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Abstract
We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) 
in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor 
(Günther,  1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and 
to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe 
signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In ad-
dition, we examined the potential homology of chromosomes bearing rDNA genes across different species 
and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. 
Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. 
In some cases, closely related species show signals on homologous chromosomes, thus representing syna-
pomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific 
patterns. These results led us to support the hypothesis that different mechanisms are responsible for the 
distribution of the ribosomal DNA cluster in Primates.
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Introduction

Repetitive DNA elements make up a large portion of eukaryotic genomes and include 
tandem arrays and dispersed repeats. These genomic components are able to change the 
molecular composition of chromosomes and their study will contribute to the knowl-
edge of karyotype differentiation (Cioffi et al. 2010, Dumas et al. 2017). A prominent 
repetitive DNA element organized in tandem repetition consists of ribosomal DNA 
(rDNA) encoding the ribosomal RNA, essential for cell function. The rDNA region is 
divided into two families: the 5.8S (minor) and the second one the 45S (major) compris-
ing 18S and 28S loci. The chromosome regions with transcriptionally active 45S loci, 
referred as the Nucleolus Organizer Regions (NORs), can be identified either by silver 
staining (Ag-NOR) or, more accurately, by fluorescence in situ hybridization (FISH) 
which permits researchers to identify both inactive and active NORs. rDNA probes 
have been cytogenetically mapped by FISH in the karyotypes of several vertebrate spe-
cies, representatives of fishes (Srikulnath et al. 2009, 2011, Sember et al. 2015), reptiles 
(Rovatsos et al. 2015a, 2015b, 2016), and Artiodactyla (Nguyen et al. 2008, Degrandi 
et al. 2014), rodents (Gornung et al. 2011, Cazaux et al. 2011, Britton-Davidian et al. 
2012) and bats (Calixto et al. 2014) in mammals in order to clarify their chromosomal 
location and mechanisms of dispersion. The topology of rDNA loci is widely used as 
marker for comparative cytogenetic studies and to explore evolutionary relationships, 
since such loci often show species-specific patterns (Srikulnath et al. 2009, 2010, Ca-
zaux et al. 2011, Bulatova and Pavlova 2016). Furthermore, the variation in number 
and topology of rDNA genes has been shown at inter- and intra-species levels, explained 
as consequence of chromosomal rearrangements, ectopic recombination through asso-
ciation of rDNA with other chromosomal segments during meiotic division or transpo-
sition events (Hirai et al. 1996, Eickbush and Eickbush 2007, Baicharoen et al. 2016).

Concerted evolution of rDNA clusters caused by unequal cross over is a well-doc-
umented process; rDNA gene copies within an individual and within a species remain 
identical in sequence, while between closely related species the sequence can vary widely 
(Averbeck and Eickbush 2005). In humans, it has been demonstrated that the dynamic 
length variation occurring at rDNA clusters, is the direct result of unequal cross over 
occurring both inter- and intrachromosomally (Stults et al. 2008). Recently it has been 
showed that highly degraded, but near full length, rDNA units can be found at mul-
tiple sites in the human genome chromosomes. These sequences tend to accumulate 
close to centromeres and to change from canonical rDNA to pseudogenes, representing 
different stages in the evolution of the rDNA sequences (Robicheau et al. 2017).

rDNA distribution especially of the 18S and 28S loci has been investigated in many 
species of Primates either by FISH (Henderson et al. 1974a,b, 1976, 1977, 1979, Hirai 
et al. 1999, 2007, Guillén et al. 2004, Baicharoen et al. 2016) or silver staining (Tantra-
vahi et al. 1976, Bedard et al. 1978, Masters et al. 1987, Nagamachi et al. 1992, Hirai et 
al. 2007, Tanomtong et al. 2009), including Homo sapiens Linnaeus, 1758. In humans, 
NORs have been identified on the secondary constriction of five pairs of acrocentric 
chromosomes: 13, 14, 15, 21 and 22 (Henderson et al. 1972, Tantravahi et al. 1976).
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In pioneering comparative studies on Primates, it was assumed that there is no ho-
mology between chromosomes bearing rDNA (Henderson et al. 1977). Furthermore, 
exchanges among rDNA genes on non-homologous chromosomes (Arnheim et al. 
1980) and a multiple topologies of rDNA sites with species-specific variations (Hirai 
et al. 1999) have been shown in Hominoidea. Later, intra-species polymorphisms have 
also been described in Primates such as Pan troglodytes (Blumenbach, 1775) (Guillén 
et al. 2004), Hylobates lar (Linnaeus, 1771), (Tanomtong et al. 2009) and Nycticebus 
bengalensis (Geoffroy, 1812) (Baicharoen et al. 2016), possibly related to unequal cross-
ing over or to transcriptional inactivation by methylation of NORs.

