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Abstract
Male karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 1835), Tingis cardui (Linnaeus, 1758), 
T. crispata (Herrich-Schaeffer, 1838), and Agramma femorale Thomson, 1871 (Heteroptera, Cimicomor-
pha, Tingidae) were analyzed using conventional chromosome staining and FISH with 18S rDNA and 
(TTAGG)n telomeric probes. The FISH technique was applied for the first time in the Tingidae. In spite 
of the fact that all species showed the same chromosome number (2n = 12 + XY), they have significant 
differences in the number and position of rDNA loci. FISH with the classical insect (TTAGG)n probe 
produced no signals on chromosomes suggesting telomeres in lace bugs to be of some other molecular 
composition. Tingidae share absence of the (TTAGG)n telomeric sequence with all so far studied taxa of 
the advanced true bug infraorders Cimicomorpha and Pentatomomorpha.

Keywords
Karyotype, sex chromosomes, FISH, rDNA, (TTAGG)n, Hemiptera, Heteroptera, Cimicomorpha, Tingidae

CompCytogen 9(4): 513–522 (2015)

doi: 10.3897/CompCytogen.v9i4.5376

http://compcytogen.pensoft.net

Copyright Natalia V. Golub et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC 
BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

RESEARCH ARTICLE

COMPARATIVE

Cytogenetics
International Journal of Plant & Animal Cytogenetics, 

Karyosystematics, and Molecular Systematics

A peer-reviewed open-access journal

mailto:nvgolub@mail.ru
http://zoobank.org/400FCFAB-5401-4448-A1A7-17F9288C4F3D
http://dx.doi.org/10.3897/CompCytogen.v9i4.5376
http://dx.doi.org/10.3897/CompCytogen.v9i4.5376
http://dx.doi.org/10.3897/CompCytogen.v9i4.5376
http://compcytogen.pensoft.net
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Natalia V. Golub et al.  /  Comparative Cytogenetics 9(4): 513–522 (2015)514

Introduction

Tingidae (lace bugs) are a large widespread family of herbivorous bugs including 2200 
species belonging to 280 genera. The family is subdivided into two, Tinginae and Can-
tacaderinae, or into three (Vianaidinae in addition) recent subfamilies; the subfamily 
Tinginae is the largest and the most diverse subfamily of lace bugs. Tingidae are placed 
in the Cimicomorpha, but their relationships within this large infraorder are not en-
tirely clear (Golub and Popov 2012, Golub et al. 2012).

Many studies have proven that chromosome alterations are significant for species 
evolution and then, cytogenetics can be a useful tool for evolutionary, taxonomic, 
phylogenetic and speciation studies (White 1973, King 1993).

Cytogenetic data on members of the Tingidae are scarce and only involve species of 
the Tinginae. Currently, chromosome information of 29 species, belonging to 18 genera, 
i.e., approximately 1% and 6% respectively is known (Ueshima 1979, Nokkala and 
Nokkala 1984, Grozeva and Nokkala 2001). With one exception (see Discussion), the 
karyotypes of the species studied are similar in that they include six pairs of autosomes.

All previous investigations of lace bugs have been carried out using conventional chro-
mosome staining techniques. Identification of individual chromosomes in karyotypes is a 
difficult task in the case of true bugs because of morphologically uniform holokinetic chro-
mosomes. However, with the use of C-banding technique, Grozeva and Nokkala (2001) 
were successful in identifying separate chromosomes in 13 lace bugs species and revealing 
differences between them in C-band pattern. These findings showed that C-heterochro-
matin distribution has had a major role in the karyotype evolution of the family Tingidae.

In the past decades, fluorescence in situ hybridization (FISH) has increased the 
resolution of the true bugs’ cytogenetics. Thanks to this technique, the analysis of the 
karyotypes has become more informative and comprehensive. In true bugs, ribosomal 
genes are commonly used as markers for the physical mapping of their chromosomes 
(reviewed in Grozeva et al. 2014).

