mean of short (q) 
and of total chromosome length (CL); (5) mean centromeric index (CI = 100xlength of 
short arm/total chromosome length); and (6) coefficient of variation in terms of chro-
mosome length (CVCL) and (7) centromeric index (CVCI). The karyotype asymmetry 
index (AI) defined as the product of coefficient of variations (both CVCL and CVCI) 
traduces the heterogeneity of chromosome length and/or centromeric index in a stud-
ied karyotype. As higher gets the AI index so does karyotype asymmetry, and inversely.

Results

Chromosome complement

The seven Cymbidium species presently investigated show the diploid number of 2n = 40 
chromosomes in root tip cells, which were clearly resolved into 20 pairs forming a series 
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from the longest to shortest pair within the complements. The details of karyomor-
phological aspects including pair-wise arm ratio, karyotypic formula, number of sub-
telocentric chromosome and/or heteromorphic pairs are illustrated in Tables 1–2 and 
Figs 1–14. One notable feature was the lack of distinct nucleolar chromosomes in any 
of the seven species investigated. Variation was recorded with respect to the number of 
metacentric and submetacentric chromosomes, presence or absence of heteromorphic 
pairs in the chromosome complements of all the seven species of Cymbidium (Table 1). 
This study revealed that the plants belonging to C. tracyanum are peculiar in presenting 
metacentric and/or submetacentric chromosomes with one pair of distinct subtelocen-
tric chromosomes in the complement. On the other hand, all the other cymbidiums are 
characterized by having exclusively submetacentric and/or metacentic chromosome pairs 
in karyotypes and are devoid of any subtelocentrics (Table 1).The chromosome mor-
phology with regard to a particular pair in the karyotype has shown significant variation 
at inter-specific level (Table 2, Figs 8–14). For example, the third pair of C. lowianum 
and C. tracyanum is metacentric whereas all other cymbidiums have sub-metacentric 
chromosomes for this particular pair. The fifth pair in C. tracyanum, is found to be sub-
telocentric whereas, in other cymbidiums it is either metacentric or sub-metacentric. 
Such observation can be extended even too other pairs (i.e. IV-VIII, XIII, XVII, and 
XX) as well. Except for these, the rest of the pairs were found to be exclusively sub-
metacentric (Table 1). Chromosome pairs VI, IX, XIV, XV, XVI, XVII, XVIII and XIX 
are found to be heteromorphic in C. aloifoium, C. devonianum, C. elegans, C. lowianum, 
C. mastersii, C. tigrinum and C. tracyanum, respectively. The highest number of hetero-
morphic pairs i.e. three (XV, XVII, and XVIII) are recorded in C. elegans, (Fig. 11) fol-
lowed by C. tracyanum (Fig. 14) which had two heteromorphic pairs (XVII and XIX). 
Alternatively, not a single pair of the chromosome was found to be heteromorphic in C. 
iridioides (Table 1 and Fig. 13).

Asymmetry

Following the classification of Stebbins (1971), the karyotypes of five species of Cym-
bidium (C. aloifolium, C. devonianum, C. elegans, C. lowianum and C. tigrinum) were 
resolved into 2B category while 2C and 3B types were recorded in C. iridioides and C. 
tracyanum , respectively (Table 2). On the other hand, asymmetry indices estimated on 
the basis of chromosomal statistical data (Paszko 2006) resolved the Cymbidium karyo-
types into the range of symmetrical to lowest asymmetrical values. On the one hand, 
Cymbidium devonianum had lowest value of AI (2.26), while C. tracyanum showed 
highest asymmetry having highest AI value (5.39) (Table 2). Karyotype asymmetry 
also depends on both the relative variation in chromosome length (CVCL) and the rela-
tive variation in centromeric index (CVCI). Cymbidium tracyanum was characterized by 
the highest value of both CVCL and CVCI, and then followed by C. aloifolium and C. 
iridioides. Remaining species of Cymbidium were characterized by much lower values 
of both CVCL and CVCI (Table 2).