Therefore, we tried to explore the chromosomal distribution of rDNA loci in Primate 
genomes, by mapping the 18S and 28S probe in thirteen species of Primates and in Tupaia 
minor (Günther, 1876), the representative of the order Scandentia, as outgroup (Lin et al. 
2014, Zhou et al. 2015). The chromosome topology of rDNA genes by FISH has been 
analyzed in a wide phylogenetic framework taking in consideration previous literature.

Material and methods

The Primates species analyzed through rDNA probes mapping are listed in Table 1. In the 
present work, rDNA distribution is documented by FISH analysis for the first time in ten 
species and hybridization was repeated for Hylobates lar, Lemur catta (Linnaeus, 1758) 
and Symphalangus syndactylus (Raffles, 1821) formerly studied (Warburton et al. 1975, 
Henderson et al. 1977, Hirai et al. 1999). Metaphases for all species have been obtained 
following the standard protocol (Sineo et al. 2007, Small  et  al. 1985), from primary 
cultures of fibroblast cell lines treated and fixed at the National Cancer Institute, USA 
by F. Dumas and R. Stanyon. All karyotypes have been analyzed after DAPI inverted 
banding. The probe for the rDNA sequence was prepared from a plasmid (pDmr.a 
51#1) with a 11.5-kb insert encoding the 18S and 28S ribosomal units of Drosophila 
melanogaster (Meigen,  1830) (Endow 1982), and it was subsequently labelled with 
biotin-dUTP using a Nick Translation Kit (Abbott). In situ hybridization of the probe 
with the chromosomal spreads was performed overnight according to standard protocol 
and the probe signal was enhanced and detected using an avidin-FITC/biotinylated 
anti-avidin system (Vector Laboratories) (Rovatsos et al. 2015a). Probe signals have been 
pseudocolored in red for better contrast. The chromosomes were counterstained with 
DAPI, and the slides were mounted with antifade medium Fluroshield (Sigma-Aldrich).

Karyotypes were examined by inverted DAPI method, as previously performed 
(Dumas et al. 2016, Mazzoleni et al. 2017); the human homology between chromo-
somes with rDNA signal was identified based on painting data from previous projects 
(Table 1). Our data have been compared with previous literature data on rDNA map-
ping in Primates (Table 2). The results of distribution of rDNA loci on the chromo-
somes of all analyzed species are illustrated in a graphical reconstruction of the primate 
phylogenetic tree, following Perelman and colleagues (2011) with some modification, 
created by MESQUITE v.2.75 (Maddison and Maddison 2011).
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Table 1. List of species (Primates, Scandentia) studied cytogenetically with rDNA probes mapped by FISH; the 
chromosomes pairs bearing rDNA probe signals and the human homologies (HSA) identified through the anal-
ysis of the painting references are reported. A- acrocentric, SM - submetacentric, C - centromere. * - FISH mark-
ers position in human synteny association. HSA homology was extrapolated for Otolemur garnettii (OGR#) 
from O. crassicaudatus Géoffroy, 1812 G-banding data (Masters et al. 1987) since they showed close karyotypes.

Species rDNA mapping HSA 
homologs

Painting 
References

Chr. Chromosome 
type Position 2ndary 

constriction
Strepsirrhini

Lemur catta LCA 
(Linnaeus, 1758)

21 Acrocentric Centromere No 22/12 Cardone et al. 
200225 Acrocentric Centromere No 8

Otolemur garnetti 
OGR (Ogilby, 1838) 19 Acrocentric Centromere No 17 Stanyon et al. 