Here, the first FISH-based study for the characterization of tingid karyotypes is 
presented. We describe the karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 
1835), Tingis cardui (Linnaeus, 1758), T. crispata (Herrich-Schaeffer, 1838), and 
Agramma femorale Thomson, 1871 after FISH with an 18S rDNA probe. Note that 
for two last species, the standard karyotype is reported for the first time.

Additionally, we used FISH with a (TTAGG)n probe to analyze whether the clas-
sical “insect” telomeric motif (TTAGG)n is present in the lace bug species. Previous 
studies on species of two cimicomorphan families (Miridae and Cimicidae) showed 
the absence of this telomeric repeat (Frydrychová et al. 2004, Grozeva et al. 2011).

Material and methods

The material studied is presented in Table 1.
Lace bug species were collected in 2014 by V. Golub in Republic of Bashkortostan, 

Russia. Only male adult specimens were analyzed. In field, the specimens were fixed im-
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mediately after capturing in 3:1 fixative (96% ethanol: glacial acetic acid) and stored at 
4 °C. In laboratory, testes were dissected in a drop of 45% acetic acid and squashed. The 
cover slips were removed using dry ice. Prior to staining, the preparations were examined 
by phase contrast microscopy. Chromosome staining techniques applied were a Feulgen-
Giemsa method as described in Grozeva and Nokkala (1996) and fluorescence in situ 
hybridization (FISH) with 18S rDNA and (TTAGG)n telomeric probes. 18S rDNA and 
(TTAGG)n probe preparation and hybridization were carried out as described in Groze-
va et al. (2010, 2014). In brief, chromosome preparations were treated with 100 µg/ml 
RNaseA and 5 mg/ml Pepsin solution to remove excess RNA and proteins. Chromo-
somes were denatured on a slide in hybridization mixture with biotinylated 18S rDNA 
probe from the genomic DNA of Pyrrhocoris apterus (Linneus, 1758) and rhodaminated 
(TTAGG)n probe with addition of salmon sperm DNA blockage and then hybridized 
for 36 h. Hybridization signals were detected with NeutrAvidin-FITC. Chromosomes 
were mounted in an antifade medium (ProLong Gold antifade reagent with DAPI, In-
vitrogen) and covered with a glass coverslip. Chromosome slides were analyzed under 
a Leica DM 6000 B microscope; images were taken with a Leica DFC 345 FX camera 
using Leica Application Suite 3.7 software with an Image Overlay module.

Results

Conventional staining and FISH with an 18S rDNA probe

Tingis crispata, 2n = 14 (12A + XY)
Published data: absent

During the diffuse stage, the autosomes were de-condensed whilst the X and Y 
chromosomes appeared to be fused and heteropycnotic (Fig. 1). Early diplotene (Fig. 

Table 1. Material used for chromosome analysis.

Species 
Number of males/

chromosome 
plates studied

Locality and date of collection Host plant

Elasmotropis testacea 2/37

Russia, Republic of Bashkortostan, South-Ural 
state natural reserve, env. of village Terekly, 

12 km ENE of settl. Arhangelskoe, 54°26'N, 
56°57'E, alt. 269 m, 5.08.2014

Echinops sp. 
(Asteraceae)

Tingis cardui 2/19
Russia, Republic of Bashkortostan, South-

Ural state natural reserve, env. of settl. Inzer, 
54°13'N, 57°34'E, alt. 349 m, 4.08.2014

Carduus sp. 
(Asteraceae)

T. crispata 3/143 Russia, Tolyatti, 53°31'N, 49°25'E, alt. 95 m, 
13.08.2014

Artemisia vulgaris 
Linnaeus, 1753 

(Asteraceae)

Agramma femorale 2/23
Russia, Republic of Bashkortostan, South-Ural 

state natural reserve, env. of village Revet’, 
54°11'N, 57°37'E, alt. 285 m, 10.08.2014

Juncus sp. 
(Juncaceae)
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2) revealed six autosomal bivalents, each with one, rarely two chiasmata, and the X 
and Y chromosomes positioned close to each other. The bivalents gradually decreased 
in size, and sex chromosomes were of different size. At early metaphase I (MI), sex 
chromosomes were seen well apart from each other (Fig. 3) whilst at mature MI they 
formed a heteromorphic pseudobivalent (Fig. 4). At early anaphase I, sex chromo-
somes segregated ahead of the autosomal bivalents (Fig. 5). At MII, the two daughter 
nuclei, each with seven elements, namely, 6 autosomes and either the X or the Y chro-
mosome, were present (Fig. 6).