Comparative karyomorphological study of some Indian Cymbidium Swartz, 1799... 457

Ta
bl

e 
1.

 K
ar

yo
m

or
ph

ol
og

y 
an

d 
ar

m
 ra

tio
 in

 C
ym

bi
di

um
 sp

ec
ie

s.

Ta
xa

2n
r-

in
de

x 
in

 d
iff

er
en

t c
hr

om
os

om
es

I
II

II
I

IV
V

V
I

V
II

V
II

I
IX

X
X

I
X

II
X

II
I

X
IV

X
V

X
V

I
X

V
II

X
V

II
I

X
IX

X
X

Cy
m

bi
di

um
 

tig
rin

um
40

1.
21 L

1.
21 L

1.
21 L

1.
04 V

1.
04 V

1.
46 L

1.
2 L

1.
33 L

2.
54 L

1.
18 L

1.
84 L

1.
36 L

1.
29 L

1.
18 L

1.
45 L

2.
03 L

1.
43 L

1.
27 L

1.
48 L

1.
5 L

C
. l

ow
ia

nu
m

40
1.

44 L
1.

12 L
1.

09 V
1.

23 L
1.

16 L
1.

14 L
1.

24 L
1.

6 L
1.

2 L
1.

29 L
1.

37 L
1.

14 L
1.

19 L
1.

57 L
1.

34 L
1.

12 L
1.

08 V
1.

38 L
2.

26 L
1.

06 V

C
. d

ev
on

ia
nu

m
40

1.
12 L

1.
25 L

1.
20 L

1.
44 L

1.
35 L

1.
27 L

1.
06 V

1.
7 L

1.
32 L

1.
33 L

1.
34 L

1.
33 L

1.
7 L

1.
48 L

1.
25 L

1.
16 L

1.
62 L

1.
17 L

1.
55 L

1.
35 L

C
. e

leg
an

s
40

1.
24 L

1.
37 L

1.
1 L

2.
67 L

1.
21 L

1.
09 V

1.
25 L

1.
22 L

1.
46 L

1.
24 L

1.
25 L

1.
59 L

1.
09 V

1.
32 L

1.
54 L

1.
26 L

1.
43 L

1.
15 L

1.
33 L

1.
23 L

C
. a

lo
ifo

liu
m

40
1.

63 L
1.

33 L
2.

46 L
1.

97 L
1.

36 L
2.

5 L
1.

06 V
1.

08 V
1.

9 L
2.

2 L
1.

67 L
1.

3 L
1.

08 V
1.

13 L
1.

22 L
1.

19 L
1.

16 L
1.

35 L
1.

72 L
1.

32 L

C
. i

rid
io

id
es

40
1.

22 L
1.

29 L
1.

46 L
1.

44 L
1.

07 V
1.

11 L
1.

06 V
1.

52 L
1.

27 L
2.

27 L
1.

7 L
1.

02 L
1.

18 L
1.

31 L
1.

26 L
1.

28 L
1.

64 L
1.

15 L
2.

2 L
1.

25 L

C
. t

ra
cy

an
um

40
1.

64 L
1.

2 L
1.

02 V
1.

08 V
3.

24 J
1.

05 V
1.

16 L
1.

61 L
1.

25 L
1.

8 L
1.

18 L
1.

06 V
1.

58 L
1.

67 L
2.

11 L
2.

3 L
2.

17 L
1.

47 L
1.

21 L
1.

23 L

U
nd

er
lin

ed
 v

al
ue

s a
re

 sh
ow

in
g 

he
te

ro
m

or
ph

ic
 p

ai
rs

 o
f c

hr
om

os
om

es
.



Santosh. K. Sharma et al.  /  Comparative Cytogenetics 6(4): 453–465 (2012)458

Ta
bl

e 
2.

 C
hr

om
os

om
e 

ch
ar

ac
te

ris
tic

s i
n 

va
rio

us
 C

ym
bi

di
um

 sp
ec

ie
s.