2002*
Platyrrhini

Callithrix jacchus CJA 
(Linnaeus, 1758)

15 Acrocentric Centromere
No

3
Neusser et al. 

200117 Acrocentric Centromere 3
19 Acrocentric Centromere 1

Callimico goeldii CGO 
(Thomas, 1904)

14 Acrocentric Centromere No 5

Neusser et al. 
2001

15 Acrocentric Centromere No *9/22
16 Acrocentric Centromere No *15/3
17 Acrocentric Centromere No *13/17
21 Acrocentric Centromere No 20
22 Acrocentric (only 

in 1 homologous) Centromere No *3/21

Saguinus Oedipus SOE 
(Linnaeus, 1758)

20 Acrocentric q arm No 1
Neusser et al. 

200121 Acrocentric q arm No 1
22 Acrocentric q arm Yes 10

Saimiri sciureus SSC 
(Linnaeus, 1758) 6 Submetacentric Centromere Yes 20/3 Stanyon et al. 

2000
Ateles paniscus paniscus 
APA (Linnaeus, 1758) 8 Submetacentric Centromere/q 

arm Yes 19/*20 de Oliveira et al. 
2005

Alouatta caraya ACA 
(Humboldt, 1812)

17 Acrocentric q arm Yes 8 de Oliveira et al. 
200223 Acrocentric q arm Yes 1

Catarrhini
Chlorocebus aethiops 
CAE (Linnaeus, 1758) 19 Subtelomeric Centromere/q 

arm Yes 22 Finelli et al. 
1999

Colobus guereza CGU 
(Rüppell, 1835) 16 Submetacentric Centromere/q 

arm Yes 22/21 Bigoni et al. 
1997

Erythrocebus patas EPA 
(Schreber, 1774) 26 Submetacentric Centromere No 22 Stanyon et al. 

2005
Hylobates lar HLA 
(Linnaeus, 1771) 12 Submetacentric q arm Yes 2*/*3 Jauch et al. 

1992
Symphalangus 
syndactylus SSY 
(Raffles, 1821)

21 Acrocentric Centromere No 3 Muller et al. 
2003Y Acrocentric Centromere No Y

Scandentia

Tupaia minor TMI 
(Günther, 1876)

25 Acrocentric Centromere No 3
Dumas et al. 

201226 Acrocentric Centromere No 9
28 Acrocentric Centromere Yes 12*/*22
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Table 2. List of Primates - Scandentia species analyzed with the mapping data from rDNA probes and 
the respective references.

Species rDNA mapping references
Catarrhini
Colobus polykomos Henderson et al. 1977
Gorilla gorilla Henderson et al. 1976; Hirai et al. 1999
Hylobates agilis Hirai et al. 1999
Hylobates lar Warburton et al. 1975
Hylobates × Nomascus hybrid Hirai et al. 2007
Macaca fuscata fuscata Hirai et al. 1998
Macaca mulatta Henderson 1974a
Pan paniscus Henderson et al. 1976; Hirai et al. 1999
Pan troglodytes Henderson 1974b; Hirai et al. 1999; Guillén et al. 2004 
Pongo pygmaeus albei Henderson et al. 1979
Papio cynocephalus Henderson et al. 1977
Papio hamadryas Henderson et al. 1977
Symphalangus syndactylus Henderson et al. 1976; Hirai et al. 1999
Platyrrhini 
Ateles geoffroyi Henderson et al. 1977
Pithecia pithecia Henderson et al. 1977
Saguinus nigricollis Henderson et al. 1977
Strepsirrhini
Lemur fulvis Henderson et al. 1977
Nycticebus bengalensis Baicharoen et al. 2016

Results

FISH signals were located in different positions on primarily small particular chromo-
somes of taxa studied. The variation was observed between karyotypes regarding both 
the number and morphology of chromosomes bearing the signal as the rDNA site 
number per karyotype.

From one to five rDNA autosome markers were located at the tip of acrocentrics 
in 5 species: Lemur catta (pairs 21, 25) (Fig. 1A), Otolemur garnettii Ogilby, 1838, 
(pair 19) (Fig. 1B), Callithrix jacchus Linnaeus, 1758, (pairs 15, 17, 19) (Fig. 2A), Cal-
limico goeldii Thomas, 1904, (pairs 14-17, 21 and, not frequent, 22 – single homolog) 
(Fig. 1G) and Symphalangus syndactylus (pair 21 and the Y-chromosome) (Fig. 1H).