The 18S rDNA FISH resulted in appearance of a comparatively small interstitial 
signal in the larger sex chromosome (presumably, the X) and a larger subterminal sig-
nal in the smaller sex chromosome (presumably the Y) (Fig. 7).

Tingis cardui, 2n = 14(12A + XY)
Published data: 2n = 14(12A + XY) (Southwood and Leston 1959)

At first prometaphase subjected to 18S rDNA FISH, eight elements were present, 
including six autosomal bivalents and X and Y chromosomes which lied separately 
from each other. The bivalents constituted a series decreasing in size, and sex chromo-
somes were of different size. The subterminally located 18S rDNA sites were revealed 
on both homologues of a medium-sized autosomal bivalent (Fig. 8).

Elasmotropis testacea, 2n = 14(12A + XY)
Published data: 2n = 14(12A + XY) (Grozeva and Nokkala 2001)

At first metaphase subjected to 18S rDNA FISH, eight elements were present, 
including six autosomal bivalents which formed a ring with a pseudobivalent of the 
X and Y chromosomes located in its center. The bivalents constituted a series decreas-
ing in size, and sex chromosomes were of similar size. The subterminally located 18S 
rDNA sites were revealed in a medium-sized bivalent (Fig. 9).

Agramma femorale, 2n = 14(12A + XY)
Published data: absent

At first prometaphase subjected to 18S rDNA FISH, eight elements were present, 
including six autosomal bivalents and X and Y chromosomes which lied separately 
from each other. The bivalents constituted a series decreasing in size, sex chromosomes 
could not be told apart because of their similar size. The 18S rDNA signals were dis-
persed all over one of the two sex chromosomes (Fig. 10).

FISH with a (TTAGG)n telomeric probe

In none of the species studied, the (TTAGG)n telomeric probe produced fluores-
cent signals.
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Figures 1–10. 1–6 Male meiosis in Tingis crispata (conventional staining): 1 diffuse stage 2 early diakinesis, 
two-chiasmate bivalent is indicated by arrow 3 early MI 4 mature MI 5 early AI 6 MII. Sex chromosomes are 
indicated by arrowheads 7–10 Meiotic chromosomes in Tingidae species after FISH with an 18S rDNA probe: 
7 diakinesis in T. crispata 8 first prometaphase in T. cardui 9 MI in Elasmotropis testacea 10 first prometaphase in 
A. femorale. Sex chromosomes are indicated by arrowheads; autosomally located signals are indicated by arrows.
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Discussion

Like other true bugs, Tingidae have holokinetic chromosomes (Ueshima 1979, Kuznet-
sova et al. 2011). These chromosomes possess diffuse or non-localized centromeres and 
can therefore display a unique capability for karyotype evolution via occasional fusion/
fission events (White 1973). In spite of this, both previous cytogenetic investigations 
(Ueshima 1979, Nokkala and Nokkala 1984, Grozeva and Nokkala 2001) and our 
new data suggest that Tingidae are characterized by a stable number of autosomes, 
12 in diploid complements. The only exception seems to be Acalypta parvula (Fallén, 
1807) which has, according to Southwood and Leston (1959), 2n = 12(10A + XY) 
in a population from British Isles. However males of this species from Finland were 
reported to have 2n = 12A + X (Grozeva and Nokkala 2001). Assuming these chromo-
some data are correct, one can suggest the existence of two species hidden under one 
species name. The majority of hitherto studied lace bug species, namely 25 of the 29, 
possess a XY/XX type of sex determination. This sex chromosome system was suggest-
ed to represent a plesiomorphic state in the Heteroptera, and the sporadic occurrence 
of X(0) bed bug species to be due to repeated loss of the Y chromosome, i.e. a result of 
convergent evolution (homoplasy) (Nokkala and Nokkala 1983, 1984, Kuznetsova et 
al. 2011, Grozeva et al. 2014). Such a loss has also occurred at least twice within the 
Tingidae: in the genera Acalypta Westwood, 1840 and Kalama Puton, 1876. All the 
three studied Acalypta species, namely, A. carinata (Panzer, 1806), A. nigrina (Fallén, 
1807), and most likely also A. parvula (Grozeva & Nokkala, 2001), and a single stud-
ied Kalama species, namely K. tricornis Schrank, 1801 (Nokkala and Nokkala 1984: as 
Dictyonota tricornis (Schrank, 1801), Grozeva and Nokkala 2001), were found to have 
a derived system X(0).