Ta
xa

R
an

ge
SC

-L
C

 
(μ

m
)

R
at

io
LC

/S
C

p 
(μ

m
)

M
ea

n
(±

SD
)

q 
(μ

m
)

M
ea

n
(±

SD
)

C
L 

(μ
m

)
M

ea
n 

(±
SD

)
C

I
M

ea
n 

(±
SD

)
C

V
C

L
C

V
C

I

AI
 

(P
as

zk
o 

20
06

)

C
at

eg
or

y 
of

 
sy

m
m

et
ry

 
(S

te
bb

in
s 1

97
1)

K
ar

yo
ty

pi
c 

fo
rm

ul
a 

(B
at

ta
gl

ia
 1

95
5)

Cy
m

bi
di

um
 

tig
rin

um
2.

04
–4

.9
7

2.
43

1.
91

 (±
0.

34
3)

1.
43

 (±
0.

37
3)

3.
35

 (±
0.

61
2)

42
.4

6 
(±

5.
84

3)
18

.2
6

13
.7

6
2.

51
2B

4V
+3

6L

C
. l

ow
ia

nu
m

1.
76

–4
.4

4
2.

52
1.

82
 (±

0.
35

8)
1.

47
 (±

0.
27

8)
3.

29
 (±

0.
58

4)
44

.8
8 

(±
3.

91
3)

17
.7

5
8.

71
1.

54
2B

6V
+3

4L

C
. d

ev
on

ia
nu

m
1.

87
–3

.8
0

2.
03

1.
60

 (±
0.

31
1)

1.
20

 (±
0.

27
9)

2.
81

 (±
0.

50
5)

42
.8

4 
(±

5.
41

3)
17

.9
7

12
.6

3
2.

26
2B

2V
+3

8L

C
. e

leg
an

s
1.

56
–4

.2
9

2.
75

1.
74

 (±
0.

43
6)

1.
32

 (±
0.

33
1)

3.
07

 (±
0.

67
2)

43
.3

9 
(±

5.
35

2)
21

.8
8

12
.3

3
2.

69
2B

4V
+3

6L

C
. a

lo
ifo

liu
m

1.
89

–4
.8

7
2.

57
1.

81
 (±

0.
60

7)
1.

24
 (±

0.
36

4)
3.

05
 (±

0.
83

0)
41

.1
8 

(±
7.

39
7)

27
.2

1
17

.9
6

4.
88

2B
6V

+3
4L

C
. i

rid
io

id
es

2.
62

–7
.2

5
2.

76
2.

46
 (±

0.
61

7)
1.

88
 (±

0.
56

9)
4.

34
 (±

1.
07

3)
43

.0
1 

(±
6.

26
0)

24
.7

2
14

.5
5

3.
59

3B
4V

+3
6L

C
. t

ra
cy

an
um

2.
01

–8
.8

1
4.

38
3.

09
 (±

1.
46

2)
2.

18
 (±

0.
78

2)
5.

28
 (±

1.
46

2)
41

.2
1 

(±
8.

03
0)

27
.6

8
19

.4
8

5.
39

2C
8V

+3
0L

+2
J

Ab
br

ev
ia

tio
ns

: (
SC

) s
ho

rt
es

t a
nd

 (L
C

) l
on

ge
st 

ch
ro

m
os

om
e 

le
ng

th
; (

p)
 m

ea
n 

lo
ng

 a
rm

 le
ng

th
; (

q)
 m

ea
n 

of
 sh

or
t c

hr
om

os
om

e 
le

ng
th

; (
C

L)
 m

ea
n 

of
 to

ta
l c

hr
om

o-
so

m
e 

le
ng

th
; (

C
I)

 m
ea

n 
ce

nt
ro

m
er

ic
 in

de
x;

 (C
V

C
L)

 c
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
in

 te
rm

s o
f c

hr
om

os
om

e 
le

ng
th

; (
C

V
C

I) 
co

effi
ci

en
t o

f v
ar

ia
tio

n 
in

 te
rm

s o
f c

en
tro

m
er

ic
 

in
de

x;
 (A

I)
 k

ar
yo

ty
pe

 a
sy

m
m

et
ry

 in
de

x 
.



