Latest Articles from Comparative Cytogenetics Latest 2 Articles from Comparative Cytogenetics https://compcytogen.pensoft.net/ Fri, 29 Mar 2024 08:52:13 +0200 Pensoft FeedCreator https://compcytogen.pensoft.net/i/logo.jpg Latest Articles from Comparative Cytogenetics https://compcytogen.pensoft.net/ Description of two new species of the genus Cacopsylla Ossiannilsson, 1970 (Hemiptera, Psylloidea) from northern Fennoscandia recognized by morphology, cytogenetic characters and COI barcode sequence https://compcytogen.pensoft.net/article/47395/ Comparative Cytogenetics 13(4): 367-382

DOI: 10.3897/CompCytogen.v13i4.47395

Authors: Christina Nokkala, Valentina G. Kuznetsova, Veikko Rinne, Seppo Nokkala

Abstract: Based on chromosomal, molecular and morphological analyses, two new Cacopsylla Ossiannilsson, 1970 species are described, C. lapponica S. Nokkala & Ch. Nokkala, sp. nov. and C. borealis S. Nokkala et Ch. Nokkala, sp. nov. (Hemiptera, Psylloidea). C. lapponica is a rare bisexual alpine species living on Vaccinium uliginosum Linnaeus, 1753 above tree line on northern hills, where it forms sympatric populations with C. myrtilli W. Wagner, 1947. So far, the species has been found in northern Finland, Utsjoki and Kilpisjärvi, and in northern Sweden, Abisko. The chromosome number in males is 2n = 12+X(0), characteristic of psyllids. The species is easily distinguished from C. myrtilli by its conspicuously smaller size mainly due to difference in wing size. Additional morphological differences are found in the length of antennae, female genital plates and male parameres. C. borealis, in turn, is a relatively common apomictic parthenogenetic species with 5n = 60 + XXXXX living on the same host plant, Ledum palustre Linnaeus, 1753, as C. ledi (Flor, 1861) and occasionally forming sympatric populations with it. No males have been recorded in C. borealis. Its distribution range reaches at least from northern Fennoscandia to Lake Baikal in the East. C. borealis can be distinguished from C. ledi by differences in the length and width of antennae, dark brown markings on the wing and female terminal structures. For molecular analysis, a 638 bp fragment of the mitochondrial COI gene was sequenced. C. lapponica differs from the cohabitating C. myrtilli by 20 fixed nucleotide substitutions (uncor rected p-distance 3.13 %), while C. borealis differs from C. ledi by 21 fixed nucleotide substitutions (uncorrected p-distance 3.29 %). Molecular phylogeny construction (ML and BI) reveals two highly divergent clades, one comprising two bisexual species, C. lapponica and C. fraudatrix Labina & Kuznetsova, 2012, and the other clade comprising the parthenogenetic species C. borealis, C. myrtilli, and C. ledi. Within this clade, C. borealis is more closely associated with C. myrtilli than with C. ledi.

HTML

XML

PDF

]]>
Research Article Tue, 19 Nov 2019 15:59:23 +0200
Characteristics of parthenogenesis in Cacopsylla ledi (Flor, 1861) (Hemiptera, Sternorryncha, Psylloidea): cytological and molecular approaches https://compcytogen.pensoft.net/article/21362/ Comparative Cytogenetics 11(4): 807-817

DOI: 10.3897/CompCytogen.v11i4.21362

Authors: Seppo Nokkala, Valentina G. Kuznetsova, Christina Nokkala

Abstract: Characteristics of parthenogenesis in Cacopsylla ledi (Flor, 1861) were analyzed using cytological and molecular approaches. In all three populations studied from Finland, i.e. Turku, Kustavi and Siikajoki, males were present at a low frequency but were absent from a population from Vorkuta, Russia. In a follow-up study conducted in the Turku population during 2010–2016, the initial frequency of males was ca. 10 % and showed no intraseasonal variation, but then dramatically decreased down to approximately 1–2 % level in seasons 2015–2016. Male meiosis was chiasmate with some traces of chromosomal fragmentation and subsequent fusions. In most females, metaphase in mature eggs included 39 univalent chromosomes which indicated apomictic triploidy. Only a small fraction of females was diploid with 13 chiasmate bivalents. The frequency of diploid females approximately equaled that of males. COI barcode analyses showed that triploid females (N = 57) and diploids (7 females and 5 males) displayed different haplotypes, demonstrating that triploid females reproduced via obligate parthenogenesis. The rarity of diploids, along with the lack of males’ preference towards diploid females, suggested that most likely diploids were produced by rare triploid females which shared the same haplotype with the diploids (not found in the present analysis). Minimum haplotype diversity was detected in the Turku population, but it was much higher in Vorkuta with some indication for the mixed origin of the population. We suggest that functional diploids produced in a parthenogenetic population can give rise either to a new parthenogenetic lineage or even to a new bisexual species.

HTML

XML

PDF

]]>
Research Article Fri, 24 Nov 2017 17:16:16 +0200