In 7 species, pericentromeric position was recorded for a biarmed pair: Saimiri 
sciureus Linnaeus, 1758 (submetacentrics pair 6) (Fig. 1E), Ateles paniscus paniscus Lin-
naeus, 1758, (pair 8) (Fig. 1C), Hylobates lar (pair 12) (Fig. 1I), Colobus guereza Rüp-
pell, 1835, (pair 16) (Fig. 2B), Saguinus Oedipus Linnaeus, 1758, (pair 20) (Fig. 1F), 
Erythrocebus patas Schreber, 1775, (pair 26) (Fig. 1M), or subtelocentric chromosomes 
19 of Chlorocebus aethiops Linnaeus, 1758,(subtelocentric chromosomes 19) (Fig. 1L). 
Besides, in Saguinus oedipus the location on acrocentrics 21 and 22 was identified in a 
visible secondary constriction (Fig.1F).
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Figure 1. rDNA loci mapping (red signal highlighted by white arrows) on metaphases of: A Lemur catta 
B Otolemur garnetti C Ateles paniscus paniscus D Alouatta caraya E Saimiri sciureus F Saguinus oedipus 
G Callimico goeldii H Symphalangus syndactilus I Hylobates lar L Chlorocebus aethiops M Erythrocebus patas 
N Tupaia minor.

In Alouatta caraya Humboldt, 1812, signals were positioned on medium-small 
acrocentrics with a visible secondary constriction (pairs 17, 23) (Fig. 1D). Similarly, 
three small acrocentrics of Tupaia minor were marked (pairs 25, 26, 28) (Fig. 1N).

The results are reported also in Figure 3 and summarized in Table 1. Homology 
between marked chromosomes is below discussed.
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Figure 2. DAPI stained chromosomes (blue) with rDNA loci signal (red) are illustrated, together with 
DAPI inverted (grey) chromosomes arranged in karyotypes of A Callithrix jacchus B Colobus guereza. 
Corresponding metaphases (with red signals highlighted by white arrows) are shown on the left.

Discussion

rDNA mapping has been previously performed in a number of Primate species (Ta-
ble 2), but in pioneering studies, the cross-species homology of chromosomes with 
rDNA could not be reliably identified due to limitations of G-banding and the lack of 
advanced molecular cytogenetic methods, such as chromosome painting. For example, 
the topology of rDNA loci was previously studied in Hylobates lar, Lemur catta and 
Symphalangus syndactylus (Warburton et al. 1975, Henderson et al. 1977, Hirai et al. 
1999), but at that time, it was not always possible to identify the hybridized chromo-
somes nor their homology with human chromosomes. In our study, we were able to 
identify, in all studied species, the homology and synteny of each chromosome bearing 
rDNA loci to human karyotype, through DAPI inverted banding.

The data concerning the distribution of rDNA loci on the chromosomes of the 
analyzed species are discussed in an evolutionary perspective and illustrated in a graph-
ical reconstruction (Fig. 4) based on chromosome characters such as is visualized in the 
tree; we report for each species the diploid number, rDNA-bearing chromosomes and 
the homology to human syntenies.

The comparative analysis of ours and other data demonstrated that rDNA loci 
are often localized in the chromosomes homologous to HSA synteny 3 and 22 in 
many Primates and in Tupaia as well (Fig. 3). Indeed, among Primates, we found 
the rDNA loci on HSA synteny 3 on Platyrrhini species S. sciureus, C. jacchus, C. 
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Figure 3. Chromosome pairs bearing rDNA probe signals for each species analyzed and corresponding 
human syntenies (HSA): chromosomes are in DAPI inverted banding; rDNA probe signals in red.