Comparative karyomorphological study of some Indian Cymbidium Swartz, 1799... 459

Figures 1–7. Mitotic complements of Cymbidium species. 1 C. tigrinum 2 C. lowianum 3 C. devonianum 
4 C. elegans 5 C. aloifolium 6 C. iridioides 7 C. tracyanum. Bar = 10 μm.
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Figures 8–14. Karyotypes of Cymbidium species. 8 C. tigrinum 9 C. lowianum 10 C. devonianum 11 C. 
elegans 12 C. aloifolium 13 C. iridioides 14 C. tracyanum. Heteromorphic pair marked by arrows above 
the short arm.
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Discussion

Felix and Guerra (2000) have published some excellent cytogenetical details on orchids 
especially on members of cymbidioid phylad. About 44 species belonging to cymbid-
ioid genera were cytogenetically characterized and the pattern of karyological evolu-
tion within the group was reported. The chromosome variability reported by them 
ranges from 2n = 10 (Psygmorchis pusilla (Linnaeus, 1752) to 2n = 168 (Oncidium 
Swartz,1800 species). They have also investigated various sub-tribes for chromosome 
counts and recorded variation both within and between sub-tribes, which was quite 
remarkable. They were of the opinion that orchids in general and cymbidioid phylad 
in particular have extensively benefited by the occurrence of variable base numbers 
followed by attainment of higher ploidy levels. From the review of published chromo-
some counts of Cymbidium and allied species from various parts of the world namely 
Brazil (Felix and Guerra 2000), China (Li et al. 2002a, 2002b, 2003) and Japan (Aoy-
ama and Tanaka 1988, Aoyama 1989), it can be observed that barring few exceptions, 
the genus Cymbidium showed x = 10 as the basic number and therefore majority of the 
species revealed somatic chromosome number 2n = 40. The present investigation on 
cymbidiums also supports the earlier views with regard to x = 10 as true basic number 
of the genus Cymbidium. The genus Cymbidium is known for consistency in somatic 
chromosome numbers (2n = 40). However, certain deviant chromosome counts of 2n 
= 32, 38, 42 and 52 in species like C. aloifolium, C. bicolor, C. eburneum, C. hookeri-
anum, C. iridioides and C. tigrinum are also reported (Vij and Shekhar 1987, Aoyama 
and Tanaka 1988, Aoyama 1989, Felix and Guerra 2000). Besides these unique ob-
servations on chromosome counts, they have also reported the occurrence of signifi-
cant numbers of B-chromosomes in various Cymbidium species, whose number ranged 
from 1-5 in C. lancifolium and C. javanicum. The occasional occurrence of triploid 
cytotypes was another novel finding reported by Aoyoma and Tanaka (1988). In the 
present investigation, we do not come across such deviations in any of the materi-
als investigated from north-east India. The absence of deviant chromosome numbers 
and overall symmetry also suggests that the diversification at inter-specific level has 
occurred without any significant numerical changes. However, one important point 
emerging out of the present study is that C. tigrinum, which is also considered as one 
of the Indian miniature cymbidiums exhibited somatic chromosome number of 2n = 
40. Such observations differ from results of Vij and Shekhar (1987) who reported 2n = 
38 (x = 19) originated through loss of one pair of chromosomes for this species.

In the present study, characteristic differences have been recorded in karyotypes 
at inter-specific level of the genus Cymbidium. In general, nine pairs out of twenty 
i.e. I-II, IX-X, XIV-XVI and XVIII to XIX, showed uniformity with respect to the 
chromosome morphology at inter-specific level while moderate to greater degree of 
variation was recorded in the remaining eleven pairs of the chromosome complements 
pattern. Such observations indicate the high degree of gene/genome stability in the ge-
nus. In general, it is predicted that orchid seeds, which are very small and light weight, 
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can be wind-dispersed over long distances (Dressler 1993, Ackerman and Ward 1999, 
Chung et al. 2004), promoting genetic homogeneity among populations.