For insects with holokinetic chromosomes the low number of chiasmata is charac-
teristic and is considered as a result of a specific structure of holokinetic bivalents (Nok-
kala et al. 2004). In Tingidae, one or occasionally two chiasmata in every bivalent were 
described (Ueshima 1979, Grozeva and Nokkala 2001). This pattern is also revealed in 
the four species here examined. Within Cimicomorpha, Tingidae share male chiasmate 
meiosis with Reduviidae (Ueshima 1979), whereas other families for which such evi-
dence is available, namely, Microphysidae, Nabidae s.str., Anthocoridae s.str., Cimici-
dae, and Miridae, seem to have achiasmate meiosis in males (Kuznetsova et al. 2011).

In “standard” meiosis, during the first division all the chromosomes reduce in 
number (reductional division), whereas during the second division the chromatids sep-
arate (equational division), and this pattern is named “pre-reduction” (White 1973). 
However Heteroptera show an inverted sequence of meiotic divisions for sex chromo-
somes in males, the so-called “sex chromosome post-reduction”. It means that, unlike 
autosomes, the sex chromosome(s) divide equationally at anaphase I and reductionally 
at anaphase II. On very rare occasion, in individual bug species, a pre-reductional 
division of sex chromosomes was observed, and such species have also been reported 
within cimicomorphan families Miridae (Grozeva et al. 2006, 2007) and Reduviidae 
(Manna and Deb-Mallick 1981). Importantly, lace bugs are the only heteropteran 
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family showing pre-reduction of sex chromosomes in spermatogenesis of all the stud-
ied species (Ueshima 1979, Grozeva and Nokkala 2003, present study). Since all other 
members of the Hemiptera invariably display pre-reduction, the sex chromosomes’ 
post-reduction can be considered as an autapomorphy of true bugs without Tingidae.

In groups with holokinetic chromosomes, the main problem is to identify indi-
vidual chromosomes and chromosomal regions in karyotypes. Different cytogenetic 
techniques, e.g. C-banding, DNA-specific fluorochrome staining, AgNO3 staining, 
make possible only a few markers to be revealed in true bugs’ karyotypes (Papeschi and 
Bressa 2006, Kuznetsova et al. 2011). Regarding the Tingidae, a single work aimed to 
reveal differences between species in C-banding pattern was published by Grozeva and 
Nokkala (2001). The 13 studied species belonging to 10 genera were found to differ in 
the number (from one to eight per haploid complement) and location (terminal, inter-
stitial or both) of bands on both autosomes and sex chromosomes. The data obtained 
showed that a quite substantial redistribution of chromosome material within chromo-
somes occurred during the evolution of this group without chromosome fragmenta-
tion or fusions (Grozeva and Nokkala 2001). Thus, the species-specific organization of 
the constitutive heterochromatin can be used as an additional cytogenetic marker for 
the lace bug species differentiation.