goeldii and in gibbons H. lar and S. syndactilus. In addition, data from literature on the 
Prosimian Nycticebus bengalensis Lacepede, 1800, (Baicharoen et al. 2016) show that 
rDNA loci exist on human synteny 3. Furthermore, we identified rDNA loci on HSA 
synteny 22 in the Prosimian representative L. catta. Similar topology of rDNA loci was 
presented previously in N. bengalensis (Baicharoen et al. 2016). Among Platyrrhini, 
even if the probe localized at the centromere of C. goeldii chromosome 15, close to 
human synteny 9, this last synteny is associated to human synteny 22, thus leading us 
to propose the hypothesis that an inversion could have relocated it after the fusion of 
the two involved syntenies. In all Cercopithecoidea studied (C. aethiops, C. guereza and 
E. patas), the rDNA loci were localized on human synteny 22; in C. guereza where it is 
between syntenies 22 and 21 presumably it conserved its position after the fusion of the 
first chromosome bearing the rDNA with the second one; other data from literature 
indicate that rDNA localized on human synteny 22 also in Hominoidea species such 
as Pan paniscus (Schwarz, 1929), P. troglodytes, Gorilla gorilla (Geoffroy, 1852) and in 
H. sapiens (Linnaeus, 1758) (Hirai et al. 1999, Tantravahi et al. 1976, Guillén et al. 
2004). These results led us to suppose that rDNA on synteny 3 and 22 represents the 
ancestral status; presumably rDNA on synteny 3 has been lost in prosimians (LLC, 
OGR), Cercopithecoidea (CAE, CGU, EPA) and in many Platyrrhini, while the 
rDNA on synteny 22 has been lost in gibbons (HLA, SSY).
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Figure 4. Primate molecular phylogenetic relationships as modified after Perelman et al. (2011). The 
tree was reconstructed in MESQUITE in consideration of the diploid number (2n), the DAPI stained 
chromosome (blue) with the rDNA probe signals localization (red) and the inverted DAPI (grey) for each 
species. In each chromosome pair, only a single chromosome is shown. Homologies to human chromo-
somes are indicated on the right side of chromosomes and are inferred through the analysis of the refer-
ences listed in the last column. Ancestral localization of rDNA loci is underlined in color: green for human 
synteny 22, pink for human synteny 3.

Other multiple rDNA signals that we detected on different chromosomes, could 
be apomorphies with species specific locations such as, for example, the one found 
on chromosomes homologous to human synteny 17 in O. garnettii. Consistent with 
previous findings in N. bengalensis our data well correspond to species specific rDNA 
locations (Baicharoen et al. 2016). Furthermore, other rDNA loci could represent 
synapomorphisms in closely related species, such as the ones on HSA synteny 1 in 
S. oedipus, A. caraya and C. jacchus (Platyrrhini), as well as on HSA synteny 13/14 
previously shown in Hominoidea (Pan troglodytes, P. paniscus, H. sapiens) (Tantravahi 
et al. 1976, Henderson et al. 1976, Hirai et al. 1999).

Despite the facts that have documented a conserved pattern in the topology of rDNA 
loci in many species (e.g. extensive homology to HSA synteny 3 and 22), we also showed 
the presence of multiple rDNA loci on distinct chromosomes (Fig. 4). Therefore, we as-
sume that different mechanisms are responsible for their dispersion in genome, in agree-
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ment with previous hypotheses (Hirai et al. 1999, Britton-Davidian et al. 2012). We con-
clude that intra- and interchromosomal rearrangements are probably not the single expla-
nation of the rDNA pattern in Primates. Ectopic recombination might be responsible for 
the gain and loss of rDNA loci, resulting in the dispersal or loss of rDNA tandem repeats 
during meiosis, more prone to occur at the terminal tip of acrocentric chromosomes. For 
example, among the studied Primates, we found multiple topologies with up to five pairs 
of acrocentric chromosomes carrying the rDNA loci in C. goeldii (Platyrrhini). Actually, 
the similarity of five to eight pairs has been previously reported in literature for human 
(Henderson et al. 1972, Tantravahi et al. 1976), chimpanze and gorilla (Hirai et al. 1999).

In an alternative view, we cannot exclude the case that short tandem repeats of 
rDNA loci may exist on multiple chromosomes, beyond the detection efficiency of 
FISH, which were inherited by the ancestors of the extant Primates, and were subse-
quently amplified independently in different species during the evolution of their kary-
otypes, resulting in the extensive variability observed in this study. Concluding, our re-
sults indicate that rDNA distribution is due to different mechanisms; we found species 
with conserved signals on syntenic chromosomes, while in others, signal was detected 
in distinct chromosomes. There are reasons to pay more attention to the study of rDNA 
loci in Primates chromosomes as marks of the complex evolutionary relationships.
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