The karyotypes in most of the species investigated were found to be symmetri-
cal according to Stebbins (1971) classification. The relative variation in chromosome 
length and centromeric position also provides a measure of the heterogeneity in a given 
karyotype. The karyotype of C. tracyanum was found to be most asymmetric by having 
2C type of symmetry along with highest values of relative variation in chromosome 
length (CVCL), centromeric position (CVCI) as well as asymmetry index (AI). On the 
other hand, C. lowianum revealed least asymmetric having lowest values of CVCL and 
CVCI (17.75 and 8.71 respectively) as well as lowest AI (1.54), thereby confirming 
the high degree of genome stability with symmetric karyotypes. Further, the ratio of 
longest and shortest chromosome ranged from 2.03 in C. devonianum and 4.38 in C. 
tracyanum. The absence of nucleolus organizers in the chromosomes and deviant chro-
mosome number (barring few cells in C. aloifolium and C. tigrinum ) accompanied by 
lack of any numerical and structural changes in chromosomes suggests a more or less 
stabilized genome of Cymbidium as evident in various species presently investigated. 
Most of the species (~70%) of the Orchidaceae are epiphytic (Dressler, 1993) includ-
ing those of Cymbidium. All the available data on genetic diversity is biased towards 
terrestrial species and suggests that the gene flow of epiphytes could be more suscepti-
ble to environmental changes than other species due to the habitat, patchy distribution 
and specific pollination strategies (González-Astorga et al. 2004, Trapnell et al. 2004). 
The heteromorphic pairs recorded in C. aloifolium, C. devonianum, C. elegans, C. low-
ianum, C. tigrinum and C. tracyanum are indicative of heterogeneity and exhibit less 
genomic stability ultimately leading to help the species to attempt structural alterations 
as means of speciation. It is also opined that the chromosome re-patterning through 
either loss or gain of chromatin matter has also played a significant role in the evolu-
tion of the genus Cymbidium (Vij and Shekhar 1987). Not a single pair of nucleolus 
organizers has been observed in the form of a secondary constriction in any of the 
species investigated. However, physical localization of 45S rDNA in eight species of 
Cymbidium using fluorescent in situ hybridization (FISH) has confirmed the nucleolar 
nature of the chromosomes (Sharma et al. 2012a). Cymbidium aloifolium, C. tigrinum 
and C. tracyanum showed decondensed, dispersed, extended form of hybridization 
signals of rDNA as dots of fluorescence (transcriptionally active), whereas rest of the 
cymbidiums revealed condensed (non-active) forms, the genus hence showing a certain 
degree of heteromorphism in the size, intensities and appearance of rDNA signal. This 
phenomenon was earlier advocated by Nagl (1977) in case of Cymbidium, stating that 
it is unique among monocots having AT rich regions in genome. ITS sequence data 
have also determined the phylogeny of Asiatic cymbidiums with high bootstrap values 
and all three proposed subgenera could be distinguished clearly (Sharma et al. 2012b). 
Thus, it is opined that the genomic distribution pattern of 45S rDNA is very similar in 
most of the Cymbidium species, however, C. aloifolium, C. tigrinum and C. tracyanum 
did show variation and are consistently distinguished from other cymbidiums both at 
chromosome and molecular levels (Sharma et al. 2012a, b, c, d).
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Concluding remarks

Karyotype similarities between Cymbidium species traduce the high degree of gene 
stability in the genus at inter-specific level and indicate lack of chromosome structural 
rearrangements during speciation in Cymbidium. The present investigation may also 
provide useful information on chromosome markers including heteromorphic chro-
mosomes based speciation, basic chromosome number and ploidy level vis-à-vis ge-
nome evolution; which is more or less poorly known in the family Orchidaceae and 
especially in the genus Cymbidium.
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