In order to reveal additional chromosomal markers and gain deeper insights into 
the evolution of the Tingidae, we have applied FISH with 18S rDNA and telomeric 
(TTAGG)n probes to the four species from the present study. This is the first time that 
the lace bugs have been the subject of a molecular cytogenetic study. Physical location 
of genes remains very poorly studied in true bugs. Out of approximately 40.000 de-
scribed species (Weirauch and Schuh 2011), only 94 species have been investigated in 
this respect and only the rRNA genes and telomeric sequences were mapped (Grozeva 
et al. 2014). The species studied belong to 38 genera, 10 families, and three (out of 
8) infraorders including Nepomorpha (Belostomatidae), Pentatomomorpha (Corei-
dae, Lygaeidae, Pentatomidae, and Pyrrhocoridae), and Cimicomorpha (Cimicidae, 
Largidae, Miridae, Reduviidae, and Rhopalidae). The sites for rRNA at a rate of one 
to four (per diploid genome) were found to locate variously in different species: either 
on autosomes (the largest or one of the medium-sized pairs), or on m-chromosomes, 
or on sex chromosomes (X or both X and Y) or on both a pair of autosomes and the 
X-chromosome. The autosomal location seems to predominate being found in half of 
the species studied. The majority of rDNA sites show a terminal localization, however 
in rare cases they are positioned interstitially in chromosomes. The most impressive 
variation regarding the number and the type of chromosomes (autosomes and/or sex 
chromosomes) that carried the rRNA genes is described in the kissing bug subfam-
ily Triatominae (Cimicomorpha: Reduviidae) even though it demonstrates a highly 
conserved karyotype including 20 autosomes in the great majority of studied species 
(Panzera et al. 2012, 2014, Pita et al. 2013).

A very similar variation holds for the four tingid species possessing the same karyo-
type, 2n = 12 + XY, including two closely related species of the genus Tingis Fabricius, 
1803. Our findings suggest that chromosomal divergence can occur among seemingly 
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conserved karyotypes and may play a role in reproductive isolation and speciation of the 
family Tingidae. Males of T. crispata were found to have rDNA sites on both sex chro-
mosomes, interstitial on the larger and subterminal on the smaller. Since in the XY true 
bugs species the larger of the two sex chromosomes is conventionally taken as the X (e.g. 
Ueshima 1979, Grozeva et al. 2014), we suggested that this is also the case in T. crispata. 
In contrast, males of T. cardui showed subterminally located sites on one medium-sized 
pair of autosomes. In the two remaining species, E. testacea and A. femorale, ribosomal 
genes were found on a medium-sized autosomal pair (located subterminally) and on 
one of the two homomorphic sex chromosomes (multiple sites), respectively.

Changes in the number and location of rDNA loci are a well-known phenomenon 
in eukaryotic organisms, including true bugs (e.g. Panzera et al. 2012, Grozeva et al. 
2014). As regards the ability of rDNA clusters to move and vary in number among 
the closely related species with the same chromosome number, different mechanisms 
have been suggested, including structural chromosome rearrangements (inversions and 
translocations), transposition, ectopic recombination, transposable elements (Panzera et 
al. 2012, Pita et al. 2013, Grozeva et al. 2014) and even a homoploid hybrid speciation, 
i.e. hybridization without a change in chromosome number (referenced in Vershinina et 
al. 2015). In Triatominae bugs, the occurrence of heterologous associations among non-
homologous autosomes and heterochromosomes seems to favor the transposition and 
ectopic recombination hypotheses (Panzera et al. 2012). However, much more work is 
needed to identify mechanisms responsible for the ribosomal loci variation in lace bugs.

The majority of insect species is known to share the telomeres composed of the 
pentanucleotide TTAGG repeat which is considered as an ancestral telomeric mo-
tif in this large group of Arthropoda (Frydrychová et al. 2004, Vitková et al. 2006). 
Many higher level insect groups preserved this telomeric sequence, but some of them 
have lost it during the evolution. Recently, it has been shown that in Heteroptera, 
the classical insect (TTAGG)n telomeric sequence is absent in the evolutionarily ad-
vanced families Miridae, Cimicidae (Cimicomorpha), Pyrrhocoridae and Pentatomi-
dae (Pentatomomorpha) (Frydrychová et al. 2004. Grozeva et al. 2011) but is present 
in the family Belostomatidae from a more basal infraorder Nepomorpha (Kuznetsova 
et al. 2012). According to our data, this telomeric sequence is absent in all the four 
examined lace bug species and probably in the family Tingidae as a whole. This new 
finding reinforces the hypothesis that the (TTAGG)n telomeric motif was lost during 
the evolution of the Heteroptera, at least in the common ancestor of large infraorders 
Pentatomomorpha and Cimicomorpha (Kuznetsova et al. 2012).
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